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A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced subgraph (V-D) is
connected. The nonsplit domination number %;(G) of G is the minimum cardinality of a nonsplit dominating
set. In this paper, many bounds on Y (G) are obtained and its exact values for some standard graphs are found.
Also, its relationship with other parameters is investigated.
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1. INTRODUCTION

The graphs considered here are finite, undirected nontrivial and connected without loops or multiple
edges.

Let G = (V, E) be a graph. A set DcV is a dominating set of G if every vertex in V -
D is adjacent to some vertex in D. The domination number YG) of G is the minimum cardinality
of a dominating set.

A dominating set D of G is a connected dominating set if the induced subgraph (D) is
connected. The connected domination number ¥, (G) of G is the minimum cardinality of a connected

dominating set.
Recently, Kulli and Janakiram introduced the concept of split domination in [5].

A dominating set D of a graph G = (V, E) is a split dominating set if the induced subgraph
(V-D) is disconnected. The split domination number ¥, (G) of G is the minimum cardinality of a

split dominating set.
The reader is referred to [1], [2] and [3] for survey or results on domination.

Any undefined term in this paper may be found in Harary4. Unless stated, the graph has p
vertices and g edges.

The purpose of this paper is to introduce the concept of Nonsplit Domination.

A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced
subgraph (V-D )is connected. The nonsplit domination number Y%, (G) of G is the minimum

cardinality of a nonsplit dominating set.

We call a set of vertices a ¥set if it is a dominating set with cardinality y(G). Similarly,
a y,-set, a y-set and a ¥, .-set are defined.
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2. RESULTS

We start with some elementary results. Since their proofs are trivial, we omit the same.
Theorem 1 — For any graph G,

- KG) 2%, (G). v (D

Theorem 2 — For any graph G,

KG) = min {y(G),7,, (G)}. )

In [3], Cockayne and Hedetniemi gave necessary and sufficient conditions for a minimal
dominating set.

Theorem A3 — A dominating set D of a graph G is minimal if and only if for each vertex
ve D one of the following conditions is satisfied:

(i) there exists a vertex ue V—D such that Nu) N\D = (v}, and

(ii) v is an isolated vertex in (D).

Theorem 3 — A nonsplit dominating set D of G is minimal if and only if for each vertex
ve D one of the following conditions is satisfied :

(i) there exists a vertex ue V~D such that Nu) M\D = {v};
(ii) v is an isolated vertex in {(D); and

(iii) N() (N (V-D) = .

PROOF : Suppose D is minimal. On the contrary, if there exists a vertex ve D such that v
does not satisfy any of the given conditions, then by Theorem A, D’=D - {v} is a dominating set
of G and by (iii), (V-D’) is connected. This implies that D’ is a nonsplit dominating set of G, a
contradiction. This proves the necessity.

Sufficiency is straightforward.

Next we obtain a relationship between 7, (G) and ¥, (H) where H is any spanning subgraph
of G. We omit the proof.

Theorem 4 — For any spanning subgraph H of G,

%, (G) £ 7, (H). . (3)

In the following two results, we obtain lower and upper bounds on ¥, (G) fespectively.

Theorem 5 — For any graph G,

Y G2(2p-q-1)/2 .. (4)
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PROOF : Let D be a 7,.-set of G. Since (v-D) is connected.
g21V-DI+|V-DI-1.

This proves (4).
Theorem 6 — For any graph G,

Y,s (G) <p—a(G) + 1, .. (5)

where @(G) is the clique number of G.
PROOF : Let S be a set of vertices of G such that (S) is complete with | S|=a(G). Then
for any ue S, (V-S)\U {u} is a nonsplit dominating set of G.

Thus (5) holds.

Now we list the exact values of ¥, (G) for some standard graphs.

Proposition 7 —

(i) For any complete graph Kp with p 22 vertices,

T () = 1. . (6)

(ify For any complete bipartite graph Km’ n With 2Sm<n,

Yos (Ko ) = 2. o ()

(iiiy For any cycle le
s (C)=p - 2. . (8)

(iv) For any wheel W »
Yos (W) = 1. — (9)

(v) For any path PP with p 23 vertices,

Yus (Pp) =p = 2. - (10)

Our next result sharpens the inequality (5) for ftrees.
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Theorem 8 — If T is a tree which is not a star, then,

Ys (D <p-2. .. (11)

PROOF : Since T is not a star, there exist two adjacent cut vertices u and v with deg u,
deg v22. This implies that V-{u, v} is a nonsplit dominating set of T.

Thus (11) holds.
Theorem 9 — If x (G)> By(G), then

%5 (G) = KG), . (12)

where Kk (G) is the connectivity of G and B)(G) is the independence number of G.
PROOF : Let D be a yset of G. Since k (G)>ﬁ0 (G) 2 1G), it implies that (V-D) is
connected. This proves that D is a y, -set of G. Hence (12) follows.

Theorem 10 — Let D be a Y, -set of a connected graph G. If no two vertices in V-D are

adjacent to a common vertex in D, then

s (G) +&T) 2p .. (13)

where &T) is the maximum number of endvertices in any spanning tree T of G.

