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Intensity of an electromagnetic wave, emitted by a point source falls off as the
square of the distance in flat space-time (i.e., Euclidean space). No effort has
been made so far to find its behaviour, in general, for a curved space-time.
Though some efforts have been made in the case of Schwarzschild and
Robertson-Walker space-time, however, nothing is done to find its behaviour in
general for a space-time having a certain type of symmetry. In the present
paper we calculate the intensity of null wave (i.e., electromagnetic wave)
emitted by a point source in a stationary spherically symmetric space-time.
The developed intensity formula in this paper reduces to its usual values in the
cases of flat and Schwarzschild space-times.

§1. Intensity of a point source emiting null waves (i.e., electromagnetic or light
wave) is given by (Kristian and Sachs 1966)

L3Q

I == W ...(1.])

where L is the intrinsic luminosity of the source, 3Q the solid angle of the light beam
at the point source, z is the red shift from source to observer, and 4, is the area of
the beam at the observer. In a flat space the wave fronts, for a point source, are
concentric spherical shells and therefore the area 4, of a beam of light varies as the
square of the radius 4 of spherical shell (the distance between the source and the
observer). The intensity, for an observer at rest relative to the point source, therefore
in flat space-time is given by

L
I'= &
To find the intensity in a curved space-time, 4, in eqn. (1.1) must be calculated for
that space-time. This is done by examining, how the null waves expand in that
space-time for a point source. The purpose of this paper is to study the expansion
of null waves, emitted by a point source in a stationary spherically symmetric space
time and to calculate 4,. Intensity then, is immediate from (1.1)
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§2. The area 4, in equation (1.1) is related to the expansion 8 of the light beam
by (Sachs 1961)

A'Jd = 20 2.

where (') is the differentiation with respect to the central ray’s affine parameter. The
expansion 6 is, however, related to the principal curvatures of the wave front K, by
Kantowski (1968)

(2.2)

If we rewrite the principal curvatures in terms of the major and minor dimensions
of the wave front, D, (Dwivedi 1970)

K:l: = g ...(2.3)

Putting (2.2) and (2.3) in (2.1) we get

DL D]

A/4="F 5

(2.4

The solution of eqn. (2.4) when evaluated at the observer gives us

A, = [D.D_],.

To calculate D, and D_ we must go directly to the case of a stationary spheri-
cally symmetric space-time which is given by the Riemannian metric (Bergmann 1950)

ds* = g (r) dt® — g(r) dr2 — r? [d6® + sin2 0 dg?] ...(2.5)

where 7, t, 0, ¢ have their usual meanings. Consider now the motion of a light beam
in a space-time given by the metric (2.5). Using the variational principle and the
Euler-Lagrange equations, the calculation of the equations of motion of null geodesics
(i.e., light rays) are straightforward, and we get the tangents to the null geodesics
making up the null hypersurface x%(A, B, /)

dt

k=% kg, .(2.6)
dr s

k=G =k - r?g:] 2

ke = 3—2% = I:—ZI- cos @ sin B ..(2.8)

k$ = g;- = ]:Tl cos B/sin? 9 (2.9)
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where A is the affine parameter, B the isotropy parameter, and / the impact parameter
(Dwivedi 1970). Vector k° defind above is normal to the null hyper surface x2(a, 8, /)

and tangent to the null geodesic. Let us define e} as

= aailm()" &= 367 j ked) = §~ [ ] ke dr] .(2.10)
R
¢t 8?: ‘0B = 5 I kedy = 6? [——dr] (2.11)

where r = R, ¢ == 0, 8 = 2x is the position of the point source. We now show that D

defined in (2.3) are actually the magnitudes of vectors e} defined in (2.10) and (2.1 1).

