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In this paper, oscillation criteria are established for impulsive neutral differential equations with positive and
negative coefficients. Some interesting examples are given, which illustrate that impulses play an important role
in giving rise to the oscillation of equations.
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1. INTRODUCTION

The impulsive delay differential equations are adequate mathematical model of numerous processes
and phenomena studied in physics, biology, engineering, etc. In recent years, there is increasing
interest on the oscillatory and nonoscillatory properties of this class of equations (see for example,
[1-7]), and many results are obtained. However, to the best of our knowledge, there is little in the
way of results for the oscillation of impulsive delay differential equations of neutral types.

In this paper, we consider the oscillation of all solutions of impulsive neutral delay differential
equations with positive and negative coefficients of the form

[x(r) = R(O)x(t = ] + P(1) x(t = 1) - Q(1) x(r = 0) =0, 1 2 1,,,

x(() =1, (x(8), k= 1,2, ... -~ (L)

Our aim is to establish sufficient conditions for the oscillation of all solutions of (1.1). Some
example are also given which show that the oscillation of all solutions of (1.1) can be caused by
the impulsive perturbations thodgh the corresponding equation without impulses admits a
nonoscillatory solution.

The following assumptions will be used throughout this paper, without further mention.

A) r>0, 72020 and 0<ty<t;<...<f <ty | > as k— oo

(A)) P,Q,Re PC([ty, <), R");
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Ht) =P -0@-71+0)20
and

Hn# 0 on (5_,, 5] (k21),

where R* = [0, =), PC ([1g: =), R+) = {f: [ty ) = R*: i) is continuous for lgSt<t,y<t<t  , and
,_” + ) = f(tk) exists (k = 1, )

(A3) I, (x) is continuous and there exist positive numbers b}, b, such that by SL(x)/x<b,
for x#0 and k =1, 2, ... .

With (1.1) one associates an initial condition of the form

x’o: &(s), s € [- p, 0], p= max {r, 7}, .. (L2)

where x, =x(ty+s) for ~p<s<0 and ¢e PC([-p,0LR) = (¢:[-p,0] > R:¢ is continuous
0
everywhere except at the finite number of points 5 and ¢() and ¢(7) = lim - ¢s) with
5%
(s ) =)}

A function x(¢) is said to be a solution of equation (1.1) satisfying the initial value condition
(1.2) if

(1) x(t)=r—1,) for 15— p<t<t, x(r) is continuous for rzry and t#1 (k= 1,2, ..);

(1)  x() - R(#) x(t - r) is continuously differentiale for

1>t t# 25 Atz + L tEn+0, k=1, 2, .. and satisfies (1.1);

(iii) x(tZ) and x(f;) exist with x(f;) =x(;) and satisfy (1.1).
Using the method of steps as in the case without impulses, one can show the global existence
and uniqueness of the solution of the initial value problem (1.1) and (1.2).

As is costumary, a solution of (1.1) is said to be nonoscillatory of it is eventually positive
or eventually negative. Otherwise, it will be called oscillatory.

2. LEMMAS
In the following, we let
O<p<R()+ J O(s)ds<1. .. 2.1
1-T+ 0
t
W) =xO-ROxt-n- | Q) x(s - o)ds. . 22)

t1-T+0
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Lemma 2.1 — Assume that by=1,b,<1 and
R(E)2R(t), for ke E, = (k21:t,—r#t,i<k) - (23)
B, R(1) 2 R(1), for ke Ey = (k21:1,—r=1,i<k) - (24)

where Bk=b7 when #, —r = t;(i<k). Let x(f) be a solution of (l.1) such that x(r-p)>0 for
t21t,. Then z(r) > O for 121, and z(rZ)Sbkz(tk) for k =1, 2, ...

PROOF : By (1.1) and (2.2), we get

Z@O=-HOx(r-1<0. t,<t<1, 1, k20. .. (2.5)

From (2.2), we have

!

k
D) =x) ~RE 6 - - | Q6)x(s - o) ds. .. (26)

tk—’l'+0'

If ke Elk’ then

2 = Ik () - RED) xt =N - | Qs)x(s - o)ds

k-1T+0

!