PROOF : Let D be a y,-set of G, given in the hypothesis. Since for any two vertices
u,ve V-D, there exist two vertices u;, v, € D such that u; is adjacent to u but not to v and v,
is adjacent to v but not to u,, this implies that there exists a spanning tree T of (V-D) in which
each vertex of V — D is adjacent to a vertex of D. This proves that- €T)21V-DI.

Thus (13) holds.

Theorem 11 — If &G)+ aXG)2p+ 1, then

Y(G)+7%,(G)<p .. (14)

where &G) is the minimum degree of G.
PROOF : By (5), 7,,(G)<p-a(G)+1

< &G).

Let D be a y, -set of G. Then every vertex in D is adjacent to some vertex in V — D. Thus
(V-D) is a connected dominating set of G, since { V—-D) is connected. This proves (14).

In the next result we obtain another upper bound on ¥, (G).

Theorem 12 — For any graph G,

Y, (G) < — diam(G) + h + 1, .. (15)
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where diam(G) is the diameter of G and h is the minimum number of vertices in a Y, -set of G
which lie in between shortest u-v path and d(u, v) diam (G)

PROOF : Let diam(G) = k. We consider the following cases.

Case 1 — Suppose u,ve V-D. Then V — D has at least k+1 vertices.

Case 2 — Suppose u€ D and ve V-D. If there exists a vertex u; € V~D such that u,
is connected to u through the vertices of D then, d (u,v)2k—-(h+1) and hence V — D has at least
k — h vertices. For otherwise, for every vertex u; € V-D there exists a vertex w adjacent t0 u,
such that d(u, w) =d(u, v) + d(v, uy) + d*(u;, w) 2 k+ 1, a contradiction.

This implies that V — D = {v} and hence G=K, or K1,2-

Case 3 — Suppose u, v D. If there exist two vertices u;, v, € VD such that u is connected
to u; and v is connected to v, through the vertices of D, then d(u, v;) 2k~ (h+2) and hence V-D

has at least k—h—1 vertices. For otherwise, there exists exactly one vertex u; € V—D which is adjacent
to both u and v and {u;} = V-D. This implies that G is a star with at least three vertices.

Thus from the above all the three cases, it follows that V-D has at least k—h—1 vertices and
hence (15) follows.

Now we obtain a lower bound on ¥, (7).

Theorem 13 — For any tree T,

Yos(T) Zp —m, .. (16)

where m is the number of vertices adjacent to endvertices.
PROOF : If T is K,, the result is trivial. If T has at least three vertices and D is a ¥,s-Set
of T, then each vertex of V-D is a cutvertex of T. Let S be the set of all cutvertices which are

>

adjacent to endvertices with 1Sl=m. Let ue V-D. If ue S, then D = V-§ and (16) holds. If
uge S, then there exists a cutvertex ve D adjacent to u. Further, all vertices which are connected
to v not through u also belonging to D. This implies that V-D has at most m vertices and (16)
holds.

Corollary 13.1 — For any tree T,

Y(T) £ 7, (D). e

Further if T is a path, then equality holds.
PROOF : If T has no cut vertices, then T=K, and hence y(T)=y,(T)=1.

Let S be the set of all cut vertices of 7 with 1SI=p, and §; S be the set of all cut
vertices such that each vertex of §; is adjacent to an endvertex with | S, I=p,.

Thus,

V() =p2p,+p,
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Due to Sampathkumar and Walikar®,

YC(T):Py

Hence, (17) follows from (16).

If T is a path with p23 verlices, then by (10) and the fact that y(T)=p,, the equality
holds.

Next we obtain an upper bound on ¥, (7).

Theorem 14 — For any tree T,
Y,s (1) <p—max {deg v-1(e(v) I}, .. (18)
v

where e(v) is the set of all endvertices adjacent to v.
PROOF : Let v be a vertex with deg v—1e(v) | being maximum. Let u € N(v). Then it follows
that V- N[v] U e(v) \U{u} is a nonsplit dominating set of 7. Hence, (18) holds.

Corollary 14.1 — For any tree T,

Y, (1) Sp—AT) +py, . (19)

where A(T) is the maximum degree of T and p is the minimum number of endvertices adjacent to
a vertex of maximum degree.

Corollary 142 — For any graph G,
Y,,(G) S p—~max {degv—le(v)l}, - (20)

where e(v) is the set of all vertices which are adjacent to v but not adjacent to any vertex of
V-N(v).

PROOF : This follows from the fact that for any v € V, there exists a spanning tree 7 such
that degszdegTv and from (3) and (18).

The next result relates to ym(E) and 'ys(_(—}’) where G is the complement of G.

Theorem 15 — [f diam (G) = 5, then.

Y(G) 2 7,,(G). .. (21)

PROOF : Let D be a y-set of G. Then every vertex in V-D is not adjacent to at least one
vertex in D, since diam (G) = 5. Thus D is a dominating set of G and further it is a nonsplit
dominating set of G, as (V-D) is connected in G.

This proves (21).
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The following result is obvious. Hence, we omit its proof.
Theorem 16 — Let G be a graph such that both G and G are connected. Then
(i) %,(G) + 7, (G <2(p-2); - (22)

and (i) %, (G) ¥, @ <(p-2)% . (23)
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