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The flow of an incompressible second-order fluid in a slightly curved pipe has
been discussed. The curvature of the pipe has been assumed to be small, that
is, the radius of the circle in which the central line of the pipe is coiled is large in
comparison with the radius of the cross-section. A solution is. developed by
successive approximations, the first approximation corresponding to the flow of
Newtonian viscous liquid. The streamlines in the plane of symmetry and the
projection of the streamlines on a normal section are compared with those for
Newtonian liquid.

1. INTRODUCTION

Flow of non-Newtonian fluids through slightly curved pipes is of current interest
in bio-mechanical and chemical industries such as flow of blood through arteries
and flow through coiled pipes. The streamline motion of an incompressible New-
tonian fluid in a slightly curved circular pipe has been solved theoretically by Dean
(1927, 1928). The same problem has been extended by Jones (1960), Thomas and
Walters (1963), Clegg and Power (1963) and Rathna (1967) for a non-Newtonian
Reiner-Rivlin fluid, elastico-viscous fluid, Bingham fluid and a power-law fluid
respectively. In the present paper, we have discussed the same problem to study the
normal stress effects in the flow of a second-order fluid.

The constitutive equation for a second-order fluid as suggested by Coleman and
Noll (1960) can be written as

Tii = — P8y + 2y dis + 2pyei5 + Qs d; dus
where
dis = 3(vis + vii) and ei; = Yaisi + @iyi + 2007 Viny), (LD

Tis is the stress-tensor, P the pressure; 3y the Kroneckar delta: a; and v; the
acceleration and velocity vectors respectively; and u,, sy, ps the material constants,
known as Newtonian-viscosity, elastico-viscosity and cross-viscosity respectively.
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The equations of motion and continuity for steady motion in the absence of body
forces are respectively given by

Vv =T (1.2)
and

Vii=10 .(1.3)

where p is the density of fluid and comma denotes covariant differentiation.

2. FORMULATION

Consider the steady motion of an incompressible second-order fluid characterized
by the constitutive eqn. (1.1) through a pipe of circular cross-section of radius a, with
the line of curvature coiled in a circle of radius b, under a constant pressure-gradient.
The coordinate system is the same as adopted by Dean (1927) and is illustrated in
Fig. 1. OS is the axis of the anchor ring formed by the pipe wall, C is the centre of
the cross-section of the pipe by a plane through OS, that makes an angle ¢ with a
fixed plane and CO is perpendicular to OS of length . The position of any point P
in the section ¢ = constant can be specified by the orthogonal coordinates (R, 6, ¢),
where R is the distance CP and 6 is the angle which CP makes with the line through C
parallel to OS. The surface of the pipe is given by R = a, where a is the radius of
the cross-section of the pipe.

The line element ds is thus given by
(ds)? = (dR)® + (Rd0)* + (b + R sin 0) d¢2. ...(2.D

We shall suppose that the motion of the liquid is due to a fall in the pressure
along the pipe. Let U(R, ), V(R, 8), W(R,0) be the velocity components in the
direction of R, 8 and ¢ respectively and they are all independent of ¢.

S
A

F16. 1. The coordinate system (R, 6, ¢) chosen to describe the motion in a curved pipe.
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The equations of motion and continuity (1.2) and (1.3) take the form

oUu v W2sinb] 0 1 9
P[Ua?‘r*““b =R R T

n Trr — Too T4 sin 8
‘ R b

_ 0 1 0 2 Ts¢ cos 0
ﬁ—TRo-I-TE‘B'Tae-f—RTRa— 3
ow vV owy 0
P[U(,TR—'T—R;—@‘O* é—R;TMTRaeTeﬁ
Trs = 2sin b 1 gP
+ = 1T 5 Tre b 33 ..(2.2)

and

oU U 1 v
o e = )
R TRTE 0 ...(2.3)
where we have assumed that the curvature of the pipe namely a/b is small and replace
1 b 1
b+ Rsmb > B

Primary motion — 1f the pipe were straight —g— would vanish and the primary
motion is specified by
Uy=0, Vy =10, W= W(R). .24

Substituting (2.4) in the equations of motion, we obtain the following velocity field
and the pressure for the primary motion.