S x(t) - R(t) x(ty, - r) - J Q(s)x(s — o)ds

tk—T+O'

= z(tk).
If ke Ezk’ then

t

)
() = L(xt)) - RED L, st =)~ | Q) x(s - 0) ds

Ik-T+O'

t

k
<bu(t) -RED B! x(t,-n- | Qs)x(s - o)ds

tk—‘t+0'

!

k
<x(t)-REVBx(-N- | Qex(s - 0)ds

Ik-T+O'

SA1y).
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Since E, \JE,, = {I, 2, ..}. So we have

) <), k=1,2 ...

Thus, z(r) is nonincreasing on [f, ).

We first claim that z(1,) 20 for k2 1. Otherwise, suppose that there exists some m 21 such
that z(z,)=- {1 <0. Then z(f) <-p<0 for r21¢, . Therefore, from (2.2), we have

t
X <-p+ROXE-N+ | QeWs—o)ds, 121, X
- T+ 0

We consider two possible cases:
) oo

Case 1 — limsup x(f)=eo. Then there exists a sequence of points {sn} such that
=300 n=1
S, 21, +p,x(s,) = as n— e and x(s,) =max{x(r) : t, <t<s,}. From (2.7) and (2.1), we obtain

x(s,) S=p+R(s,) x(s, —r) + J. O(s)x(s — 0)ds
Sn -7+ 0

s

<—p+| R+ | Qwds |xs,)

s, —T+0
S"',U"I‘X(Sn),
which is a contradiction.
Case 11 — limsup x(f)=[<e. Choose a sequence of points {sn} | such that x(s,) —{
t— oo n=

as n—eo and x(§) = max {x(s):s,-p<s<s,-6}, where § = min {r,c}. Then &, —> o as

n—eo and limsup x(& )</l Thus, we have
{— oo

xs)S-p+|Rep+ | Qs |x@,)

s -T+0
n

<—u+x(€,)

Taking the superior limit as n — e we get /<—pu+1, which is also a contradiction.

Combining the cases I and II we see that z(z,) 20 (k> 1). From (2.5), (1) 2 0.
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To prove z() > 0 for 121, we first prove that z(z,) >0 (k2>0). If it is not true, then there
exists some m 20 such that z(r, ) =0. Thus, from (2.5), we have

t

m+1

2, )= z(t;l) - J H(s)x(s — ©)ds
t

m

tm+l

<at)- | Hsx(s-ds<0.

t

m

This contradiction shows that z(z) >0 (k 20). Therefore, from (2.5), z(r) 2z(t,,,)>0 for
te (4,11 (k20).

Finally, since b, <1, if ke E, then R(p) 2 R(1) 2 by R(1;). Thus, from (2.6), we have

b

Z(’Z) =1(x(1)) - R(f,t) x(t,-r)- J Q(s)x(s — 0)ds

tk—1'+0'

’k
< bk x(t) = by R )x(t,~r) —x(t,—r) - b, J 0(s)x(s - o)ds

tk— T+0

If ke E,,, then R(tf) b, 2 R(t,) 2 b, R(}). Thus

t

k
26 = L&) -RED Lx=r) = | Q(s)x(s - oyds

lk-—T+0'

!

k
<b x(t) - RED B x(, - =b, | Qs)x(s - o)ds

tk—T+O'

<b, (1)

Therefore, z(ff) <byz(r,) for k = 1, 2, ... The proof is complete.

Lemma 2.2 — Let all the assumptions of Lemma 2.1 hold with ¢>0. Let 6 = min {r, 0},
m = min {k21:7,>1,+ 7} and assume that (I.1) has a solution x(¢) such that x(r—p)>0 for

121, Then the second order impulsive differential inequality
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Y ®+p VHOPY Y8y <0, 1215+
Y(ED = y(8,), k=m,m+1, ... . (2.8)
Y () by (1), k=m,m+1, ...

has a solution y(f) such that y() > 0 and y’' (')>0 for t>1,+ 1, where y’ (r")=y’(f) when 1#1.

