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In this paper, we have established necessary and sufficient conditions for the quasilinear functional difference
equation

AT AYm) )" Ay(n)_+fin, )0 () =0, ne N, . (B)

where a>0, to have various types of nonoscillatory solutions. Further we established some new oscillation
conditions for the oscillation of all solutions of equation (E).
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1. INTRODUCTION

Consider the difference equation
A Ay 1% Ay(m)_+Rn, y(o (1) =0, - (B)

where ne Ny = {np,ny+1,n5+2,...} (n; is a fixed nonnegative integer) and A is the forward

difference operator defined by Ay(n)=y(n+ 1)-y(n). Further we assume the following conditions
without further mention :

(c1) o is a positive constant;

(c2) {o(n)} is a positive increasing sequence of integers such that lim o(n) = o,
n — oo

and (c3) f:NyXR—R is a continuous function, u fin, u) > 0, for u#0 and fin) is increasing

for each fixed ne NO.

By a solution of (E), we mean a nontrivial real sequence {y(n)} satisfying eq. (E) for all

n2ny—-M where M= min {o(n)}. A solution {y(n)} of (E) is said to nonoscillatory if it is either
neN
0

eventually positive or eventually negative and oscillatory otherwise.
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Note that the unperturbed equation A (I Ay(n)12=1 Ay(n)) =0, has the solutions {1, n} and
hence we can classify the possible nonoscillatory solutions of eq. (E) according to their asymptotic
behavior as n — eoin the following manner :

() hm X%l = constant # 0;

7 —> o0

(/) lim xm 0, lim | y(n) = oo

n—oe N n— oo

(IIl) lim y(n) = constant #0.

n — oo

Solutions of the types (I), (II), (III) are called, respectively dominant, intermediate and
subdominant solutions.

Recently, the oscillatory and asymiptotic properties of the solutions of second order difference
equations of the type (E) and/or related equations have been investigated by many authors, for
example see [1, 2, 4-6, 8, 9, 12, 13] and the references cited therein. Following this trend in Section
2, we investigate the existence of these three types of solutions for eq. (E) showing that necessary
and sufficient conditions can be obtained for the existence of dominant and subdominant solutions
and in Section 3, we obtain some new criteria for oscillation of all solutions of eq. (E). Then, we
have established that there exists a class of equation of the form (E) for which the oscillation solution
can be completely characterized. The results in this paper have been motivated by that of in [3,
10, 11].

2. EXISTENCE OF NONOSCILLATORY SOLUTIONS

In this we state the theorems for the existence of solutions of type (I), (II) and (IlI) for the eq. (E)
without proof since the proofs of these theorems can be modelled as that of in [12]. Hence we omit
the details.

Theorem 1| — The difference equation (E) possesses a dominant solution if and only if there
exists a constant ¢ #0 such that

©o

Y, 1fn, com)) 1 <eo. . (2.
n= ITO
Theorem 2 — The difference equation (E) possesses a subdominant solution if and only if

there exists a constant ¢ #0 such that

1/a

oo

Yol Y fsol| <o - (22)

0 sS=n

Theorem 3 — Suppose that (2.2) holds for some ¢ #0. In addition, assume that
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1/0

oo

Y Ifsol] =e e (23)

=7
no S=n

M s

n

for all d+#0 with cd > 0. Then the difference equation (E) has.a nonoscillatory solution of type
(II).

Example 1 — Consider the difference equation

AQ Ay 1% Aym) + q(n) 1 y(otn)) 1B~ y(otn)) =0, - (E})

where a and f§ are positive constants and {g(n)} is a positive sequence. Clearly, all conditions of
(E)) are satisfied for this equation. It is easy to see that the conditions (2.1) and (2.2) reduce,

respectively to

Y ()P gn) < Q24
n=no
and
. . I/«
DY e | < . (25)

0

It follows that :
(i) eq. (E;) has a dominant solution if and only if (2.4) holds;

(i) eq. (El) has subdominant solution if and only if (2.5) holds; and

(iti) eq. (E,) has a intermediate solution if

1/a

oo oo oo

Y 0mfam<eo ad Y |Y g9 | =e . (26)

= n=r =
n 110 1 lo s=n

In particular suppose that g(n)=n=9 n>1 where >0 is a constant. As is easily verified.
(i) If o(n)=an+b, a is a positive integer and b any integer, then

(2.4) holds if and only if 6>1+ f; (2.5) holds if and only if §>a+1;

(2.6) holds if and only if @2f and 1+f<dé<a+1;.

