REMARKS ON HERMAN RINGS OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS

ZHENG JIAN-HUA

Department of Mathematical Sciences, Tsing Hua University, Beijing, P.R. China

(Received 15 September 1999; accepted 23 March 2000)

It is proved that a meromorphic function of finite type only has a finite number of Herman rings, and we construct a meromorphic function which has an infinite number of Herman rings.

Key Words: Herman Rings; Transcendental Meromorphic Functions

1. INTRODUCTION AND RESULTS

Let $f: C \mapsto \hat{C}$ be a transcendental meromorphic function, and f^n , $n \in N$, denote the *n*th iterate of f. Then $f^n(z)$ is defined for all $z \in C$ except possibly for a countable set of the poles of $f, f^2, ..., f^{n-1}$. Define Fatou set of f by

 $F(f) = \{z \in C; \{f^n\} \text{ is defined and normal in some neighbourhood of } z\}$

and Julia set of f by $J(f) = \hat{C} \setminus F(f)$. It is well known that F(f) is open and completly invariant under f, i.e., $z \in F(f)$ if and only if $f(z) \in F(f)$. Let U be a component of F(f), then $f^n(U) \subseteq U_n$, where U_n is a component of F(f). If for a smallest integer p > 0, $U_p = U$, then U is said to be a periodic component of period p, and if, in addition, U is an annulus, then U is said to be a Herman ring and $\{U_0, U_1, ..., U_{p-1}\}$ $\{U_0 = U\}$ a cycle of Herman rings.

A point z_0 is called periodical for some n > 0, $f^n(z_0) = z_0$. In this case, the smallest n with this property is called the period of z_0 . A periodic point z_0 of period n is called attracting, indifferent, or repelling according as $|(f^n)'(z_0)|$ is less than, equal to, or greater than 1. For an indifferent periodic point z_0 of period n, we have $(f^n)'(z_0) = e^{2\pi\alpha i}$, $0 \le \alpha < 1$. When α is irrational, z_0 is irrationally indifferent and furthermore, z_0 is a Siegel point if $z_0 \in F(f)$ or a Cremer point if $z_0 \in J(f)$. And when α satisfies the diophantine condition of Siegel type, z_0 must be a Siegel point and f has a cycle of Siegel disks one of which contains z_0 .

Denote by sing (f^{-1}) the set of singularities of the inverse function of f, that is, the set of critical and asymptotic values and limit points of these values. A meromorphic function is said to be of finite type if using $f^{-1} < \infty$.

It is well known that an entire function has no Herman rings and a rational function may has Herman rings, but at most a finite number. In this note, we discuss the existence and number of Herman rings of a transcendental meromorphic function. The work was stimulated from the discussion in Zheng⁵ on uniform perfectness of Julia set of a transcendental meromorphic function of finite type. By the methods of quasiconformal deformation of Sullivan (cf. [1]) and of Eremenko and Lyubich³, we prove the following.

Theorem 1 — Let f be a meromorphic function of finite type. Then f has only a finite number of Herman rings.

Theorem 1 may not be true for a meromorphic function not being of finite type, and a transcendental meromorphic function may have Herman rings. By the method of quasiconformal surgery of Shishikura⁴, we prove the following.

Theorem 2 — There exists a transcendental meromorphic function which has an infinite number of Herman rings.

2. PROOF OF THEOREMS

Proof of Theorem 1 — We take m annuli $U_1, U_2, ..., U_m$ from distinct cycles of Herman rings of f. For each j, U_j is conformally equivalent to the round annulus $\{1 < |\zeta| < r_j\}$. Define the function μ_{t_j} on U_j which in ζ -coordinate is given by $v_j := t_j \zeta^2 / |\zeta|^2$, $0 < t_j < 1$. Since the ellipse field corresponding to v_j is invariant under the rotation, we have

$$\mu_{t_j}(z) = \mu_{t_j}(f(z)) \frac{\overline{f'(z)}}{f'(z)}, \text{ on } U_j.$$
 ... (1)

The solution of Beltrami equation to coefficient μ_{t_j} increases the modulus of the annulus U_i , for by calculation, the solution to v_i does so.

For $t \in T := \{t = (t_1 t_2, ..., t_m) \mid t \in \mathbb{R}^m : 0 < t_j < 1, 1 \le j \le m\}$, define the Beltrami coefficient $\mu_t = \mu_{t_j}$ on U_j . Extend μ_t to the inverse iterates of U_j 's under f and $\mu_t = 0$ elsewhere, so that it satisfies (1). It is obvious that $\|\mu_t\|_{\infty} < 1$.

