THE NONSPLIT DOMINATION NUMBER OF A GRAPH

V. R. KULLI AND B. JANAKIRAM

Department of Mathematics, Gulbarga University, Gulbarga 585 106

(Received 11 May 1998; Accepted 5 May 1999)

A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced subgraph $\langle V - D \rangle$ is connected. The nonsplit domination number $\gamma_{ns}(G)$ of G is the minimum cardinality of a nonsplit dominating set. In this paper, many bounds on $\gamma_{ns}(G)$ are obtained and its exact values for some standard graphs are found. Also, its relationship with other parameters is investigated.

Key Words: Graph; Domination number; Nonsplit Domination Number

1. Introduction

The graphs considered here are finite, undirected nontrivial and connected without loops or multiple edges.

Let G = (V, E) be a graph. A set $D \subset V$ is a dominating set of G if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set.

A dominating set D of G is a connected dominating set if the induced subgraph $\langle D \rangle$ is connected. The connected domination number $\gamma_c(G)$ of G is the minimum cardinality of a connected dominating set.

Recently, Kulli and Janakiram introduced the concept of split domination in [5].

A dominating set D of a graph G = (V, E) is a split dominating set if the induced subgraph $\langle V - D \rangle$ is disconnected. The split domination number $\gamma_s(G)$ of G is the minimum cardinality of a split dominating set.

The reader is referred to [1], [2] and [3] for survey or results on domination.

Any undefined term in this paper may be found in Harary⁴. Unless stated, the graph has p vertices and q edges.

The purpose of this paper is to introduce the concept of Nonsplit Domination.

A dominating set D of a graph G = (V, E) is a nonsplit dominating set if the induced subgraph $\langle V-D \rangle$ is connected. The nonsplit domination number $\gamma_{ns}(G)$ of G is the minimum cardinality of a nonsplit dominating set.

We call a set of vertices a γ -set if it is a dominating set with cardinality $\gamma(G)$. Similarly, a γ_c -set, a γ_s -set and a γ_{ns} -set are defined.

2. RESULTS

We start with some elementary results. Since their proofs are trivial, we omit the same.

Theorem 1 — For any graph G,

$$\gamma(G) \le \gamma_{ns}(G). \tag{1}$$

Theorem 2 — For any graph G,

$$\gamma(G) = \min \{ \gamma_s(G), \gamma_{ns}(G) \}. \qquad ... (2)$$

In [3], Cockayne and Hedetniemi gave necessary and sufficient conditions for a minimal dominating set.

Theorem A³ — A dominating set D of a graph G is minimal if and only if for each vertex $v \in D$ one of the following conditions is satisfied:

- (i) there exists a vertex $u \in V D$ such that $N(u) \cap D = \{v\}$; and
- (ii) v is an isolated vertex in $\langle D \rangle$.

Theorem 3 — A nonsplit dominating set D of G is minimal if and only if for each vertex $v \in D$ one of the following conditions is satisfied:

- (i) there exists a vertex $u \in V D$ such that $N(u) \cap D = \{v\}$;
- (ii) v is an isolated vertex in $\langle D \rangle$; and
- (iii) $N(v) \cap (V-D) = \phi$.

PROOF: Suppose D is minimal. On the contrary, if there exists a vertex $v \in D$ such that v does not satisfy any of the given conditions, then by Theorem A, $D' = D - \{v\}$ is a dominating set of G and by (iii), $\langle V - D' \rangle$ is connected. This implies that D' is a nonsplit dominating set of G, a contradiction. This proves the necessity.

Sufficiency is straightforward.

Next we obtain a relationship between $\gamma_{ns}(G)$ and $\gamma_{ns}(H)$ where H is any spanning subgraph of G. We omit the proof.

Theorem 4 — For any spanning subgraph H of G,

$$\gamma_{ns}(G) \le \gamma_{ns}(H). \tag{3}$$

In the following two results, we obtain lower and upper bounds on $\gamma_{ns}(G)$ respectively.

Theorem 5 — For any graph G,

$$\gamma_{ns} G \ge (2p - q - 1)/2$$
 ... (4)

PROOF: Let D be a γ_{ns} -set of G. Since $\langle v - D \rangle$ is connected.

$$q \ge |V - D| + |V - D| - 1$$
.

This proves (4).

Theorem 6 — For any graph G,

$$\gamma_{ns}(G) \le p - \omega(G) + 1, \qquad \dots (5)$$

where $\omega(G)$ is the clique number of G.

PROOF: Let S be a set of vertices of G such that $\langle S \rangle$ is complete with $|S| = \omega(G)$. Then for any $u \in S$, $(V-S) \cup \{u\}$ is a nonsplit dominating set of G.

Thus (5) holds.

