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In the present paper, the author gives an algebraic classification of the space-
matter tensor, in general relativity, which was first introduced by Petrov (1969).
A comparison of the present classification with that of Petrov has been made
and it is found that the cases Il (@) and III () correspond to the case of
gravitational radiation. Asan example, the author deals with the space found

inside an incompressible sphere. In the appendix, the forms of the curvature
tensor (using Weyl tensor) for the different cases has been given.

1. INTRODUCTION
We assume that the metric
ds? = g,, dx® dx’
of the space-time V, is reduciblz at a point to the Galilian form
ds? = — (dx; )2 — (dx,)* — (dx;3)* + (dx,)2
Let the Einstein’s field equations be
Ry — 1 Rgy, = 4T, (1

where / is a constant and 7T,, is the energy-momentum tensor. On contraction
(1) yields

AT = —R (2)

Introduce a fourth order tensor (Petrov 1969)

Aaled = ;/2 (gac de + 477 Tac — 8 Tbe - gbcrad)~ (3)
From the definition this tensor has the following properties:

Aabcd = Abacd = Aabdc = Acdab (4)

Ages + Agera T Agare = 0. &)

Contraction of (3) over b and d yields
Auc = A'Tar + )'/ZTg(m == )'Tm-, - R/ng' (6)
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Define a new fourth order tensor [2]
P = Ruyea — Ampea + 0 (8ac 8o — 8au 8e) (I

This tensor is known as space-matter tensor. The first part of this tensor re-
presents the curvature of the space and the second part represents the distribution
and motion of the matter. This tensor has the following properties:

(1) Povea = — Proos = — Porae = Poanr
Poi + Proay + Pogre = 0
(i) P,, = R, — AT, + Rj2 g, + 30g,,
= (R + 30) g,

(iii) If the distribution and motion of the matter, i.e., T,, and the space-matter
tensor P,,,, are given, then R,,,, the curvature of the space is determined to

within the scaler a.

(iv) If T, = 0 and o = 0, then P,,,, is the curvature of the empty space-time.

(v) If g,,, the metric tensor, o, the scaler and P, are known, then T, can
be determined uniquely.

Following Géhéniau and Debever (1956) the Riemann curvature tensor may
be decomposed in the following form

Rt = Coped + Eares + Gotea (8)
where C,,., is the Weyl tensor, E,,, is the Einstein curvature tensor defined by

Eaqet = ~ 3 (8o Sea + 8ra Sus — Loa Ste — Lue Sua) €]
‘where

S = Ry — 182 R (10)
being the trace-less Ricci tensor, and Gg,, is defined by

Gupea = — R/12(8uc 813 — 8aa &1.) an
From eqns. (9), (10) and (11), (8) can be written as

Rypes = Capea + 3 (8aa Rye T+ 820 Ras — Zoo Rua — 812 Rao)

~ R/6 (gua 8uo — Zao 8va) (12)

and from egns. (1), (3) may be expressed as

Ages = 3 (8oo Roa + 8ra Ryo — &oa Roc — 8ue R,)) — R[2 (84 8va = Bas 8ve)
(13)
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From eqns. (12) and (13), (7) may be expressed as
Piyea = Cureq + (&oa Roe + 81e Raa — 8ac Roa — &oa Reo)
+ (2/3 R + 0) (84 8sa — &aa &oe) (14)

2. CLASSIFICATION OF THE SPACE-MATTER TENSOR P,;.,

We, now give a scheme for the classification of the space-matter tensor P 4.
If, in the decomposition (14), we take Ricci tensor R,, and the scaler ¢ equal
'to zero, then the space-matter tensor P, reduces to Weyl tensor C,,. Thus
the classification of the space-matter tensor P, is equivalent to the classification
of the Weyl tensor C,,, in empty space-time.

Depending upon the number of independent eigenvalues of a complex six
dimensional symmetric tensor, we arrive at the following classification (Sharma
and Husain 1969) of the Weyl tensor.

Case I—When all the three eigenvalues are different, then the matrix form
for C,,.4 reduces to

U V7
Cug = , A, B, =1, 2,..,6
==y o
where U and V are three by three matrices given by
a 0 01 B 0 0
U:[o 50 V:[o b 0]
0 0 Ag ] 0 0 ﬁS

Case II—When two of the three eigenvalues are equal, then we have the
following two cases:

Case 11 (a)—The matrices U and V are given by

% 0 0 B, 0 0O
U=[0 a4 0 ]; V:[o B, ©
0 0 — 2 0 0 —28,

Case 11 (b)—The matrices U and V are as follows:
2 0 0 —28 0 0
Uz[o — (2 + 9) —y]; V:[ 0 B—m —5]
0 —7y —(x—9) 0 —9d B+

Case III—When all the three ecigenvalues are equal, then we have the follow-
ing two cases:

Case 1l (@)--The matrices U and V are given by

0 —a —B 0 — B «
U:[—a 0 0]; V=[—ﬁ 0 0]
—B 0 0 « 0 0
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Case Il (b)—The matrices U and V are given by

0 0 0 00 0
U:[o x ~ﬂ]: V=[0 B “}
0 —p —u 0 « —8

Comparing our classification with that of Petrov (1969) we find that cases 1, 11 (b)
and IlI (a) correspond to the types I, 1I and III respectively. Moreover, case IH (a)
and I (b) belong to the case of gravitational radiation (Sharma and Husain 1969).

As an example, we consider the space found inside anincompressible sphere
of radius r, and mass M with the metric

ds? = — dx;® + dx? — dxs® — (X dx; + X.dx, + x3dx,)*a® — r?
+ (3h — hy[2hhy)? dx,?
where a = r, (rof2m)t, m =k M/c*, 1[/h* =1 — Qmr¥/r?),
1/ht = 1 — (2mjr,).
The energy-momentum tensor is given by
Ty = (uo + p/c® u, u, — pgo,
where u, is the rest-mass-density and p is the pressure.

Here, after calculations, we notice that all the three eigenvalues are equal
and therefore the space found inside an incompressible sphere of radius r, and
mass M belongs to the Petrov type 1L or case III (a) of the present classification.
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APPENDIX

Using Weyl tensor
Covor = Rapos — A2 (800 Toa — 8aa Tve + Zva Tae — 8o Tad)
+ ’1/3 T(gnc Zba — 8ad gbe)

with cases I, Il (a), 11 (), I (a) and III (b), we derive the following expressions
for the curvature tensor of the following five possible cases. Now

X Y
R,p = , A, B=1,2,..,6
AB [Y* Z]

where X, Y, Y* and Z are three by three non-singular matrices with Y* as the
transpase of Y.

Case 1
o + 3 (T — Tyy) 3T, 1Ty, ]
+ 1/3T
X — 17y, ay + 3 (Tye — Tyy) 3Ty
+ 1/3T
3755 1Ty, ay + 3 (T35 — Tya)
- + 1/3T ]
[ B iT,, — 4T,
Y=1—1T,, B 37,
Y P — 3Ty, Bs
|~ (Ty2+T3y) 1715, 1T,
—1/3T
7 = 3T5, —y—3(Ty;+T33) 3T,
—1/3T
1Ty 3Ty —a3—3 (Ti; +T5)
- —1/3T

Y* = Transpose of Y.

Case I (a)
oy + 3(Thi — Tyy) 1T, 1Tis
+ 1/3T
X = 1T, o + 3 (Tyy — Tyy) 1T,
+ 1/3T
1T, : 1T —20;+3 (T35 — Tyy)

+ 1)3T
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[ By 1Ty — 3T
Y=1—1T,, B, 1Ty,
| 1T., —3Tu — 25,
T —ay;—3 T+ Ts53) 1T, 1Ty, T
— 1/3T
7 1T, —3 (T, +Ts3) 1T,
— 1/3T
1Ty, 1T, 20, + 3 (Tyy + To)
L + 1/3T
Y* = Transpose of Y.
Case 11 (b)
—29‘+%(T11_T44) 4T, 3T1a 7
+ 1/3T
¥ — 3Ty, —(t+ D) + F(T3—T4y) 3Ty + E
+ 1/3T
3T, 3Ty + £ ~—(2—D)+% (To,—T4y)
P + 1/3T 1
[ — 28 3Ty, ~3$T a4
Y=1-—-1T,, B+ E iT,,+ D
| T — 37+ D B—E
( —20—3(Tsa+Tyy) 3Ty 37, )
— 13T
7 — 1Ty, (x—D)— 3 (T4 + Ty3) Ty + E
— 1/3T1
1T, Ty — E (x+D)—4 (T +Ty)
b — 1/3T
Y* = Transpose of Y and D~ — 4, E= — y.
Case 1l (a)
] 3Ty —a+3 (T, —T1) —ﬂ+%(.Tu"T13)
\ + 13T + 1/3T
¥ 1 —a+3(T—T,) 1T, 3Ty,
+ 13T
—B+3(T,,—1T;5) 3T 1Ty,
+ 13T
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O - ﬁ i ']2‘T24 + o
Y= —p 0 1Ti,
3Ty + 0 — 37y, 0
B — 3Ty 2= 3T+ T f—3Tu+Tw
— 13T — 1)3T :
[
Z = a— 3 (Ty + Tiy) — 3T — 37y :
. =137 i
B3 (Tn + Ty) — 47153 — $T33
— 13T B

Y* = Transpose of Y.

Case III (b)

3Ty 3Ty, T35
X = 13T, o+ 3Ty, — Ty + 137 —B+4(Toe—Tyy) +1/3T
T — B+ 3 (Toa— Tog) + 13T —o+3(T—Ta) +1/3T
%TM %T34 - JZTM
Y =1 —14T,, B 3Ty, + o
3Ty  — 4T+« —8
r—’ —
- =3l —3T; — 37
- — 31, —a— 3Ty + T33) B—3(Ty + Tow)
Z= — 13T — 13T
- — 3T, B— 3Ty + Tas) o+ 3Ty + Tap)
| — 13T — 13T

Y* = Transpoée of Y.

The above five cases show how the space-time curvature depends on the
functions defining the physical state.