Put
$$W := sing f^{-1} V\{\infty\} = \{a_1, a_2, ..., a_q, \infty\}, q := sing f^{-1}$$
. Then $f: C \setminus f^{-1}(W) \to C \setminus W$

is an unbranched covering map. Choose two distinct $b_1, b_2 \notin f^{-1}(W)$, and $a_{q+1} = f(b_1), a_{q+2} = f(b_2)$. Let ϕ_t be the quasiconformal mapping corresponding to μ_t which fixes b_1, b_2 and ∞ . Then $f_t := \phi_t \circ f \circ \phi_t^{-1}$ is a transcendental meromorphic function and ϕ_t is continuous in t. $\phi_t(U_j)$ is for f_t a Herman ring whose modulus is a strictly increasing function of t_j , and hence for $t \neq \tau, t, \tau \in T, f_t \neq f_{\tau}$

Suppose that m > 2q + 4. Then there exists a non-constant arc γ : $t = t(\sigma)$, $\sigma \in I = [0, 1]$, in T on which $\phi_{t(\sigma)}(a_j) = \phi_{t(0)}(a_j)$ on I. To simplify the notation, below we write $\phi_{\sigma} = \phi_{t}(\sigma)$,

 $f_{\sigma} = f_{l(\sigma)}$. Therefore, $\phi_{\sigma}(a_j) = \phi_0(a_j)$, for $0 \le \sigma \le 1$, $1 \le j \le q+2$. By the Covering Homotopy Theorem there exists a continuous family of homeomorphisms $h_{\sigma}: C f^{-1}(W) \to C \phi_1 \circ f^{-1}(W)$ such that $h_1 = \phi_1$ and we have the commuting diagram

$$\begin{array}{cccc} & \phi_{\sigma} \circ f \\ C \setminus f^{-1}(W) & \longrightarrow & C \setminus \phi_{\sigma}(W) \\ h_{\sigma} & \downarrow & & \downarrow & \mathrm{id} \end{array}$$

$$C \setminus \phi_1 \circ f^{-1}(W) \xrightarrow{f_1} C \setminus \phi_1(W)$$

that is, $\phi_{\sigma} \circ f = f_1 \circ h_{\sigma}$, $0 \le \sigma \le 1$. Extend h_{σ} a homeomorphism from \hat{C} onto \hat{C} . The functions $h_{\sigma}(b_i)$, i = 1, 2, are continuous in σ . Since

$$f_1 \circ h_{\sigma}(b_i) = \phi_{\sigma} \circ f(b_i) = \phi_{\sigma}(a_{q+i}) = \phi_0(a_{q+i}), (i = 1, 2),$$

 $h_{\sigma}(b_i)$ take a discrete set of values. Hence noting $h_1 = \phi_1$, $h_{\sigma}(b_i) = b_i$, (i = 1, 2). Putting $\sigma = 0$ we obtain $f_0 \circ \phi_0 = \phi_0 \circ f = f_1 \circ h_0$, thus $f_0 = f_1 \circ (h_0 \circ \phi_0^{-1})$. The homeomorphism $h_0 \circ \phi_0^{-1} : C \to C$ is conformal outside a discrete set and has two fixed points b_1 , b_2 . Therefore, $h_0 \circ \phi_0^{-1} = \text{id}$ and $f_0 = f_1$. Thus we have derived a contradiction, and so $m \le 2q + 4$.

Theorem 1 follows.

In order to prove Theorem 2, we need the following result, which is a special version of Main Lemma in [2].

Lemma — Let $\{a_j\}$ be a sequence of complex numbers and such that $a_j \to \infty$, as $j \to \infty$ and let λ be a constant. Then there exists an entire function f such that

$$f(a_i) = a_i, f'(a_i) = \lambda, j \in N.$$

From Lemma, we can immediately deduce the following

Theorem 3 — Given a sequence $\{e^{2\pi i\alpha_j}\}$ of complex numbers such that for j, α_j satisfies the diophantine condition of Siegel type and a sequence $\{p_j\}$ of positive integers, there exists an entire function f which has cycles of Siegel disks of period p_j with rotation numbers $e^{2\pi i\alpha_j}$, j=1,2,...