W, = A @ R, P, = 3(_2&2:_%_)_ ARz — AZ + C .(2.5)
4y 8pi

where A4 is a constant mean pressure gradient,

Secondary motion — Secondary flow is governed by the equations (2.2) and (2.3)
and the boundary conditions are
R=a,U=V=W=0. ...(2.6)

Following Dean (1927) the velocity components for the secondary motion induced by
taking the curvature of the pipe, which is considered to be small, can be taken in the
following form
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1
U= — gg, V—S%,W: Wy + W(R,0), P =Py + P, ..(2.7)
where W, and P, are given by (2.5). Further, we shall take the secondary flow
velocity components u, v, w to be of the order (a/b), so that the terms of the order
(a/b)? and higher can be neglected in the equations of motion. Making use of (1.1)
and (2.7), the equations of motion (2.2) reduce to

Az sin 0 Az N sin 0
~16:§( — R S — "; (3a* — 5R%) =
A,u3 Gat — 7R?) smG
_*3,5___@_5_(_1__@_ oy L)
T 0R R &6 \R® 90* " gR*® ' R @
_,i oW, aw, 1 *W,
o A(4 "R 1 2RE ! TR TR 862)
N X L il LS i
2F1A(4 7R TR TR 392)
A% €080 A%, oy COs 0
16,3 (4~ K=~ — Zur G = 5K ==
_ APpy 4, oy COS O
s (3a TR?) B
I U S 0 S R v O W)
R 06 "HMIR\R % TR R OR
pe , 0 (W, 2W, ps , O (an 2W1)
- A v 0 3 SR ot N A A 1
py 60("R‘ r 2 \oR T R
ed & 3 AR . 0P ew, 1 w1 W,
2u 00 2 b R R TR ¢ TR 57{)
+ﬁAé(@;_‘32¢riﬁi
2u, " 30 \6R: T R3¢ T R ¢R
s 0 (0 1 3¢ 1 @
B4 (22X - Y 4 VY
* 2, ae(aRz KR TR o)
..(2.8)
where we have written, in conformity with (2.7), z = b¢ or 1 ;6— - .
b od oz

3. SorutioN
The equations (2.8) suggest the solution in the form

_ Aat A 3
¢ = mtla(r) cos b, W, =

M(r) sin§, P, = L p(rysin® . .(3.1)
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. . . R
where ¢, w and p are the dimensionless parameters and functions of r (= —;) only.

Substituting (3.1) in eqns. (2.8), following equations are obtained:

-
— R(l — r2)? — 4T(3 — 5r2) — 2K(3 — Tr?) = g’r’ + “‘
8w 0w w
_4T( ar T W—T)
aw oy O°W
(G rE -7
r...3.2
— Rl — r2* — 4T3 — 5r%) — 2K(3 — 7r?)
P d ow 2w ow w
-5t (A‘L’)—“T(W +?)*2K(8r + T)
— 2R + 6r = Aw — 2T A — 2K AY J
where R, (Reynold’s number), T and K are dimensionless parameters given by
_ patd _ Aay, Aay, 0? 1 o _ 1
Re—~4p§,T—4“§,K—4‘LadA___az—I—rg;— )
3.3
The boundary conditions are
N
w—np—i'__Oatr:l,
w, i—, 4 must be finite for 0 < r < 1, l ..(34)
r’ dr e
and
oW _gar=o
r dr J
Eliminating p from equations (3.2), we obtain
4Rl — r2) r + 40Tr + 28Kr = A (AY) + (AT + 2K) Aw. ...(3.5)
Eliminating w between (3.5) and (3.2), we get
4Rl — r3)r + 16Tr + 16Kr = A%y — 4R4Q2T + K)
+ 4 APQ2T? + K2) + 12TK AY. ...(3.6)

When S = (T + K) is sufficiently small, the solutions of the equations (3.6) and
(3.2) can be attempted by expanding ¢, p and w in ascending powers of S as
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b= + ¥ + S, + .., 3

— 2 ‘
P = po + Sp, + S%p, + .... G
and

w=wy + Sw; + S?w, + .... |

Substituting (3.7) in (3.6) and (3.2) and equating the coefficients of 59, S etc.,
we have

A2‘I‘o = 4Re(1 - ’2) r 1

...(3.8)
AW, = 6RY, + 16r
and
AWO = 6r — 2R,¢o
...(3.9
Aw, = 2 Ay — 2R,

Each successive approximation to ¢ and w must satisfy the boundary conditions
(3.4).

