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In this work we assume less simple boundary conditions of dynamic type and are to some extent related to a

viscous force acting the boundary of a viscoelastic body occupying bounded region Q€ R®. So the existence and
uniqueness of solution depending on the class of admissible boundary conditions and constraint imposed on the
boundary, by apply the Fourier transform method the quasi-static problem with dynamic boundary conditions still
admits one and only one solution’. In this work we using the variational methods for solving the problem, hence
we find a necessary and sufficient conditions for the existence of a unique optimal control in which minimizes
the cost function J(v) on the set of admissible control Uuy for the quasi-static problem with dynamic boundary
conditions.
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1. INTRODUCTION

A linearly viscoelastic body is described by the constitutive equation :

T(x, ©) = Go(x)E(x, 1) + J G(x, $)E(x, t — s)ds, . (D
0

where T is the Cauchy stress tensor, E=%(Vu+ VuT), u is the displacement vector and

!
G, )=Gow) + | Gx,s)ds, 1> 0 )
0

is a symmetric fourth-order tensor representing the relaxation function of the viscoelastic material.
The quasi-static behaviour of a continum medium is described by the equation :

V.Tx, ) +fix,H=0 x,HDe Q%R .. (3)

together with suitable boundary conditions.

For materials of type (1), (3) turns out to be an integro-differential equation of elliptic type,
depending on time, whose integral Kemnel is G.
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We assume that G satisfies the fading memory principle at least in weak form and we
impose on G the restriction dictated by the second Law of Thermodynamics in the Clausius form.
These restrictions on G are summarized in the following

O G, )e L' R V. e 5:GL.0,6(,ne C (@ w20

(if) G(x, 1) is a symmetric tensor in §XR+; moreover, