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It is proved that a meromorphic function of finite type only has a finite number of Herman rings, and we
construct a meromorphic function which has an infinite number of Herman rings.
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I. INTRODUCTION AND RESULTS

Let f:CrH ¢ be a transcendental meromorphic function, and f", n € N, denote the nth iterate of f.
Then f"(z) is defined for all ze C except possibly for a countable set of the poles of
£f% ... f"" 1. Define Fatou set of f by

F(f) = {ze C; {f"} is defined and normal in some neighbourhood of z}

and Julia set of f by J(f) = 6‘\F(f). It is well known that F(f) is open and completly invariant
under f, ie., ze F() if and only if fz)e F(f). Let U be a component of F(f), then f"(U)cU
where U, is a component of F(f). If for a smallest integer p > 0, U U, then U is said to be a
periodic component of penod p, and if, in “addition, U is an annulus, then U is said to be a Herman
ring and {U,, U, ..., l} (JJO U) a cycle of Herman rings.

A point z; is called penpdxc.,if for some n > 0, f"(z;) =z, In this case, the smallest n
with this property is called the period of zo- A periodic point zy of period n is called attracting,
indifferent, or repelling according as | (f")" (z5) ! is less than, equal to, or greater than 1. For an
indifferent periodic point z; of period n, we have (f")’ (z0)=e2”‘? [0<a<1. When « is irrational,
z, is irrationally indifferent and furthermore, z; is a Siegel point if 2y € F(f) or a Cremer point if
zy € J(f)- And when « satisfies the diophantine condition of Siegel type, z, must be a Siegel point
and f has a cycle of Siegel disks one of which contains z,.

Denote by sing (f~1) the set of singularities of the inverse function of f, that is, the set of

critical and asymptotic values and limit points of these values. A meromorphic function is said to
be of finite type if using f~1<eo,
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It is well known that an entire function has no Herman rings and a rational function may
has Herman rings, but at most a finite number. In this notg, we discuss the existence and number
of Herman rings of a transcendental meromorphic function. The work was stimulated from the
discussion in Zheng? on uniform perfectness of Julia set of a transcendental meromorphic function
of finite type. By the methods of quasiconformal deformation of Sullivan (cf. [1]) and of Eremenko
and Lyubich3, we prove the following.

Theorem 1 — Let f be a meromorphic function of finite type. Then f has only a finite
number of Herman rings.

Theorem 1 may not be true for a meromorphic function not being of finite type, and a
transcendental meromorphic function may have Herman rings. By the method of quasiconformal
surgery of Shishikura?, we prove the following.

Theorem 2 — There exists a transcendental meromorphic function which has an infinite
number of Herman rings.

2. PROOF OF THEOREMS

Proof of Theorem 1 — We take m annuli U}, U,, ..., U, from distinct cycles of Herman rings of
f. For each j, Uj is conformally equivalent to the round annulus {1<|{l< rj}. Define the function

#, on U; which in {-coordinate is given by V=1 {2/ICI2, 0<r;<1. Since the ellipse field
I

corresponding to v; is invariant under the rotation, we have

iy @ =1 AN on U ()

The solution of Beltrami equation to coefficient y, increases the modulus of the annulus
i

Uj, for by calculation, the solution to Vi does so.

For te T = {t=(t)tp ..., 1) t€ R™: 0<tj< 1, 1 £j<m}, define the Beltrami coefficient

M, =, on Uj. Extend y, to the inverse iterates of Uj’s under f and 4, = O elsewhere, so that it
J

satisfies (1). It is obvious that Il y Il <1.
Put W : = sing f"] V{eo} = {a1,a2,...,aq, %}, q:= singf_l. Then
fiC\F ' W —>C\W
is an unbranched covering map. Choose two distinct b, b, & f—] (W), and ag 1= fiby), a9

= fib,). Let be the quasiconformal mapping corresponding to i, which fixes b, b, and . Then
2 t t 172

-1, . . . . . .
fi=¢,°f°¢, is a transcendental meromorphic function and ¢, is continuous in r. q)t(Uj) is for
f; 2 Herman ring whose modulus is a strictly increasing function of 2 and hence for
t¢1,1, 7€ T,f,#f,

