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In this paper, we employ the method of upper and lower solutions coupled with the monotone iterative technique
to obtain results of existence and approximation of solutions for periodic boundary value problems of differential
equations with piecewise constant arguments.
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1. INTRODUCTION

Differential equations with piecewise constant arguments (EPCA for short) are originated in {1, 5].
They are closely related to impulse and loaded equations and, especially, to difference equations of
a discrete arguments. These equations have the structure of continuous dynamical systems within
intervals of certain length. Continuity of a solution at a point joining any two consecutive intervals
then implies recursion relations for the solution at such points. Many oscillatory properties of EPCA
were mentioned, for example, see [1, 4, 5] and the references cited therein. In this paper we discuss
the periodic boundary value problem (PBVP for short) of EPCA

X(8) =fe, x@), x([t-1]), teJ, (D

x(0) = x(T), e (2)

where J = [0, 7] and [] designates the greatest integer function. Let £ denote the class of all
functions x : J\U{-1} — R satisfying that
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@ x ) =x Oy
(if) x(t) is continuous fot re J; and

(iif)  x'(¢) exists on J with the possible exception at the integer points and ¢ = 7, where one
side derivatives exist.

A function ae 2 is said to be a lower solution of (1) and (2), if it satisfies
dM <A, ), a(t-11), tel,
a(0) < o).

An upper solution for (1) and (2) is defined analogously by reversing the above inequalities.

We employ the method of upper and lower solutions coupled with the monotone iterative
technique (see [2, 3] and the references therein) to establish the results of existence and approximation
of solutions for PBVP of EPCA.

2. A COMPARISON RESULT

For the successful employment of the monotone iterative technique we need a certain comparison
theorem. In this section, a general comparison theorem is developed.

Theorem 1 — Suppose that m € Q such that

m'(t) < - Mym(t) - Mym([1 = 1]), 1€ J, )

m(0) < m(T), . (4)

where M] >0, M2 20 are constants such that

M . (5
I—TW-%MeMI @ -1)>0,
[T1+1, T=[T),
where M =
T, T=[T].

Then m(t) <0 for all te J.
PROOF : Set p(r) = m(1) M. Then the inequality (3) reduces to

p'(1) €= Mop (1 - 17) M- 1=1D),
Hence,

M
p()<p(n- 1)——1g?—p(n—2) (eMl(""+2)_eM|)

forte [n-1,n),n=1,2,....M-1, and
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M
p(t)Sp(M—l)—sz(M—-Z) @ M+D _ My for re (M-1,T].
1

We have the following two possibilities:
(@ p(0) <0; (b) p(0) > 0.
In case (a), we can have

pn)<(1-nN)p@©), n=0,1,2,..,M,

M
where N= Xl—z— M (eMl —1) and p(n) £0.
1

In fact, when n = 1, one have

p(1) £ p(0) - p(- 1) N = (1 - N)p(0)

and p(1) £0. Suppose that
p()<(1-iN)p(©), i=1,2, .,k
where k < M and p(i) <0, then
pk+1)Spk) - N (k- 1)
S(A-Npk-1)-N,(k-2)
<(1-2N) pk=2) = N,(k-3)
(1= (k- 1DNp(1) - N,(0)

< (1= (k= DN) (1 -Np(0) - N,(0)
= (1= kN)p(0) = N,(0) + (k= N" p(0)

< (1= (k+ DN)p(0).
By the inductive method one see
p(n)<(1-nN)p(0), =1,2,...,. M,

p(N)<pM-1)-N,(M-2)<(1-MN) p(0)

71

and p(n)<0. For any re J, there exists an integer n<M-1 such that re [n-1,n) or

te [M-1,T]. Hence

M
p() < pln=1) =2 pln=2) (17 - My
1
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<p(n-1)-N,(n-2)<0.

That is m() <0 for te J.
In the case (b), we need to consider two situations :

(/) There exists a positive integer k, k < M such that p(k) < 0, p(j) >0, =0, 1, ..,
k- 1.

@ pi>0,j=12, ., M
If (i) holds, one can get that p({) <0 and

pi+1)<(1 -—iN)p(k)—Np k=-1),i=k+1,. ., M-1.

Hence one have p(T) < 0. This leads to a contradiction to m(0) < m(T).

If (ii) holds, then one get p(f) > O, it is easy to see that p(0) > p(T). That is a contradiction.
The proof of Theorem 1 is complete.

If me 2 is a solution of PBVP

m'(t) + Mim(t) + Mym ([t - 1])=0,2€ J, ... (6)

m(0) = m(T), . (1)

then both m(r) and — m(t) satisfy the inequality (3) and (4). Hence we have

Corollary 1 — Assume that (5) holds. Then the PBVP (6) and (7) has the unique solution
m(t) = 0.

From the proof of Theorem 1, we can obtain

Crorollary 2 — Assume that (5) holds and m e (2 satisfying (3) and

m(0) <0.

Then m(t) <0 for all re€ J.

3. LINEAR PBVPs

In this section, in order to develop the monotone iterative technique for (1) and (2), we consider
the linear PBVP

X (1) + Mx(1) + Myx([t - 1)) = o(t), t € J, .. (8)

and x(0) = x(1), )]
where M|, M, are constants and o(¢) is piecewise continuous and bounded in J.

Theorem 2 — Assume that M, >0, M220 such that (5) and
1-M,MT>0 . (10)

hold. Then PBVP (8) and (9) has a unique solution.