@ o(n) =n", y is a positive integer, then
(2.4) holds if and only if 6> 1+ 3B, (2.5) holds if and only if §>1+ a;
(2.6) holds if and only if > fyand 1+ fBy<é<1+a
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3. OSCILLATION RESULTS

In this section we study the oscillatory behaviour of solutions of the eqs. (E). We begin with the
following lemmas :

Lemma 4 — Let {y(n)} be a sequence such that y(n) > 0, Ay(n) >0 and nonincreasing for

n2N, e N,. Let {o(n)} be a sequence of positive integers such that lim o(n)=-e-. Then, for every
n—eo

l€ (0,1), there exists an integer N>N, such that

g, (n)
y(on) 21 Ty, n2N, . (3.1
where o, (n) = min {n, o(n)}. .. (3.2)

PROOF : Since y(n) is increasing and {4 y(n)} is nonincreasing, we have
y(o(n)) 2y(o, (n)), n2N, .. (33)

and

n-1

Ym)-y(o,m)= Y Ays)<SAyo,m) (-0, (), n20,m2N,.

s=0,(n)
It follows that

y(n) <1+ Ay(o.* (n))

- Yo, (m) ’ - ’ =0 2 N,. .. (34
y(o(n)) ¥(0, (n)) (n-0,(), nzo,(n), nzo,(n)2N, (3.4)

On the other hand,

o, (-1

o, (m)-yV)) = z Ay(s) 2 Ay(o, (n) (0, (n) - N;)
s:N1

which implies that for each /e (0, 1) there exists an integer N = Nj such that
¥(o, (n)) > Ko, () SN 3.5)
—2 (0, (n)), n . ... (3.
4ay(o, (n)) *

Combining (3.4) and (3.5) we have

o) (-0 (-Domtn_

you) ey - Mo,y ke, my "N
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which completes the proof.
Lemma 5 — Assume fin, u) satisfies condition (c;). Let & and {o(n)} be as in eq. (E).

If the difference inequality
A Ax(n) 1%~ ' Ax(n)) +fln, x (6(n))) <0 .. (3.6)

has an eventually positive solution, then so does the difference equation

A 4y(n) 1*~ 1 Ay(m) +An, y (0(n))) = 0. . 37

PROOF : Let {x(n)} be an eventually positive solution of (3.6). Let Ne N, be such that x(n)

> 0 and x(o(n))>0 for all n=N. From (3.6), one can easily see that Ax(n)>0 and decreasing for
n>N. Summing (3.6) from n to e, we obtain,

Mxm)*z @+ Y, fis, x(o(s), n=N,

sS=n

where = lim (Ax(n))* 20, that is
n— oo

1/a

M) 2| 0+ Y, flsx(ols))_ | . nzN.

S=n
Summing the last inequality from N to n -1 yields

n-1 1/a

xm)2x(N+ Y, | o+ Y, Arnx(o(r)) | . n2N

s=N r=s
Let N, = min {N, inf O'(n)}ZnO. Consider the Banach space By, of all real sequences

nzN

y | = {y(n)},sy Wwith the supremum norm llyll= sup {y(_n)_} with p(n)=(@m~N),=(n-N) if
oo nzN, pin)

n>N and is zero otherwise. We define a set S as

S=1{yeBy: :0<ym)<x(n),n2N+1 and y(n)=x(N) for N,<n<N}

Clearly, S is a closed, bounded and convex subset of B, . We Define a partial order on

*

BN‘ in the usual way. That is, for any x = {x(n)}, y = {y(n)}. € BN" x(n) = y(n) for all n>>1,

we will consider such sequences to be the same. Thus for every subset A of S, both inf A and sup
A exist and belong to S. Now define an operator T:S— B, as



42 PON. SUNDARAM AND E. THANDAPANI

1/a
n-1

+ w+ Y fr o) . n>N+1,
amw={ Y EN 2 Sy

r=s

x(N), N ,<n<N.