PRbOF : By Lemma 2.1, we have z(f) > O for t2¢, and (2.5) holds. Set M = min

{x(t):t,—p<t<1t,}, then M > 0. From the proof of Lemma 2.1, we know that z(z) is nonincreasing.
0 0 g
Thus

t+p

z(t)Z% J Z(s)ds, t 2 1. .. 29
t

Since 6> 0, for t€ [, 1,+ 6], we have

'
x(O=z()+ROx(-r)+ J Q(s)x(s — 0)ds

t-T+0

!
>z +M| R(@t) + _[ QO(s)ds

t—-1T+0

| t+p
22— j z(s)ds + pM.
P

Similarly, for t€ [t)+ 6, t,+26], we have

1+p t-r+p
x(®) 2 —;5 J z2(s)ds + R(¥) -:; j «s)ds + pM

t t—r

t 1s—a+p
s | e L [ cwduspm |ds
1~-T+0 p s—-0
t+p ! 1 !
Zl J 2(s)ds +| R(t) + J‘ O(s)ds |— J z(s) ds + p2M
P t t-1+0 pt—6
t+p
>L2 J z(s)ds +p2M.
p t-08

By induction, for re [t,+né, 15+ (n+ 1)8], we obtain
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n TP
x(t)Zﬂ j z(s)ds+p"+IM, n=1,2, ...
t-né

Thus, for te (75, =), we have

t+p
x() 2+ pl= 03 | wsyds+pt-0/8+1
p t,+6

Therefore, for t> Int+7

t-T+p
x(t-1) 2-1—,;(’“’"0)/5 J z(s)ds+p(""’o)/5+ 'y
P ro+6

Since 1,20 and p> 17, we have

t
M-z pl- /8 J As)ds +pt~ e+ 1y .. (2.10)
P to+5

Substituting (2.10) into (2.5) leads to

!
2 +Hopt~ 9| L J- 2s)ds +pM |<0, 1210+,
19+ 6

Let

—

2(s)ds + pM.

to+5

_1
y(1) = P

Then y(tf) = y(t,), ¥’ (rk*)zp‘I z(tI)Sp“bkz(tk)=bky’(tk) for k = m, m + 1, ... Thus
y() >0,y (tH) >0 for t>15+ 7 and y(r) satisfies (2.8). The proof is complete.

Lemma 2.3 — Let all the assumptions of Lemma 2.1 hold with p = 1. Assume that (1.1)
has a solution x(#) such that x(r - p) >0 for 121, Then there exists some 7>, such that the second

order impulsive differential inequality

y'®O+p ! H@y() <0, 12T+ 1121,
YD) =¥(t), k=m,m+1, ... e (2.11)
Y(E)Sb Y (1), k=m,m+1, ...

has a solution y(r) such that y(r) > 0 and y'(')>0 for ¢+ > T, where m = min {k2>1 5, >T+71)

and Y'(r") =y'(¢) when t# Y
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PROOF : By Lemma 2.1, we have z(r) > 0 for 727, and (2.5) holds. Set M = 2-1
min {x(1) 11y~ p<t<ty}, then M > 0 and x(r) > M for tp—p<St<t; We claim that

xX(t)>M, te (1,1,]. - (212)

If (2.12) does not hold, then there exists a t* € (tg» t;] such that x(¢*) =M and x(r) > M for
to—p£1<t*. From (2.2), we have

*

t
M=)+ R X -+ | Q@)x(s - o)ds
f-t+0
[‘
S|ReY+ [ owds [M=m,

*
t -T+0

which is a contradiction and so (2.12) holds. Noting that z(tT)Zz(t2)>0, we have

t
i) =xthy +ReD xeF =+ [ 0(s) x(s - o)ds

HhH—-1T+0

h
SRt -n+ [ Qs - o)ds.

h-1T+0

Ifle Elk' then

t

1
> Rep+ | owds M=Mm.

tl—-‘f+0'

Ifle E,. then

1
(i) > ReD Bixi-n+ | Qs)x(s - o)ds

Hh—-T+0

!

>l Re)+ | Qs [M=M.
1, -1+0
Therefore, x(rf) > M. Repeating the above asrgument, by induction, we obtain

x(1) > M, 121,-p,

Xf)>M k=12, ..
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Because z(f) > O and z(f) is nonincreasing, we can let lim z(f) =a. There is two possible
1t — oo

cases:
Case 1 — a = 0. There exists a T, >1, such that z(t) <M/2 for +2T,. Then for any

T>T,, we have

1+p

}l)- 2s)ds <M< x(r),te [5,7+p].