PROOF OF THEOREM 2 — Put

$$P(z) := e^{-2\pi\alpha i} z + z^2, 0 < \alpha < 1,$$

where α is given and satisfies the diophantine condition of Siegel type. Therefore P(z) has a Siegel disk containing 0. We take a sequence $\{a_j\}$ of complex numbers such that $a_j \to \infty$, as $j \to \infty$. Set $P_j(z) := P(z - a_j) + a_j$, and then for each j, $P_j(z)$ has a Siegel disk U_j containing a_j and with the rotation number $e^{-2\pi\alpha i}$. We can take a_j , j = 1, 2, ... such that for $i \neq j$, $U_i \cap U_j = 0$. For each j, U_j is conformally equivalent to the disk $\{|\zeta| < 2\}$ by conformal map h_j , and

$$h_j(a_j) = 0, \ h_j \circ P_j \circ h_j^{-1}(\zeta) = e^{-2\pi\alpha i} \zeta, |\zeta| < 2.$$

Set

$$\varphi_i := 1/h_i$$

Then

$$\varphi_{j}(a_{j}) = \infty, \ \varphi_{j} \circ P_{j} \circ \varphi_{j}^{-1}(\zeta) = e^{2\pi\alpha i} \zeta, \frac{1}{2} < |\zeta|.$$
 ... (2)

Extend φ_j such that it maps conformally $C \setminus U_j$ onto $\left\{ \mid \zeta \mid < \frac{1}{2} \right\}$ and $\varphi_j(\infty) = 0$.

It follows from Lemma that there exists an entire function f such that

$$f(a_j) = a_j, f'(a_j) = \lambda = e^{2\pi \alpha i}.$$

Then each a_j is a Siegel fixed point of f, and f has the Siegel disks V_j containing a_j and with the rotation number λ . It is clear that for $i \neq j$, $V_i \cap V_j = 0$. Since any polynomial has at most finitely many fixed points, f is transcendental. For each f, f is conformally equivalent to the disk f is conformal map f, and

$$\psi_i \circ f \circ \psi_i^{-1}(\zeta) = e^{2\pi\alpha i} \zeta, |\zeta| < 2. \tag{3}$$

Extend ψ_j such that it maps coformally $C \setminus V_j$ onto $2 < |\zeta|$ and $\psi_j(\infty) = \infty$. We draw in V_j a closed Jordan curve $\widetilde{\gamma}_j := \psi_j^{-1} (|\zeta| = 1)$ and in U_j a closed Jordan curve $\widetilde{\gamma}_j := \varphi_j^{-1} (|\zeta| = 1)$. Modify $\varphi_j^{-1} \circ \psi_j$ to obtain a quasiconformal map $\widetilde{\psi}_j : \widehat{C} \to \widehat{C}$ such that $\widetilde{\psi}_j |_{\gamma_j} = \varphi_j^{-1} \circ \psi_j |_{\gamma_j}$ and $\widetilde{\psi}_j = \varphi_j^{-1} \circ \psi_j$ in some neighbourhood of $\widehat{C} \setminus (V_j \cap \psi_j^{-1} \circ \varphi_j(U_j))$.

Define

$$g := \begin{cases} f, & \text{in } C \setminus \bigcup \text{ int } \gamma_j, \\ \widetilde{\psi}_j^{-1} \circ P_j \circ \widetilde{\psi}_j, & \text{in int } \gamma_j, j = 1, 2, \dots. \end{cases}$$

Then it follows from (2) and (3) that g is well defined in C. Let E be the ellipse field which is circles in $C \setminus \bigcup_{j=1}^{\infty} \inf \gamma_j$ and which is mapped to circles by $\widetilde{\psi}_j$ in int γ_j . It is clear that E is invariant under g and has the dilatation $\|\mu\|_{\infty} < 1$. Then there exists a quasiconformal map φ which fixes 0, 1 and ∞ such that $f = \varphi^{-1} \circ g \circ \varphi$ is a transcendental meromorphic function. Put $W_j := \varphi^{-1} (V_j \setminus \overline{\inf \gamma_j})$. Then $f(W_j) = W_j$, and W_j is contained in a Siegel disk or Herman ring of f.

Since \mathcal{T} has a superattracting fixed point $b_j := \varphi^{-1}(a_j)$ in $\varphi^{-1}(\operatorname{int} \gamma_j)$, W_j must be contained in a Herman ring. Thus \mathcal{T} has an infinite number of Herman rings.

Theorem 2 follows.

REFERENCES

- 1. A. Douady, Disques de Siegel et anneaux de Herman, Seminaire Bourbaki, Volume 1986-87, expose no. 677, Asterisque, 152-153, 1987, 151-72.
- 2. A. E. Eremenko and M. Yu Lyubich. J. London math. Soc. 36(2) (1987), 458-68.
- 3. A. E. Eremenko and M. Yu. Lyubich, *Iteration of Entire Functions*, preprint 6, *Physicotechnical Institute for Low Temperatures*, *Ukr. SSR Academy of Sciences*, *Kharkov*, 1984 (Russian).
- 4. M. Shishikura, Ann. Sci. Ecole Norm. Sup., 20 (1987) 1-29.
- 5. J. H. Zheng, Bull. London Math. Soc. 32 (2000).