Let m@ be a vector such that mek, = 1, mom, = myel = 0. Note also from
equations (2.10), (2.11), and (2.6) to (2.9)

keks = kol =0, . (2.12)
e’ e’ gu = | e~ |t = r?[sin? ¢ + cos? ¢ cos? f] ...(2.13)
r
et e’ gw = |e |2 =r2[r] _dr (2.14)
22 rz [r]3/2 veer .
R

where g is the Riemann metric given by (2.5), | e. | and | e_ | the magnitudes of
1

vectors ef, and [r] = | — — T
8182 r°gs

Using the fact
azxa _ azxa
olox — ool
azxa _ ﬁzx“

dBoA — dAcp’

we get

ke e = el Kk .(2.15)

where (;) denotes the usual covariant differentiation. Writing e} ., k* in terms of the

vectors k¢, ms, and e} we get
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kd

b
HJ e:i:

F= e‘; ;b kb = Aika -+ Bim“ -+ Cie:_ -+ Fieg. ...(2.16)

Transvecting (2.16) with k¢ and using (2.12) and the fact k%, = 0 we obtain

B, =0.

..(2.17)

Similarly transvecting the two equations in (2.16) with e* and e2

ej ka;b Ez_ = e_‘j €iran k?

et kap € = e} e_ay k2.
Adding the above two equations and using (2.12)

ef ka;b e:__ + e_(;_ ka;b eg = [ei e+a,];b kb = (.

Since k¢ is normal to the null hypersurface (i.e., Kup = Kb;a)

et ka;b 93_ = 6:_ ka;b eb_ =0

Equation (2.18) and (2.16) imply
C.=F.=0
Putting (2.17) and (2.19) in (2.16) we obtain

ke ;bel = ¢}  k* = Ay [0:k" + €]]

where we have put X, = C;, 4. = F_ and 6. = A /..

geodesic (i.e., k* ., k® = 0) eqn. (2.20) can be written as
ke Y [Gikb -+ ebi] = Xi [O’ika + eai].
If we let 4} = o4k® 4+ el

Kap 7, = Xinsa.

...(2.18)

..(2.19)

...(2.20)

Since k¢ is tangent to null

..(2.21)

(2.22)

This says that y are the eigen-direction of k;, with eigenvalue X, i.e., 7}, are princi-

pal curvature directions with principal curvatures X,. The values of X+ are immediate

from (2.20)

+e esapk® | &y |

L. —
* [es |2 | ex |

(2.23)
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The major and minor dimensions of the wave front defined in (2.3) are, therefore
given by
r

Dy = |e,| 8 =slr[rpr j dr
R

FETFPR ...(2.24)

=le |B=23rsing ...(2.25)

where we have oriented the coordinates so that the central ray is in 8 = /2 plane.
To get the intensity of a point source we put both D into eqn. (1.1) along with the
solid angle (Dwivedi 1970).

g, 315
30 = £ 123 o ..(2.26)
RZ[I - K{gl]

The intensity 7 of a point source is then given by

ILgl/Rz(l + 2)2 . . “.(2'27)

1/2 dr
4nr? sin ¢ [ RE g1] [rp/2 X AR
R

] =

This is the intensity of a point source as seen by an observer with coordinates r, ¢, .
in a stationary spherically symmetric space-time. 7 in equation (2 27) reduces to (1.2)
in a flat space-time, i.e., if we put g, = g, == 1 in (2.27) we obtain / o< 1/r2, Itis
also straightforward to calculate 7 in case of a schwarzschild space-time by simply
putting g, = 1/g, = (1 — (2m/r)). The intensity thus obtained for Schwarzschild
case is in complete agreement with the results of Dwivedi (1970).

Before closing we should mention an interesting point about the intensity of a
point source in a stationary spherically symmetric space-time. Note the term sin ¢
in the denominator of (2.27) where ¢ is given by (2.9)

r

é = kI dr

X 1 I ]1/2°
r —— —— J—
818, r2g,

In a flat space sin ¢ = 0 only at the source as can be seen by putting g, = g, = 1.
Therefore refocusing of light rays is not possible in flat space-time. However in a
curved space-time if the gravitational field is strong enough ¢ in the above equation
can have the values =, 2=, etc. making sin ¢ == 0 at some points in the space other
than the source itself. Therefore in a curved space-time we could see images of a

point source.
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