Suppose that m > 2g + 4. Then there exists a non-constant arc y:t=1#(0), o€ I=[0, 1], in
T on which ¢ 1o) (aj) = ¢,(0) (aj) on I. To simplify the notation, below we write ¢  =¢ (0),
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fo=Fxor Therefore, ¢, (aj) =@ (a), for 0<o<1,1<j<gq+2. By the Covering Homotopy Theorem

there exists a continuous family of homeomorphisms hy:C f‘1 W)->C ¢,° f"1 (W) such that

h,=¢, and we have the commuting diagram

9, °f
C\Ff'w) > Cro,W
ha 'L d id

/,
Ch\gof W = Cro, W

that is, @ °f=f°h,0<0o<1. Extend h o @ homeomorphism from ¢ onto C. The functions

hg(b), i =1, 2, are continuous in 0. Since

fiohg(®)=95° fb)=95(a,, ) =0y, ) (i =1, 2),

hg (b;) take a discrete set of values. Hence noting A, =¢;, hy(b)=b, (i =1, 2). Putting 0 = 0 we
obtain fy° @y =@y°f=f| °hy, thus fy=f °(hy° ¢5 1). The homeomorphism A ° ¢5 ! :C—C is con-

formal outside a discrete set and has two fixed points b, b,. Therefore, hooqbal = id and f,=f).
Thus we have derived a contradiction, and so m <2q+4.
Theorem 1 follows.

In order to prove Theorem 2, we need the following result, which is a special version of
Main Lemma in [2].

Lemma — Let {aj} be a sequence of complex numbers and such that a;— e, as J — 0 and
let A be a constant. Then there exists an entire function f such that

ﬂaj) = ajsf’ (aj) =Aje N

From Lemma, we can immediately deduce the following

Theorem 3 — Given a sequence [e2™%) of complex numbers such that for j, a; satisfies
the diophantine condition of Siegel type and a sequence {pj/ of positive integers, there exists an
entire function f which has cycles of Siegel disks of period p; with rotation numbers e2™%; j =
1, 2, ..

PROOF OF THEOREM 2 — Put

Piz):=e 2™ 42 0<a<,

where o is given and satisfies the diophantine condition of Siegel type. Therefore P(z) has a Siegel
disk containing 0. We take a sequence {aj} of complex numbers such that a;— e, as Jj — 2. Set

Pj(z) = P(z—aj)+aj, and then for each j, Pj(z) has a Siegel disk Uj containing a; and with the

rotation number ¢ 2™, We can take aj,j = 1, 2, .. such that for i#j, UM Uj=0. For each j,
Uj is conformally equivalent to the disk {I {I<2} by conformal map hj, and
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_ oP ot~ i —2mai
h(a)=0, hj°P;°h; D=e Gidl<2.

Set
¢; = l/hj.

Then
~1 |
@ (@) ==, ¢;°P;° ¢, (Q=e2""“g,5<|gt. )

Extend ? such that it maps conformally C\ Uj onto {IC |<é—} and ¢ ](oo)=0.
It follows from Lemma that there exists an entire function f such that
— ’ _1_ 2rnai
f(aj)-aj,f (aj)—l—e )

Then each a; is a Siegel fixed point of f, and f has the Siegel disks VJ containing a; and

with the rotation number A. It is clear that for i#j, V.M Vj=0. Since any polynomial has at most
finitely many fixed points, f is transcendental. For each j, Vj is conformally equivalent to the disk
{I {1<2} by conformal map ¥, and

ooy (=" g1g1<, . (3)

Extend Y such that it maps coformally C\ VJ onto 2<!{! and l//j(oo)=°°. We draw in Vj
a closed Jordan curve ¥, := W;l (1¢1=1) and in U; a closed Jordan curve 7j:= (p;l (1 {1=1). Modify
1o 1 i v.: Y1 o lo V.= o I,
¢ cy; to obtain a quasiconformal map wjé — C such that \//jl}} =@ ‘I’j')} and V=9, °y
in some neighbourhood of e\ (Vj N ‘I’J_ o ; (Uj)).
Define

oo

£ in C\Q) intYy,
— J
g' | le

Y, Py, ininty,j=12, ...

Then it follows from (2) and (3) that g is well defined in C. Let E be the ellipse field

which is circles in C\ ) int ¥ and which is mapped to circles by i}{’ in int ¥ It is clear that
j=1

E is invariant under g and has the dilatation Il 1l < 1. Then there exists a quasiconformal map ¢

which fixes 0, 1 and s such that f=¢ logeo¢ is a transcendental meromorphic function. Put

Wj:=(p‘I (Vj\mtyj ). Then f'(Wj)=Wj, and W; is contained in a Siegel disk or Herman ring of f.
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Since f has a superattracting fixed point bj =@~ (aj) in @=1 (int )/j), WJ must be contained in a

Herman ring. Thus f has an infinite number of Herman rings.
Theorem 2 follows.
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