Now we list the exact values of $\gamma_{ns}(G)$ for some standard graphs.

Proposition 7 —

(i) For any complete graph K_p with $p \ge 2$ vertices,

$$\gamma_{ns}(K_p) = 1. ... (6)$$

(ii) For any complete bipartite graph $K_{m,n}$ with $2 \le m \le n$,

$$\gamma_{ns}\left(K_{m,n}\right) = 2. \qquad \dots (7)$$

(iii) For any cycle C_p ,

$$\gamma_{ns}(C_p) = p - 2.$$
 ... (8)

(iv) For any wheel W_p,

$$\gamma_{ns}(W_n) = 1. \tag{9}$$

(v) For any path P_p with $p \ge 3$ vertices,

$$\gamma_{ns}(P_p) = p - 2.$$
 ... (10)

Our next result sharpens the inequality (5) for trees.

Theorem 8 — If T is a tree which is not a star, then,

$$\gamma_{ns}(T) \le p - 2. \tag{11}$$

PROOF: Since T is not a star, there exist two adjacent cut vertices u and v with deg u, deg $v \ge 2$. This implies that $V - \{u, v\}$ is a nonsplit dominating set of T.

Thus (11) holds.

Theorem 9 — If $\kappa(G) > \beta_0(G)$, then

$$\gamma_{ns}(G) = \gamma(G), \qquad \dots (12)$$

where κ (G) is the connectivity of G and β_0 (G) is the independence number of G.

PROOF: Let D be a γ -set of G. Since $\kappa(G) > \beta_0(G) \ge \gamma(G)$, it implies that $\langle V - D \rangle$ is connected. This proves that D is a γ_{ns} -set of G. Hence (12) follows.

Theorem 10 — Let D be a γ_{ns} -set of a connected graph G. If no two vertices in V-D are adjacent to a common vertex in D, then

$$\gamma_{ns}(G) + \varepsilon(T) \ge p$$
 ... (13)

where $\varepsilon(T)$ is the maximum number of endvertices in any spanning tree T of G.

PROOF: Let D be a γ_{ns} -set of G, given in the hypothesis. Since for any two vertices $u, v \in V - D$, there exist two vertices $u_1, v_1 \in D$ such that u_1 is adjacent to u but not to v and v_1 is adjacent to v but not to u_1 , this implies that there exists a spanning tree T of $\langle V - D \rangle$ in which each vertex of V - D is adjacent to a vertex of D. This proves that $\varepsilon(T) \ge |V - D|$.

Thus (13) holds.

Theorem 11 — If $\delta(G) + \omega(G) \ge p + 1$, then

$$\gamma_c(G) + \gamma_{ns}(G) \le p \qquad \dots (14)$$

where $\delta(G)$ is the minimum degree of G.

PROOF: By (5), $\gamma_{ns}(G) \le p - \omega(G) + 1$

$$\leq \delta(G)$$
.

Let D be a γ_{ns} -set of G. Then every vertex in D is adjacent to some vertex in V-D. Thus $\langle V-D \rangle$ is a connected dominating set of G, since $\langle V-D \rangle$ is connected. This proves (14).

In the next result we obtain another upper bound on γ_{ns} -(G).

Theorem 12 — For any graph G,

$$\gamma_{ns}(G) \le - \text{diam}(G) + h + 1,$$
 ... (15)

where diam(G) is the diameter of G and h is the minimum number of vertices in a γ_{ns} -set of G which lie in between shortest u-v path and d(u, v) diam (G)

PROOF: Let diam(G) = k. We consider the following cases.

Case 1 — Suppose $u, v \in V - D$. Then V - D has at least k+1 vertices.

Case 2 — Suppose $u \in D$ and $v \in V - D$. If there exists a vertex $u_1 \in V - D$ such that u_1 is connected to u through the vertices of D then, $d(u_1, v) \ge k - (h + 1)$ and hence V - D has at least k - h vertices. For otherwise, for every vertex $u_1 \in V - D$ there exists a vertex w adjacent to u_1 such that $d(u, w) = d(u, v) + d(v, u_1) + d*(u_1, w) \ge k + 1$, a contradiction.

This implies that $V - D = \{v\}$ and hence $G = K_2$ or $K_{1,2}$.

Case 3 — Suppose u, v D. If there exist two vertices $u_1, v_1 \in V - D$ such that u is connected to u_1 and v is connected to v_1 through the vertices of D, then $d(u_1, v_1) \ge k - (h+2)$ and hence V - D has at least k - h - 1 vertices. For otherwise, there exists exactly one vertex $u_1 \in V - D$ which is adjacent to both u and v and $\{u_1\} = V - D$. This implies that G is a star with at least three vertices.

Thus from the above all the three cases, it follows that V-D has at least k-h-1 vertices and hence (15) follows.