The solution of (3.8) and (3.9) has been obtained after integration as

Yy = 288 (4r + 6r5 — 9r3 — r?) ...(3.10)
RE ;
b = zeom00 ©O1r — 230r® + 20005 — 75r7 4 1570 — r1)
rs r3 r
+ (17 -2 E) (1D
and
19 40rs 30rs 7 Y 3 s 3
Wy = 11520( r — 40r3 + 30r5 — 10r7 + r9% + kA
(3.12)
R [ 1727 91
— 7 e —_— A A —rd
288 (Ur — 24r% + 16r° — 3r7) — 535256 ( 336 T
115 15 RTINS )
-3 rs + T6—. re 4+ —8~r ~ 168 r . ..,(3.13)
Similarly, we get
Py = 11325_ Or + 2r5 — 6r%) ...(3.14)

and

173 89 R? . .
P = ( LEP 4 r3)  Jone (— B680r + 3840012 — 432007

-+ 19200r7 — 2400r9). ...(3.15)
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4. DISCUSSION OF THE RESULTS

(1) Stream-lines — The stream-lines in the central plane are given by

dR (R, + Rsin# _ 7
A (—T—) d, (e -1 7)- (41)
To a sufficient approximation, (4.1) can be written as
idqs _ 72 _ 728
R pa—m(1-7) RrRa_my(1-7"
an(17) k(-5
[(91 — 48r2 1 1374 —r -+ 6 4.2)
6400 R, A
It follows from (4.2), after integration, that
L ¢ =d + 5S¢ ..(4.3)
( ry\)
u, foeor(i-4))
$o = % log 4 p l} YN
¢ (1 —rp ( —)
L 2/
and
. 9 72 129 r 384 11 14r
¢1“_5T'+(7€§’+1600) G (R2+20) (“:)
(1=%)
r
O
264 281 ( 2 )
+(R§ + 1600) g( - ) ...(4.5)
1 — —
2
For numerical illustration, we take
Ro—633-% =1 .(46)

’ b 3

as considered by Dean (1927). The values of ¢, and ¢, in degrees for corresponding
values of r are given in Table L.

TaBLE |

r 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

dy O 6.6 13.3 20.3 28.0 36.6 46.8 59.5 770 106.8
¢, 0 —645 —13.18 —20.17 —-27.56 —35.80 —45.32 —-56.78 —72.54 --98.5
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S=-08

FiG. 2. Stream-lines in the central plane when R, = 63.3.

The contribution of ¢, to ¢ is positive when § < 0 and negative when S > 0. It is
assumed that (3.7) is convergent when | S| < 1.5 as seen from the first few terms,
The form of the stream-lines for the values § = -+ 0.8 are shown in Fig. 2. It is seen
that positive S is to decrease the angular distance and the fluid particles travel from
inner edge to near the outer edge and negative S is to increase the angular distance.

(il Sream-line projections —It will be of interest to draw also the curves of

intersection of the surface ¢ = constant with a normal section ¢ = constant, the
curves have the polar equation

r2 , r2 \-1
secG:kr(l—rZ)ﬁ(l—— 7 )[1TS(1— T)

R 6
4 __ p6y "% —
% {(91 —agr 13y ey Re}] @)
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where k is an arbitrary constant. When S =0 and T = 0, the solution isin
agreement with Dean (1927) and Jones (1960) respectively. For R, = 0, we get the
case of creeping flow [Das and Roy (1974)]. This relation between r and 6 is indepen-
dent of R, and (a/b).

From equations (2.7), (3.1) and (3.7), we see that to a sufficient approximation
V vanishes, for all values of 6, when

R,

4 —23r2 + Trt + S {(91 — 599r2 4 401r4 — 124r% + 11r%) 1600
b (1= 5m) %4_} —o. (48)
When S = 0, the relevant solution is r = 0.429 independent of R,. Taking R, = 63.3,
the relevant solutions of (4.8), in particular cases S = — 1.12 and § = 1.12 are

r= 0.58 and r = 0.421 respectively. Thus there is a particular stream-line in the
form of a circle r = constant, 6 = nx since both U and V vanish at the points
r=20.58, 06 =nr when S = — 1.12; r = 0.43, 8 = nx when S§ = 0 and r = 0.421,
§ = nx when S = 1.12. Therefore, for any particular values of .S, there is a limiting
surface ¢ = ¢, ($: dependent on S) which takes the degenerate form of a single
circular stream-line in a plane parallel to the central plane. The intersection of ¢ = {;
with a section ¢ = constant are denoted in Figs. 3 and 4. The line ¢ = ¢, is defined
by k = 50 when S = — 1.12, by k = 3.7 when S = 0 and by k = 1.9 when § = 1.12;
k = oo for all values of §, corresponds to the pipe wall. Denoting by k; the values
of k corresponding to ¢ = ¢,, the surface corresponding k/k, = 1.8, 3.5 and oo (along
the pipe wall) are shown in Figs. 3 and 4. 1t is clear that as S increases from — 1.12
to 1.12 the distance from the central plane of the limiting stream line ¢ == ¢; decreases.
Therefore we conclude that as S decreases the surface ¢ = constant becomes closer to
the limiting circular stream-lines.

(iii) Rate of outflow — The rate of outflow through the pipe is

1 2
I IO atrW dr db ...(4.9)

r=0 0=
To our order of approximations, w, makes no contribution to this integral and
the rate of out flow is the same as if the pipe were straight. Thus to determine the
effects of elastico-viscosity and cross-viscosity on the rate of outflow, we have to
consider the terms O(a/b)? as discussed by Dean (1928) and Thomas and Walters
(1963). To this approximation, the flux per second is given by

1
Fe = 2ma? [ r2 War.
0

_ na;W(, [ L ( sTSG )2 (0'04614)] ...(4.10)
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R/Ry =00
K/Kl =35
K/K =18

Fic.3. Curves of intersection of the surfaces ¢ = const. with a normal section ¢ = constant when
S = —~1.12and R, = 63.3.

K/Ky=00
K /K =35
K/K =18

Fic.4. Curves of intersection of the surface ¢ = const. with a normal section ¢ = const. when

S =1.12and R, = 63.3 - - - - represents for the Newtonian fluid (S = 0).

2
wWoa

.

If the pipe were straight the flux per second (F;) would be

S Y (0.04614
FJF, = 1 — (%) (0.04614)

represents the ratio of the rates of flow in two pipes of the same cross-section which

are respectively curved and straight. It is evident that the elastico-viscosity and
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cross-viscosity in the fluid decrease the dependence of the flux through the pipe on the
curvature of the pipe, to the second-order in the curvature.

(iv) To discuss the problem further, we can obtain the stresses in the flow of
the second-order fluids. The stresses acting across the bounding surface (r = 1) are

—(T++)r=y and (Trz)r=y. Neglecting the terms O(—;})_ , we get

T, —T° = [—p+ »i—%—-%)—ST{r%ﬂ—/(l—rZ)}
— 4K {rj‘_" —r(l — ﬂ)} 4‘-1—}?9-6 ...(4.11)
and
T — 10, =[% _ | 4 po - 2T(Zf j_‘—)
- 4K(j‘: — %):I % sin 0 ...(4.12)

where T f' and T?, are the stresses when the pipe were straight and the fluid flows under

the same axial pressure gradient.
(v) 1f 8D denotes the axial drag on a length 8z of the curved pipe, then

2r
=6£0 Tr:adbdz = 2xa TY, 8z e(4.13)

which is the same as for a straight pipe except that the direction of 8D varies with the
axial distance z.

From (4.11) we obtain the normal stress effects given by

5R.

— o 0 - ——
[T~ To)=| 5

) Aa? .
+ K(2.3 — 8.1a)] b sin 6 where T = oK.
..(4.14)

Markovitzand Coleman (1964) have shown that 5.4 9 solution of polyisobutylene
in cetane at 30°C behaves as a second-order fluid. The values of the material
constants have been found to be p, = 18.5, p, = —.2, p; = 1.0 (in C.G.S. units),
For the purpose of numerical calculations, the Reynolds number R, may be taken fixed
at 63.3 and « = — 0.2. The equation (4.14) therefore reduces to

2
— [T — T°) = (2638 +3.92K) % sin8 .(4.15)
re=)
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which shows that the effect of a negative K is to set up the normal pressure which
tends to keep the boundary section circular and that a positive X tends to make the
pipe wall collapse.
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