MONOTONE ITERATIVE METHOD FOR DIFFERENTIAL EQUATIONS 73

PROOF : Let
o) Wy MT
W, = max HDhw =———
0 teJ : 1—M2eMlT
and define an operator S: £, — Q as
e_Mlt T M
59 0= | (06 -Myts - 11 M s
€'l
t
s Mt [ (o) -Mpx (s- 1)) M ds, 1e
0
and (Sx) (- 1) =(Sx) (0),
where 2 = {xe Q:1x1<w, x(0)=x(T)}.

It is easy to see that Q, is a closed bounded convex set and S: 2, - €, is compact

according to Ascoli-Arzela’s theorem. Hence, there exists a solution of PBVP (8) and (9) by
Schauder’s fixed point theorem. The uniqueness of solutions of PBVP (8) and (9) follow from
Theorem 1. In fact, suppose that x and y are two distinct solutions of (8) and (9) and let m(r)
= x(t) — y(1), then m(z) satisfies (6) and (7). Hence, by Corollary 1 we have m(f) = 0. The proof
of Theorem 2 is complete.

A function ve Q is said to be a lower solution for (8) and (9) if it satisfies
VIO +Miv) + Mav([t-1D <o) te J .. (1D

and v(0) £ v(T). .. (12)
An upper solution for (8) and (9).is defined analogously by reversing the inequalities of (11)
and (12).

Theorem 3 — Let v and w be lower and upper solutions of (8) and (9) such that v<w
on J and assume that (5) is satisfied. Then (8) and (9) has a unique solution x € [v, w].

PROOF : For each a e [v(0), w(0)], denote by x(:;a) the unique solution of (8) with x(-1)
= x(0) = a. Using Corollary 2, it is easy to see that v(t) <x(r;a)<w() for te J and
x(t; a;) £x(t; ap) on J for ay, a, € [v(0), w(0)] with a; <a,. Hence

v(0) W) £ x(T; v(0)) < x(T;, w(0)) £ w(T) £ w(0).

Denote sequence {v,(7)} by

v,(O=x(t;v,_;(M)n=12, ..,
te J.
vo(D) = v(1),

By induction we can see that the sequence satisfies
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v sV, (sV,(n<...sV, (1) ... SV (1),

and is convergent. Let y(f)= lim v, (). Notice that
n—oe

t

v (0=v,©O+ | (o(s)-My (s-11) ™D ds re
0

v (0 =v,_, (D,

by Lebesgue Dominate Convergence Thebrem, we know that y(#) is the solution of (8) and (9).

The uniqueness of the solution of (8) and (9) can be obtained from Corollary 1. The proof
of Theorem 3 is complete.

4. MONOTONE METHOD

We are now in a position to prove the results concerning the external solutions of (1) and (2).
Theorem 4 — Let o and B be lower and upper solutions of (1) and (2) such that a<f
on J. Assume that fe C[J XRZ] such that

fie, vy, wy) - fit, 128 Ws) 2-—M](v1 - v2) - M2(w1 - W) .. (13)

for re J and v,w;€ R(i=1,2) with ar)<v,<v, <B(r), oft - 1]) Swy<wy < f([2-1]), where M,
and M, satisfy (5). Then, there exist monotone sequences {a,} and {ﬂn} such that
a,—p,B,—>r as n—> co uniformly and monotonically on J and that p,re £ are minimal and
maximal solutions of PBVP (1) and (2) respectively.

PROOF : For any ye £ with a<y<p, let

o(t) =fit, (1), y([t = 11)) + M, y(r) + Myy([z - 1]),
then we have that

a(t)+M, oft) + M, of[t - 1])

<A, o), o[t - 11)) + My o(r) + My [z 1))

SR Y0, ([t - 1) + M, y(1) + M, y([z - 1]) = o(1)

and B (1) +M, B(r) + M, ([t~ 1]) 2 o(¢). As a consequence, o and B are respectively a lower and
an upper solution for (8) and (9). Thus PBVP (8) and (9) has a unique solution x € [a, 8] by
Theorem 3.

Now define a mapping A by Ay = x where for any ye Q with a<y<p, x is the unique
solution of (8) and (9). First we shall that a<Aca and AB<B. Set m(t) = ofr) - Ac(t). From (8), (9)
and the definition of lower solution we know that m(f) satisfies (3) and (4). Hence, m(t) <0 due to
Theorem 1. Similarly we can prove that AB< 8. Next we shall show that Ay, <Ay, for any y; and

¥, € £ with a<y, Syzsﬁ. Set m(r) = Ay, () - Ay,(). Using (8), (9) and (13), we obtain
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m'(t) <~ M,m(f) - Mym{z — 1]), m(0) = m(T)

which implies by Theorem 1, that Ay| <Ay,. It is therefore easy to see that the sequences {a, (O},
{B, (1)} with oy=a and fi,=f can be defined by

an+l=Aan and ﬁn+] =Aﬂn

and the iterates satisfy

asoy<.so <P <. <B <P

on J. It follows, from standard arguments (see [2]), that lim a, (N=p() and lim B (1)=r(1)
n— oo n— oo

uniformly on J and p(r) and r(f) are solutions of (1) and (2).

Finally, to prove that p is the minimal solution on [¢, ], let x be any solution of (1) and
(2) on [a, B]. It is obvious that oy <x. Now if o,<x, one can easily see that @,  ,<x by
considering the function ¢=x- ¢, _, and applying Theorem 1 again. Thus, passing to the limit, we
may conclude that p <x.

The same arguments prove that x <r. The proof of the Theorem 4 is complete.
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