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Chlodovsky (1937) has proved the Theorems 1.1 and 1.2 for the Bernstein
polynomials

n

B0 = B by = S () (1) (£ ) (1= )
k=0

on an unbounded interval.

The object of this paper is to extend the above theorems for modified Bernstein
polynomials

Pu(x) = Ph(x;b,)

n (k+1Dn+1)

—a+0 > (| sebar ) (),
£=0 " kia+1) "
on an unbounded interval.

1. INTRODUCTION AND RESULTS

If f(x) is a function defined on [0, 1], the Bernstein polynomial B: (x) of fis

n

Bl = > 1( )t

k=0

where
n —
DPayp(X) = ( k ) XE1 — x)k,
If the function f(x) be defined on the interval (0, b), b > 0, the Bernstein polynomial
B,’: (x; b) for this interval is given by

n

sen= o= 3 ) 1)(F) (- 5

k=0
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A small modification of Bernstein polynomial B: (x) due to Kantorovic(1930) makes

it possible to approximate Lebesque integrable function in the L,-norm by the
modified polynomial

n kD)

P/(x) = (1 + 1) 2 ( j 7() dt) ).
k=0 ki(n+1)

Let the function f(x) be defined on the interval (0, b), b > 0. To obtain the modified

Bernstein polynomial P": (x; b) for this interval, we make the substitution y = xb™!

in the polynomial P: (y) of the function 4(y) = f(by), 0 € y € 1 and obtain in

this way
Pu(x) = P!(x; b)
n (k+1)/(n+1)
—o+n > ([ sewa)ma(F)
k=0 kjn+1)
where

m(3)-(G0-5)

Chlodovsky (1937) has proved the following theorems by assuming that b = by is a
function of n, which increases to + oo with », and f(x) is defined in the infinite
interval 0 € x << + oo,

Theorem 1.1 — If b, = o(n) and the function f(x) is bounded in (0, + <o),
say |f(x)| < M, then Ba(x)~— f(x) holds at any point of continuity of the
function f.

Theorem 1.2 — If by = o(n)
and
M(byn) e-onitn — 0,
for each « > O, then Bu(x) — f(x) holds at each point of continuity of the function
f().
In this paper, our object is to improve the above results by taking the modified

polynomial P: (x; b) instead of B": (x; b), which may be stated as follows :
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Theorem 1.3 — If b, = o(n) and the function f(x) is bounded Lebesque
integrable in (0, + oo), say [ f(x) | € M, then Pu(x) - f(x) holds at any point of
continuity of the function f.

Theorem 1.4 —If by = o(n)

and

M(bn) e=en1on > 0, (L)

for each « > 0, then Pu(x) — f(x) holds at each point of continuity of the integrable
function f(x).

2. PROOFs OF THE THEOREMS
Proof of Theorem 1.3 : We have

| Pa(x) — f(x) |

n k+Dn+ 1)

<@+ 2 ( j | f(bat) — () | dt) Pue (-;‘—)
k=0 kgt

Let ¢ > 0 be arbitrary and choose & > 0 so small that | f(x) — f(x) | < € for
| x — x" | < 3, then we have

| Pu(x) — f(x) |
k+1D/(n+1)
<oy > (| ew-rm at) pe (52 )
[ bpt—x| <8 ki(n+1)
(k+i(n+1)
(D) z ( j | £(bat) — £ | dt) P (bi)
{bpt—x | >3 ki(n+1)
=1 + I, 2D
(k+1)/(n+1)
h=e+n > (] s s d)pa(5):
[ bpr—x | <8 ki(n+1)

n (k+Din+1)

<e(n+ 1) 2( x dt)pn,k(j:—)=e.
k=0 kin+1) "
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To calculate the value of /,, we put u = xb;‘, and have

(k+Df(n+1)
L=+ > | iren—sed) ()
| bpt—x | 28 ki(n+1)
(k+1)/(n+1)
L 2Mn 4+ 1) z j dt )Pn,k(ll)
|t=u| 28/, ki(i+1)
n (k+1)/(n+1)
< 2M(n + 1)(:—”)_2 2 ( (t — uy? dt)pn,k(u)

k=0 ki(n+1)
<2M (f_)_z ¥l — u)
by n
X
bn

g 2M ‘——‘ﬁ>
"(5)
for all large n, since bn = o(n).

Hence we have
| Po(x) ~ f(x) | € € + ¢ = 2e
This completes the proof of theorem (1.3).

To prove Theorem 1.4, we need the following lemma :

Lemma — If 0 < x < 1, the inequality
—_— 1/2
0<z< _g_(x_(l_’i)) (2.2)
n
implies
(k+D)/(r+1)
DPri(x) dt < 2e%2,
| t=x | 22z(x{(1 —x)/n)*'2 kj(n+1)
Proof of Theorem 1.4: Proceeding in a similar manner as above, we obtain (2.1),
as in Theorem 1.3,
| Pa(x) — f(x) |
k+1)/(n+1)
< e+ 2MB(n + 1) z a’t) Pra(t).
|t—u| 28/by, ki(n+1)
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The second term can be easily estimated by means of the above lemma, if
— -(1/2)
z = 3n(2b,)! [u(lTu)] ¢ s

the condition (2.2) is satisfied if we assume, for intance, that 8 < 2x and that n is
sufficiently large. Hence, by (1.1), we obtain

| Pu(x) — f(x) | < e + 2M(bn) exp (— 2)?
= € + 2M(by) exp {— 3*.n [4bux(1 — xb ")}1},
K e+ e =2

for all large n.

This completes the proof of Theorem 1.4.
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