~] e +

Case I — a > 0. Then z(f)2a for 121, From (2.2), we get

t
x2a+ROxt-N+ | Qx(s-oyds2a+M, 121,
1-T+0

By induction, it is easy to see that x(f) 2na+M for 121,+ (n~1)p, and so lim x(z) = e,

1> oo
which implies that there exists a T>T, such that

t+p
1 f 2(s)ds £2z(T) < x(n), te [T, T+ p].
p T
Combining the cases I and II we see that
t+p
x(t)>-})— J z2(s)ds, te [T, T+p).

T

Let / = min {k20:7,>T+p}, we claim that

1+p
x(t)>% [ «syds, re T+p,1]. L (2.13)
T

Otherwise, there exists a r* € (T+p,#] such that

1 t‘+p t+p
Xty == j z(s)ds; Jc(z‘)>l J 2(s)ds for te (T+p,1).
p T P T

Then, from (2.2) and (2.9), we have

f+p ¢
% f 2(s)ds = z(f") + R x(t" = 1) + j Q(s)x(s — 0)ds
T f-1+0
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[l‘+p t. ’t
>;1)- J z2(s)ds +| R(") + J. QO(s)ds % I Z(s)ds
¢ f-1+0 T
: f+p
= — ds.
P JT' z(s)ds

This is a contradiction and so (2.13) holds. Thus if /e E|,, we have

t

!
x(tf) = z(tf) + R(f;) x(t;' -+ j O(s)x(s — 0)ds
L,-T+0

!

!
> xh+Re) x-n+ | Qs - o)ds

tI—T+O'
1ll+p f | 2
>+ wds+| Rey+ | 0wds |~ | wsds
p t {—-T+0O p T

! ]

L+p
J. z(s)ds.
T

o =

Similarly, when /€ E,,, we have also

L+p

x(£)) > 1 f z(s)ds.
P T

Repeating the above procedure, by induction, we can see that
t+p
1
x>~ | «sds, 12T,
p T
Thus, for r> T+ 1, we obtain
t
1
x(t-1>— I z(s)ds. .. 2.14)
p T

Substituting (2.14) into (2.5) leads to

t
(@ + H() % j As)ds 10, t>T+ 1
T
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Set
t
1
y@)=— J- 2s)ds, t>T+ 1
p T
Then y(£f) = y(1,), y’(tZ)=p'Iz(tZ)ﬁS p ' ba(t)=by ) for k = m, m + 1, .. . Thus

y(#) >0,y (r)>0 for 1>T+ 7 and y() satisfies (2.11). The proof is complete.

Lemma 2.4 — Consider the impulsive differential inequality

Y (O +G)y) <0, 121,,1#1,
Y 2 y(t)), k=1,2, ... . (2.15)
y’(tZ) <o Y, k=1,2,...

where 0< 7y <t < ...<t <1, = as ko, G(t)e PC([ty, ), R") and ¢, >0.

If

I8
i

+
1
——— G(y)dt = s, .. (2.16)
! COCI e Gy

by
i=0

where ¢, =1. Then the inequality (2.15) has no solution y(r) such that y(r) > 0 and y'(t)>0 for
121,
0

The conclusion of this Lemma follows from the similar arguments to that in the Theorem
1 in [9] and by letting @(x) =x. We omit the details.

3. THEOREMS AND PROOFS

In this section, we suppose that all assumptions of Lemma 2.1 and condition (2.1) are satisfied.

Theorem 3.1 — Let m = min {k21:17,>1,+7}. Assume ¢ > 0 and

tm had [m+i+l
1
JG(I)dt+ Z 7)‘—-'1;“:— J G(n) dt = oo, .. (3.1
htT i=0 ™M m+i tovi
where
Gy =p " Hap' = 7° . (32

Then all solutions of (1.1) oscillate.

