ON PRIME LEFT IDEALS IN Γ -RINGS

Bh. Satyanarayana, T. V. Pradeep Kumar and M. Srinivasa Rao

Department of Mathematics, Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh, India

(Received 9 September 1998; accepted 17 May 1999)

The concepts "left $g^1 - \mu$ prime left ideal" and left $g^1 - \mu$ prime radical were introduced in Γ -rings. These concepts were studied and finally an element wise characterization for left $g^1 - \mu$ prime radical was obtained.

Key Words: Prime Left Ideals; Γ-rings; Abelian Groups

INTRODUCTION

Nobusawa⁴ introduced the concept of Γ -ring and Barnes¹ generalized this concept. Later several authors studied the Γ -ring in the sense of Barnes¹. Barnes defined the Γ -ring as follows:

- 0.1 Definition Let (M, +), $(\Gamma, +)$ be additive Abelian groups. If there exists a mapping $M \times \Gamma \times M \to M$. (the image of (a, α, b) is denoted by $a\alpha b$ for $a, b \in M$, $\alpha \in \Gamma$) satisfying the following conditions: (i) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x\alpha(y + z) = x\alpha y + x\alpha z$, $x(\alpha + \beta) z = x\alpha z + x\beta z$; and (ii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ -ring. All Γ -rings considered in this paper are Γ -rings in the sense of Barnes.
- 0.2 Examples (i) If G and G^1 are two additive Abelian groups, $M = \text{Hom } (G, G^1)$, $\Gamma = \text{Hom } (G^1, G)$ then M is a Γ -ring with respect to pointwise addition and composition of mappings.
- (ii) Let R be a ring. Take $M = \Gamma = R$. For $a, b \in M$, $\alpha \in \Gamma$, suppose $a\alpha b$ is the product of $a, \alpha, b \in R$. Then M is a Γ -ring.
- (iii) Let U, V be vector spaces over the same field F, M = Hom (U, V), $\Gamma = \text{Hom } (V, U)$. Then M is a Γ -ring with respect to point wise addition and composition of mappings.

Throughout M denotes a Γ -ring. An additive subgroup (A, +) of (M, +) is said to be (i) a right ideal if $a \alpha m \in A$ for all $a \in A$, $\alpha \in \Gamma$, $m \in M$; (ii) a left ideal if $m \alpha a \in A$ for all $a \in A$, $\alpha \in \Gamma$, $m \in M$; and (iii) an ideal if it is both left and right ideal. The smallest ideal containing an element $a \in M$ is denoted by $\langle a \rangle$. The smallest ideal containing a subset X of M is denoted by $\langle X \rangle$. The smallest left ideal containing X is denoted by $\langle X \rangle$. $\langle \{a\} \rangle$ is denoted by $\langle a \rangle$.

For any set X of M, the set theoretic complement of X in M is denoted by $M \setminus X$. If $A \subseteq M$, $B \subseteq M$, $\gamma \in \Gamma$, $\Gamma^1 \subseteq \Gamma$ then the set $\{a\alpha b/a \in A, \alpha \in \Gamma^1, b \in B\}$ is denoted by $A\Gamma^1 B$; the set $\{a\gamma b/a \in A, b \in B\}$ is denoted by $A\gamma B$; and the set $\{a\alpha b/a \in A, \alpha \in \Gamma^1, b \in B\}$ and $\alpha \in A$ is any positive integer is denoted by AB.

- 0.3 Definition (Booth²) A strong right unity of a Γ -ring M is a pair (δ, d) of $\Gamma \times M$ such that $x\delta d = x$ for all $x \in M$.
 - 0.4 Note If M has a strong right unity (δ, d) then $m = m\delta d \in m\delta M$ for all $m \in M$.

Following Hsu^3 we suppose that g is a function of M into the family of ideals of M such that for every n, $m \in M$, (i) $m \in g(m)$; and (ii) $n \in g(m) + A$ and A is an ideal of $M \Rightarrow g(n) \subseteq g(m) + A$.

- 0.5 Definition (Hsu³) (i) A subset X of M is said to be an m-system if either $X = \phi$ or it satisfies the condition that $a, b \in X \Rightarrow$ there exists $\alpha \in \Gamma$, $a^1 \in \langle a \rangle$, $b^1 \in \langle b \rangle$ such that $a^1 \alpha b^1 \in X$.
- (ii) A subset X of M is said to be a g-system if there exists an m-system X^* such that $X^* \subseteq X$ and $g(a) \cap X^* \neq \emptyset$ for all $a \in X$.
- (iii) An ideal P of M is said to be a g-prime ideal if $M \setminus P$ is a g-system. An ideal P of M is said to be a prime ideal of M if it satisfies the condition that A, B are ideals of M such that $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Every prime ideal is a g-prime ideal, but the converse need not be true. Hsu provided an example of a g-prime ideal which cannot be a prime ideal. Barnes¹ and Booth², studied prime ideals and prime radical for Γ -rings. Hsu³ and Satyanarayana⁵ studied g-prime radical for Γ -rings.

In this paper, the concepts left g^1 -prime, left $g^1 = \gamma$ -prime, left $g^1 = \gamma$ -system, left $g^1 = \gamma$ -system, left $g^1 = \gamma$ -prime radical were introduced. In section-2, equivalent conditions for an ideal (respectively, left ideal) to be a left $g^1 = \gamma$ -prime ideal (respectively, left ideal) obtained. Some conditions, under which the concepts left $g^1 = \gamma$ -prime and left g^1 -prime coincide were presented. In section-3, an element wise characterization for left $g^1 = \gamma$ -prime radical was obtained.

1. IDEALS

Definition 1.1. — Fix $\gamma \in \Gamma$. A subgroup I of (M, +) is said to be (i) a γ -right ideal if $I\gamma M \subseteq I$, (ii) a γ -left ideal if $M\gamma I \subseteq I$, (iii) a γ -ideal if I is both γ -right and γ -left ideal.

- 1.2 Note It is clear that I is an ideal \Leftrightarrow I is γ -ideal for all $\gamma \in \Gamma$.
- 1.3 Definition Let $\gamma \in \Gamma$. M is said to be γ -commutative Γ -ring if $a\gamma b = b\gamma a$ for all $a, b \in M$.
- 1.4 Note (i) If M is γ -commutative then a subgroup A of (M, +) is a right γ -ideal if and only if it is a left γ -ideal.
 - (ii) If M is γ -commutative then every left ideal of M is a γ -right ideal of M.
- 1.5 Definition A (left/right) ideal P is said to be IFP (insertion of factors property) ideal if it satisfies the following condition: $a, b \in M, \gamma \in \Gamma, a\gamma b \in P \Rightarrow a\Gamma M\gamma b \subseteq P$.

- 1.6 **Theorem** Fix $\gamma \in \Gamma$. J is a left ideal. For a left ideal P, write $(P : \gamma J) = \{x \in M/x\gamma J \subseteq P\}$. Then
 - (i) $(P: \gamma J)$ is a left ideal of M,
 - (ii) $(P: \gamma J)$ is a γ ideal of M,
 - (iii) If $x\gamma M = x\Gamma M$ for all $x \in (P : \gamma J)$ then $(P : \gamma J)$ is an ideal,
- (iv) If M is a commutative Γ -ring then $(P:\gamma J)$ is an ideal and
 - (v) If P is an IFP ideal then $(P: \gamma J)$ is an ideal.

PROOF: Write $I = (P : \gamma J)$. Take $x, y \in I \Rightarrow x\gamma J \subseteq P$ and $y\gamma J \subseteq P$. Consider (x + y) $\gamma J \subseteq x\gamma J + y\gamma J \subseteq P + P = P \Rightarrow x + y \in I$. $x\gamma J \subseteq P \Rightarrow -(x\gamma J) \subseteq P \Rightarrow (-x)\gamma J \subseteq P \Rightarrow -x \in I$. Therefore (I, +) is a subgroup of (M, +).

- (i) To show I is a left ideal, take $\alpha \in \Gamma$ and $m \in M$. $(m\alpha x)\gamma J = m\alpha(x\gamma J) \subseteq m\alpha P \subseteq P$ (since P is a left ideal) $\Rightarrow m\alpha x \in I$. Therefore, I is a left ideal.
- (ii) Since I is a left ideal, we have that I is a γ -left ideal. To show that I is a γ -right ideal, take $m \in M$. Consider $(x\gamma m)\gamma J = x\gamma (m\gamma J) \subseteq x\gamma J$ (since J is left ideal) $\subseteq P \implies x\gamma m \in I$. Therefore, $x\gamma M \subseteq I$. Hence, I is γ -right ideal.
- (iii) Suppose $x\gamma M = x\Gamma M$ for all $x \in I$. Let $x \in I$, $\alpha \in \Gamma$, $m \in M$. Consider $x\alpha m \in x\Gamma M$. Now $x\alpha m \in x\Gamma M = x\gamma M \implies x\alpha m = x\gamma m^1$ for some $m^1 \in M$. Consider $(x\alpha m)\gamma J = (x\gamma m^1)\gamma J = x\gamma (m^1\gamma J)$ $\subseteq x\gamma J \subseteq P \implies x\alpha m \in I$. This is true for all $\alpha \in \Gamma$ and $m \in M$. Therefore, $x\Gamma M \subseteq I$. This shows that I is a right ideal. Hence, I is an ideal (by (i)).
- (iv) Suppose M is commutative Γ -ring. By (i), we have that I is a left ideal. Since M is commutative we have that I is a right ideal. Hence I is an ideal.
- (v) Suppose P is an IFP ideal. Let $x \in I \Rightarrow x\gamma J \subseteq P \Rightarrow x\Gamma M\gamma J \subseteq P$ (since P is an IFP ideal) $\Rightarrow x\Gamma M \subseteq \{a \in M/a\gamma J \subseteq P\} = I$. Therefore, I is a right ideal. By (i), I is a left ideal. Hence, I is an ideal.
 - 1.7 Note If $n^1 \in P + \langle n \rangle$ then $g(n^1) \subseteq P + g(n)$.

(Verification: $n^1 \in P + \langle n \rangle \subseteq P + g(n) \Rightarrow g(n^1) \subseteq P + g(n)$).

2. Left $g^1 - \gamma$ -Prime Left Ideals

Definition 2.1 — Let $\gamma \in \Gamma$. (i) A left ideal (respectively ideal) P of M is said to be a left $g^1 = \gamma$ -prime left ideal (respectively, left $g^1 = \gamma$ -prime ideal) if it satisfies the condition that $m, n \in M, m \gamma g(n) \subseteq P$ imply either $m \in P$ or $n \in P$.

- (ii) A left ideal (respectively ideal) P of M is said to be a left g^1 -prime left ideal (respectively, left g^1 -prime ideal) if it satisfies the condition that $m, n \in M, m\Gamma g(n) \subseteq P$ implies either $m \in P$ or $n \in P$.
- Note 2.2 (i) Every left $g^1 = \gamma$ -prime left ideal is a left g^1 -prime left ideal; (ii) Every left $g^1 \gamma$ -prime ideal is a left g^1 -prime ideal; and (iii) The converse of (i) and (ii) need not be true.
- Example 2.3 Take Z = the additive group of integers, M = 2Z, $\Gamma = 3Z$. For any $a, b \in M$ and $\alpha \in \Gamma$, $a\alpha b$ is the usual product of integers. Clearly M is a Γ -ring. Write $g(a) = \langle \{a, 10\} \rangle$ for any $a \in M$. P = 14Z is an ideal of the Γ -ring M. Now we show that P is a left g^1 -prime ideal but not a left $g^1 \gamma$ -prime ideal for some fixed $\gamma \in \Gamma$. For this, take $\gamma = 21 \in \Gamma$. Suppose $m\Gamma g(n) \subseteq P$ for some $m, n \in M \Rightarrow m$. 3. n. $10 \in m \cdot \Gamma \cdot \langle \{n, 10\} \rangle \subseteq P = 14Z \Rightarrow 14$ divides $m3.n.10 \Rightarrow 7$ divides m or 7 divides n. Since $m, n \in M = 2Z$ we have 2 divides m and 2 divides n. Therefore, 14 divides m or 14 divides $n \Rightarrow m \in 14Z = P$ or $n \in 14Z = P$. Therefore, P is a left g^1 -prime ideal. To verify that P is not a left $g^1 \gamma$ -prime ideal for $\gamma = 21$, take m = 2, n = 2. Now m.21.g(n) = 2.21. g(2) = 2.21. $\langle \{2, 10\} \rangle \subseteq 42$ $Z \subseteq 14$ Z = P, but $m = 2 \notin P$ and $n = 2 \notin P$. This shows that P is a left g^1 -prime ideal (or left ideal) which is not a left g^1 - γ -prime ideal (or left ideal),
- 2.4 Definition (i) A subset X of M is said to be a left g^1 -system if either $X = \phi$ or for any $a, b \in X$ there exists $\alpha \in \Gamma$, $b^1 \in g(b)$ such that $a\alpha b^1 \in X$.
- (ii) Fix $\gamma \in \Gamma$. A subset X of M is said to be a left g^1 - γ -system if either $X = \phi$ or for any $a, b \in X$ there exists $b1 \in g(b)$ such that $a\gamma b^1 \in X$.
 - 2.5. Note Every left $g^1 \gamma$ -system is a left g^1 -system, but the converse need not be true.
- 2.6 Example Suppose $M = Z = \Gamma$. Then M is a Γ -ring. Take $g(a) = \langle a \rangle$ for all $a \in M$. Write $X = \{2, 2^2, 2^3, ...\}$ is a left g^1 -system. Take $\gamma = 5$. In a contrary way, suppose X is a left g^1 - γ -system. Now 2, $A \in X \Rightarrow \exists b^1 \in \langle A \rangle = 4Z$ such that $2\gamma b^1 \in X \Rightarrow 2.5(4.k) \in X$ for some $k \Rightarrow 2.5.4$. $k = 2^m$ for some m, a contradiction. Hence, X is not a left $g^1 \gamma$ -system when $\gamma = 5$.
- 2.7 **Theorem** Let P be a ideal (respectively left ideal) of M and $\gamma \in \Gamma$. Then the following conditions are equivalent: (i) P is a left $g^1 \gamma$ -prime ideal (respectively, left $g^1 \gamma$ -prime left ideal); (ii) $a, b \in M$ such that $\langle a \rangle_1 \gamma g(b) \subseteq P \Rightarrow a \in P$ or $b \in P$; (iii) A is a left ideal of M and B is an ideal of M such that $A\gamma(B+g(o)) \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$; and (iv) MP is a left $g^1 \gamma$ -system.
- PROOF: (i) \Rightarrow (ii) Suppose P is a left $g^1 \gamma$ -prime ideal. To show (ii), take $a \in M, b \in M$ such that $\langle a \rangle_1 \gamma g(b) \subseteq P$. Now $a \gamma g(b) \subseteq \langle a \rangle_1 \gamma g(b) \subseteq P \Rightarrow a \in P$ or $b \in P$.
- $(ii) \Rightarrow (iii)$: Suppose (ii). In a contrary way, suppose that the condition (iii) is not true. Then there exist a left ideal A and an ideal B of M such that $A\gamma(B+g(o)) \subseteq P, A \not\subseteq P$ and $B \not\subseteq P$. Take $a \in A$ P, $b \in B \setminus P$. Clearly $\langle a \rangle_1 \subseteq A$ and $\langle b \rangle \subseteq B \Rightarrow \langle a \rangle_1 \subseteq A$.

Since $b \in \langle b \rangle + g(o)$, we have $g(b) \subseteq \langle b \rangle + g(o) \subseteq B + g(o)$. Therefore, $\langle a \rangle_1 \gamma g(b) \subseteq A \gamma (B + g(o)) \subseteq P \implies a \in P$ or $b \in P$, a contradiction. Hence, condition (iii) is true.

- $\begin{array}{lll} (iii) & \Rightarrow & (i) : \text{ Suppose } (iii). \text{ Take } a,b \in M \text{ such that } a\gamma g(b) \subseteq P. \text{ Write } J = g(b) = \\ \langle b \rangle + g(o). \text{ Now } a\gamma J \subseteq P \Rightarrow a \in (P:\gamma J). \text{ By theorem } 1.6, \ \langle a \rangle_1 \subseteq (P:\gamma J) \Rightarrow \langle a \rangle_1 \gamma J \subseteq P \Rightarrow \\ \langle a \rangle_1 \gamma (\langle b \rangle + g(o)) = \langle a \rangle_1 \gamma g(b) \subseteq \langle a \rangle_1 \gamma J \subseteq P \Rightarrow a \in P \text{ or } b \in P. \text{ Therefore, } (iii) \Rightarrow (i) \text{ is true.} \end{array}$
- (i) \Rightarrow (iv) : Suppose (i). To show $M \setminus P$ is a left $g^1 \gamma$ -system, take $a, b \in M \setminus P \Rightarrow a \notin P, b \notin P \Rightarrow a \gamma g(b) \not\subseteq P \Rightarrow \exists b^1 \in g(b)$ such that $a \gamma b^1 \notin P \Rightarrow a \gamma b^1 \in M \setminus P$. Therefore, $M \setminus P$ is a left $g^1 \gamma$ -system.
- $(i\nu) \Rightarrow (i)$: Suppose $M \setminus P$ is left $g^1 \gamma$ -system. In a contrary way, suppose that P is not a $g^1 \gamma$ -prime ideal. Then there exists $a, b \in M \setminus P$ such that $a\gamma g(b) \subseteq P$. Since $a, b \in M \setminus P$ and $M \setminus P$ is a left $g^1 \gamma$ -system there exists $b^1 \in g(b)$ such that $a\gamma b^1 \in M \setminus P$. Now $a\gamma b^1 \in a\gamma g(b) \subseteq P \Rightarrow a\gamma b^1 \in P$, a contradiction. Hence, P is a $g^1 \gamma$ -prime ideal.
 - 2.8 Note It is easy to verify the following:
 - (i) Let P be a left ideal. Then P is left g^1 -prime if and only if $M \setminus P$ is a left g^1 -system.
- (ii) Let P be an ideal. Then P is left $g^1 = \gamma$ -prime $\Rightarrow M \setminus P$ is left $g^1 = \gamma$ -system $\Rightarrow M \setminus P$ is left g^1 -system $\Rightarrow P$ is left g^1 -prime.
 - (iii) Every g-system may not be left g¹-system.

Example 2.9 — Let $M = \Gamma = Z$, the additive group of integers. Then M is a Γ -ring. Let p, q be two distinct prime numbers. Define $g(x) = \langle \{x, q\} \rangle$ for all $x \in M$. Write $S^* = \{q, q^2, q^3, \ldots\}$. S^* is an m-system. Write $S = \{P\} \cup S^*$. S is a g-system with kernel S^* . But S cannot be a left g^1 -system (because $p, q \in S$ and there is no $q^1 \in g(q)$ and $\gamma \in \Gamma$ such that $p\gamma q^1 \in S$). Hence, S is a g-system which is not a left g^1 -system.

Theorem 2.10 — (i) If there exists $\gamma \in \Gamma$ such that $m \in m\gamma M$ for all $m \in M$ then a left ideal P of M is left g^1 -prime if and only if it is left $g^1 - \gamma$ -prime.

(ii) If there exist $\gamma \in \Gamma$, $d \in M$ such that (γ, d) is a strong right unity then a left ideal P of M is left g^1 -prime if and only if it is left $g^1 - \gamma$ -prime.

PROOF: It is clear that every left $g^1 = \gamma$ -prime left ideal is a left g^1 -prime left ideal. Conversely suppose that P is left g^1 -prime. In a contrary way, suppose that P is not a left g^1 - γ -prime ideal \Rightarrow there exist $m, n \in M \setminus P$ such that $m\gamma g(n) \subseteq P$. Let $m^1 \in M$. Now $m\gamma m^1 \Gamma g(n) \subseteq m\gamma M\Gamma g(n)$ (since g(n) is an ideal) $\subseteq P \Rightarrow m\gamma m^1 \in P$. Therefore, $m \in m\gamma M \subseteq P$, a contradiction. Therefore, P is left $g^1 - \gamma$ -prime. This completes the proof of (i).

(ii) follows from (i).

Theorem 2.11 — Suppose that there exists $\gamma \in \Gamma$ such that $M\gamma M = M$. For an IFP left ideal P the following conditions are equivalent:

(i) P is left g^1 -prime; and (ii) P is left $g^1 - \gamma$ -prime. PROOF: (ii) \Rightarrow (i) is clear.

(i) \Rightarrow (ii). Suppose P is left g^1 -prime. In a contrary way, suppose that P is not left g^1 - γ -prime. Then there exist $m, n \in M \setminus P$ such that $m\gamma g(n) \subseteq P$. Since P is IFP, we have $m\Gamma M\gamma g(n) \subseteq P$. Since g(n) is left ideal we have $m\Gamma M\gamma M\Gamma g(n) \subseteq m\Gamma M\gamma g(n) \subseteq P \Rightarrow m\Gamma M\Gamma g(n) = m\Gamma M\gamma M\Gamma g(n)$ (since $M = M\gamma M$) $\subseteq P$. For any $\beta_1, \beta_2 \in \Gamma$ and $m_1 \in M$ we have that $m\beta_1 m_1 \Gamma g(n) \subseteq P \Rightarrow m\beta_1 m_1 \in P$ (since P is left g^1 -prime). Therefore, $m\Gamma M \subseteq P \Rightarrow m\Gamma g(n) \subseteq P \Rightarrow m \in P$ or $n \in P$, a contradiction. Hence, P is left g^1 - γ -prime.

3. THE LEFT $g^1 - \gamma$ -PRIME RADICAL

Definitions 3.1 — (i) The intersection of all left $g^1 = \gamma$ prime left ideals of M is called the left $g^1 - \gamma$ prime radical of M and it is denoted by $P_{g^1\gamma}(M)$.

(ii) The intersection of all left g^1 -prime left ideals of M is called the left g^1 -prime radical of M and it is denoted by $P_{g^1}(M)$.

Note 3.2. — (i) Since every left g^1 - γ -prime left ideal is a left g^1 -prime left ideal, we have that $P_{g^1}(M) \subseteq P_{g^1\gamma}(M)$, for every $\gamma \in \Gamma$.

- (ii) If there exist $\gamma \in \Gamma$ such that $m \in m\gamma M$ for all $m \in M$, then by using Theorem 2.10 we get that $P_{g^1}(M) = P_{g^1\gamma}(M)$.
- (iii) If there exists $\gamma \in \Gamma$ such that $M\gamma M = M$ and every left g^1 -prime left ideal is IFP then by using Theorem 2.11, we get that $P_{g^1}(M) = P_{g^1}(M)$.

Theorem 3.3 — Let $\gamma \in \Gamma$. Suppose every left ideal of M is a γ -right ideal. Then $P_{g^1\gamma}(M) = \{x \in M \mid \text{every left } g^1 - \gamma\text{-system containing } x \text{ contains } o\}$.

PROOF: Write $B = \{x \in M \mid \text{ every left } g^1 = \gamma \text{ system containing } x \text{ contains } o\}$.

Let $x \in B$. Now we have to show that $x \in P_{g^1 \gamma}(M)$. In a contrary way suppose that $x \notin P_{g^1 \gamma}(M) \Rightarrow$ there exists a left $g^1 = \gamma$ -prime left ideal P in M such that $x \notin P \Rightarrow x \in M \setminus P$. By theorem 2.7, $M \setminus P$ is a left $g^1 = \gamma$ -system. Since $x \in B$ we have that $o \in M \setminus P \Rightarrow o \notin P$, a contradiction (because P is an ideal). Conversly, take $x \in P_{g^1 \gamma}(M)$. Now we show that $x \in B$. In a contrary way, suppose $x \notin B$. Then there exists a left $g^1 = \gamma$ -system X in M such that $x \in X$ and $x \notin X$. Write $x \in X$ are a left ideal of $x \notin X$. Write $x \in X$ are a left ideal of $x \notin X$. Write $x \in X$ are a left ideal of $x \notin X$. Write $x \in X$ are a left ideal of $x \in X$. Write $x \in X$ are a left ideal of $x \in X$. Write $x \in X$ are a left ideal of $x \in X$. Write $x \in X$ are a left ideal of $x \in X$. So by zorn's lemma,

S contains a maximal element, say P. Now we show that P is a left $g^1 = \gamma$ -prime left ideal. In a contrary way, suppose that P is not left $g^1-\gamma$ -prime. Then there exist $m, n \in M \setminus P$ such that $m\gamma g(n) \subseteq P$. By Theorem 1.6 we have $\langle m \rangle_1 \gamma g(n) \subseteq P$. Since $m \notin P$ we have $P + \langle m \rangle_1 \notin S \Rightarrow (P + \langle m \rangle_1) \cap X \neq \emptyset$. Similarly $(P + \langle n \rangle_1) \cap X \neq \emptyset$. Take $m^1 \in (P + \langle m \rangle_1) \cap X$ and $n^1 \in (P + \langle n \rangle) \cap X$. Now $m^1, n^1 \in X \Rightarrow \exists n^* \in g(n^1) \Rightarrow m^1 \gamma n^* \in X$. Now $m^1 \gamma n^* \in m^1 \gamma g(n^1) \subseteq m^1 \gamma (P + g(n))$ (by note 1.6) $\subseteq (P + \langle m \rangle_1) \gamma (P + g(n)) \subseteq P \gamma P + P \gamma g(n) + \langle m \rangle_1 \gamma P + \langle m \rangle_1 \gamma g(n) \subseteq P \gamma P + P \gamma g(n)$. Therefore $m^1 \gamma n^* \in P \cap X = \emptyset$, a contradiction. This shows that P is left $g^1 = \gamma$ -prime. Now $x \in X$ and $P \cap X = \emptyset \Rightarrow x \notin P \Rightarrow x \notin P_{g^1 \gamma}(M)$. This completes the proof.

ACKNOWLEDGEMENT

The first author thanks the UGC, New Delhi for providing financial support under the grant No. F 8-10/93 (SR-I).

REFERENCES

- 1. W. E. Barnes, Pacific J. Math. 18 (1966) 411-22.
- 2. G. L. Booth, A contribution to the Radical Theory of Gamma Rings, *Ph.D. Dissertation*, University of Stellenbosch, South Africa, 1985.
- 3. D. F. Hsu, Math. Japonicae 21 (1976) 455-60.
- 4. N. Nobusawa. Osaka J. Math. 1 (1964) 81-89.
- 5. Bhavanari Satyanarayana, Proc. Japan Acad. 59A (1983) 382-83.