Now we obtain a lower bound on $\gamma_{ns}(T)$.

Theorem 13 — For any tree T,

$$\gamma_{ns}(T) \ge p - m, \qquad \dots \tag{16}$$

where m is the number of vertices adjacent to endvertices.

PROOF: If T is K_2 , the result is trivial. If T has at least three vertices and D is a γ_{ns} -set of T, then each vertex of V-D is a cutvertex of T. Let S be the set of all cutvertices which are adjacent to endvertices with |S| = m. Let $u \in V - D$. If $u \in S$, then D = V - S and (16) holds. If $u \notin S$, then there exists a cutvertex $v \in D$ adjacent to u. Further, all vertices which are connected to v not through u also belonging to D. This implies that V-D has at most m vertices and (16) holds.

Corollary 13.1 — For any tree T,

$$\gamma_c(T) \le \gamma_{ns}(T). \tag{17}$$

Further if T is a path, then equality holds.

PROOF: If T has no cut vertices, then $T = K_2$ and hence $\gamma_c(T) = \gamma_{ns}(T) = 1$.

Let S be the set of all cut vertices of T with $|S| = p_1$ and $S_1 \subseteq S$ be the set of all cut vertices such that each vertex of S_1 is adjacent to an endvertex with $|S_1| = p_2$.

Thus,

$$V(T) = p \ge p_1 + p_2.$$

Due to Sampathkumar and Walikar⁶,

$$\gamma_c(T) = p_1$$
.

Hence, (17) follows from (16).

If T is a path with $p \ge 3$ vertices, then by (10) and the fact that $\gamma_c(T) = p_1$, the equality holds.

Next we obtain an upper bound on $\gamma_{ns}(T)$.

Theorem 14 — For any tree T,

$$\gamma_{ns}(T) \le p - \max_{v} \{\deg v - | (e(v)) \}, \dots (18)$$

where e(v) is the set of all endvertices adjacent to v.

PROOF: Let v be a vertex with deg v - |e(v)| being maximum. Let $u \in N(v)$. Then it follows that $V - N[v] \cup e(v) \cup \{u\}$ is a nonsplit dominating set of T. Hence, (18) holds.

Corollary 14.1 — For any tree T,

$$\gamma_{ns}(T) \le p - \Delta(T) + p_0, \qquad \dots (19)$$

where $\Delta(T)$ is the maximum degree of T and p_0 is the minimum number of endvertices adjacent to a vertex of maximum degree.

Corollary 14.2 — For any graph G,

$$\gamma_{ns}(G) \le p - \max_{v} \{degv - |e(v)|\}, \quad ... (20)$$

where e(v) is the set of all vertices which are adjacent to v but not adjacent to any vertex of V-N(v).

PROOF: This follows from the fact that for any $v \in V$, there exists a spanning tree T such that $deg_G v = deg_T v$ and from (3) and (18).

The next result relates to $\gamma_{ns}(\overline{G})$ and $\gamma_{s}(\overline{G})$ where \overline{G} is the complement of G.

Theorem 15 — If diam (G) = 5, then

$$\gamma_s(G) \ge \gamma_{ns}(\overline{G}).$$
 ... (21)

PROOF: Let D be a γ_s -set of G. Then every vertex in V-D is not adjacent to at least one vertex in D, since diam (G) = 5. Thus D is a dominating set of \overline{G} and further it is a nonsplit dominating set of \overline{G} , as $\langle V - D \rangle$ is connected in \overline{G} .

This proves (21).

The following result is obvious. Hence, we omit its proof.

Theorem 16 — Let G be a graph such that both G and \overline{G} are connected. Then

(i)
$$\gamma_{ns}(G) + \gamma_{ns}(\overline{G}) \le 2(p-2);$$
 ... (22)

and (ii) $\gamma_{ns}(G) \cdot \gamma_{ns}(\overline{G}) \le (p-2)^2$.

... (23)

Thanks are due to the referees for their valuable comments and suggestions.

REFERENCES

ACKNOWLEDGEMENT

- 1. G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, Madras (1996).
- 2. E. J. Cockayne, Domination of undirected graphs-A survey. In Theory and Applications of Graphs. LNM 642, Spring-Verlag, 1978. 141-147.
- 3. E. J. Cockayne and S. T. Hedetniemi, Networks 7 (1977) 247-61.
- 4. F. Harary, Graph Theory, Addison-Wesley, Reading Mass. (1969).
- 5. V. R. Kulli and B. Janakiram, The split domination number of a graph. *Graph Theory Notes of New York*, New York Academy of Sciences (1997) **XXXII**, 16-19.
- 6. E. Sampathkumar and H. B. Walikar, J. math. phys. Sci. 13 (1979) 607-613.