From the hypothesis T is increasing. If ye S, then we see that (Ty) (n) <x(n) for all
n2N+1 and (Ty)(n)20. Thus TScS. Therefore by the Knaster-Taraski fixed point theorem?,
T has a fixed point y € § such that (Ty) (n) = y(n) and satisfies the equation

1/a

n-1 oo

ym=xN+ Y, |w+ ¥ Arnyor)) | ., n2N

s=N r=s

This clearly shows that {y(n)} is a positive solution of eq. (3.7).
First we present a criterion for the oscillation of all bounded solutions of eq. (E).

Theorem 6 — All bounded solutions of equation (E) are oscillatory if

1I/a

( c*(s))i
fl s, c =00 ... (3.8)

00 oo

2| X2

n=n S=7
0 1

N

for all ¢+#0.

PROOF : Suppose to the contrary that eq. (£) has a bounded nonoscillatory solution {y(n)}.
Without loss of generality we may assume that {y(n)} is eventually positive. Then A y(n))>0 and
nonincreasing and hence applying Lemma 4, we see that for every /e (0, 1) {y(n)} satisfies (3.1)
provided N is sufficiently large. From eq. (F) and (3.1) we obtain the following inequality

*

!
A1y ) Ay(n) +f(n, )y(n)]s 0, n=2N.

n

Now from Lemma 5, there exists a sequence {z(n)} for n 2N such that 0<z(n) <y(n) and
that

lo, (n) D
z(n) | =0, n2N. .. 3.9

n

A [ Az N L Az + f[ n,

Thus {z(n)} is a bounded nonoécillatory solution (subdominant solution) of (3.9), and so
application of Theorem 2 shows that

1/

= = k
Z 2 f(s, GZ(S)} < oo,

n=N | s=n

This contradicts (3.8) and the proof is complete.
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Corollary 1 — Suppose that lim inf %’-1—)->0. Then all bounded solution of eq. (E) are

n-— oo
oscillatory if and only if
- o V4
> | D sl =e . (3.10)
n=n0 s=n
for all ¢#0.
Theorem 7 — Assume that there exsts a continuous function ¢u) on R which is

nondecreasing and satisfies u ¢u) >0, for u#0,

5 du
u
NERT
¢(u) 3.11)
and
timinf L5 4 a1, w2, . (312)
U —> oo I(})( )I

for some constant k; >0 and all v with |vI<1. If condition (3.8) holds, then all solutions of eq.
(E) are oscillatory.

PROOF : Suppose to the contrary that eq. (E) has a nonoscillatory solution {y(n)} which is
evetually positive. As in the proof of Theorem 6, we obtain (3.9) with / replaced by some & such
that 0<é< 1. From Theorem 6, it follows that {z(n)} cannot be bounded for n =N, that is

lim z(n) =. From (3.9) we obtain
n— oo

o [ 50,
A= | Y f Zf[s, SS)z(s)J , n2N . (3.13)

and

1/a

o o f(s,
fa) 1 y f( 80, () (s)] .

be(n)) ) aon (&)

60' (S) ) 1/a
z(s)

.. (3.14)
Using (3.12) in (3.14), we obtain
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1/a

Az(n) S| 2 *
—_—2>| = , n2N. .. 3.15
() [2) z,{s s ) G
sS=n
1 1 .
Setting 6z(n — 1) S u < 8z(n) implies that —— 2 and summing the last inequality from
g oz(n-1) (n) imp o) > Hon) g quality
N to n — 1, we obtain
1/a
Oz(n) /a0 -1 3

| du k] O-*(r)

- > — >

s | W)_(z] D f(r, : n2N. .. (3.16)

&z(N) s=N |r=s

Letting n — o in (3.16) and then using (3.11), we have

- - 1/

o, (n)
Z Z flr " < oo,
s=N|r=s
which contradicts (3.8). This proves the theorem.