PROOF : Suppose that (1.1) has a nonoscillatory solution x(r). Without loss of generality, we
assume that x(f — p) >0, r 2 #,. Then, by Lemma 2.2, the second order impulsive differential inequality

(2.8) has a solution y(r) such that y(f) > 0 and y ' (r*) > O for t > 1, + 7.
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On the other hand, by Lemma 2.4, the second order impulsive differential inequality (2.8)
has no solution y(f) such that y(f) > 0 and y’(s*) > O for t>1,+ 7, which is a contradiction. The
proof is complete.

The proof of the following Theorem 3.2 is same as Theorem 3.1 except substituting
Lemma 2.2 by Lemma 2.3, and so is omitted.

Theorem 3.2 — Let m = minfk21:1,>1,+ 7). Assume p = | and

Im+i+

H(t) dt = oo, .. 3.3)
bm+z

5

Then all solutions of (1.1) oscillate.

Im+i

Remark 3.1. Note that 0 > 0 (and so & > 0) is a essential ‘condition in Theorem 3.1.
However, we do not require 0 > 0 in Theorem 3.2. Therefore, Theorem 3.2 cannot be seen as a
corollary of Theorem 3.1.

Corollary 3.1 — Assume 0 > 0 and that there exists a constant 8 > 0 such that

1 ! g
k+1
BRI . (34)
bk [ 1A ]
[ tBH@p =P = oo, . (35)

0]
Then all solutions of (1.1) oscillate.
PROOF : From (3.4), we have

tm+i+l
1
j G dt + z Z'——b——" J G() dt
T i=0 mEto L
Im+l 'm+n+l
2 1 J' G@dt+ ...+ ! G(t) dt
- bm ' bm bm+n
t !
1 tm+lﬁ 'ern-HI3
_>_—IF J-tm+] GHdt+ ... + I Lsne1 G dt
m tm tm+n
Im+l lm+n+l
Zr—}’_ [ Pewar+..+ | Powar
m tm Im+n
tm+n+|
= tﬁG(t)dt.

3| —
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Let n2e from (3.2) and (3.5), we see that (3.1) holds. According to Theorem 3.1, all

solutions of (1.1) oscillate. The proof is complete.

Similarly, we have

Corollary 32 — Let m = min{k2>1 ‘5 >1y+ 7). Assume p = 1 and that there exists a

constant 8 > 0 such that (3.4) holds and

T P H(t)ds = .

!
m

Then all solutions of (1.1) oscillate.

4. EXAMPLES

Example 4.1 — Consider the equation

t(t—1)In(t—1)—t+2
2t(t— 1) In(z - 2)

[x(f)=05x(t—1)] + x(t=2)-0.5x(t~1)=0, t>4,

+ k
x(tk)=mx(tk), k=1, 2, ..,

where 7, = 2k. It is easy to see that

t
RO+ [Q()ds=05+05=1,

t—-T+0

t—1 t—2

In -
H() = PO - 0t - o+ 0) = — 7t A0S,

1 k+1 T+

b, * k tk'

Since x— 1/2x2<In(1 +x)<x for IxI< 1, we have
11 1=2
1-=2 2% =D 57 _19:+16
2In(r-2) 4= 1) (t~2)* In(z - 2)

H(r) 2

Thus

52 -19¢+ 16
Ht=1) (¢ -2)% In(t-2)

ItﬁH(t)dtZi;ft- di =co.

By Corollary 3.2, all solutions of (4.1) and (4.2) oscillate.

.. (3.6)

.. (4.1)

.. (42)
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Remark 4.1: We note that eq. (4.1) has an eventually positive solution x(f) = Int. Therefore,
the oscillatory properties of all solutions of egs. (4.1) and (4.2) are caused by the impulsive
perturbations.

Example 42 — Consider the equation

[x(t)—t—_—l-x(t—l.S)J +(—1~+2't_3/2 )x(:—z)—lx(t— 1)=0, t>1, .. (4.3)
2t 2 2

@y =5, k=12 44

xk_k+1xk$ = by &y ey -..(.)
where tk=k. Since

’ 11 1
t—
R+ | O@)ds= 4z=l-g,

—T+0
H(t)=P(t)- QU ~ 1+ 0)=2'1?,

we have p = 1/2, thus

and so
J tﬂG(z)dtzz J 13 dr= o,
1 1
According to Corollary 3.1, all solutions of (4.3) and (4.4) oscillate.
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