Corollary 2 — Assume that lim inf 9—'(-’—11>0. Suppose there exists, a function @(u) with the

n —» oo
properties as stated in Theorem 7. Then, all solutions of eq. (E) are oscillatory if and only if (3.10)
holds.

Theorem 8 — Assume that there exists a continuous function Y(u) on R which is
nondecreasing and satisfies u ¥ (u) >0, for u#0,

.o fnw)
llxilif %0 | 2k, | fin,v)| - (3.17)

for some ky>0 and all v with |vi21 If

+
Jﬁ q,(d'{l/a)“" for all B>0 .. (3.18)
0 173

and

Lfn, co, (1)) | = oo . (3.19)

i

n=n,

for all ¢c#0, then all solutions of eq. (E) are oscillatory.
PROOF : Suppose that {y(n)} is an eventually positive solution of eq. (E). Since (3.19) implies
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Y, 1fin,com) =

n=n0

for all ¢#0, eq. (E) cannot possess dominant solution by Theorem 1, so that {y(n)} is either
subdominant or intermediate.

Iim Ay(n)= lim K’;QZ:(T.

n — oo n— co

Since Ay(n)20 and decreasing, we have
n-1

y(n) = y(ng)= 2 Ay(s)2Ay(n) (n—-ny), n2n,,

s=n0

which implies that for a fixed §,,0< 6, <1 and for N> n, sufficiently large
yn)28 nAyn), n2N.
This implies that

y(o(n)) 2 y(0,(n)) 2 6, 6,(n) Ay(0, (n)) 2 6, 0,(n)Ay(n), n2N; 2N,

and hence
X}%Z 8 0, (n), nzN,. . (3.20)
Note that
o M) | _fn,yom)) A & 0, (mAy(n)
’ s§n Ways) |- W) HAGm) o .. (321

where (3.20) has been used. In view of (3.17), N, 2N, can be chosen so large that 6, o, (n) 21
for n2N, and that

fin, 8,0, ) ) _k,
Waym) 2 oo n2hy

which combined with (3.21) yields



46 PON. SUNDARAM AND E. THANDAPANI

(AyN )*

-23 Z fis, 8, 0, () €= Z % j . (322)

©0

Letting n — o in (3.22) and using (3.18), we obtain Z £is, 8] O, (5)) < e, which contradicts
s=N, .
2

(3.19). This completes the proof of the theorem.
Corollary 3 — Assume that there exists a function ¥u) with the property as in

Theorem 8.
(i) Suppose that o(n) <n for all ne N, Then all solutions of eq. (E) are oscillatory if and

only if

Z 1fn, co(n)) | =oo
n=n

for all c#0.
(i) Suppose that

liminf 2250 and fimsup 2% oo, (323
o n o0 n
Then all solutions of eq. (E) are oscillatory if and only if
Y ifin,en)l=o . (3.24)
n=n
for all c#0.
‘ Example 2 — Consider the difference equation

... {E2)

A0 Ay) 1%~ Aym)) + g(m) 1y (om) 1P~ (0tm)) =00

() Let B> o All solutions of eq. (E,) are oscillatory if

g }: qs[G(S)} e

Suppose in addition that {o(n)} satisfies

lim inf %ﬁl >0.

n- o0
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Then, all solutions of eq. (E,) are oscillatory if and only if

- 1/a

2| X a9 | =

o s=n

(I) Let B<a. All solutions of eq. (E,) are oscillatory if

Y g (0, ()P=w.
n= no

Suppose in addition that o{(n) <n for ne N, Then all solutions of eq. (E,) are oscillatory
if and only if

Y g (cm)P=o.

H=I10

On the other hand, in case {o(n)} satisfies (3.23), a necessary and sufficient condition for
all solutions of eq. (E,) is that

Z nﬂ q(n) = oo,

n=n0
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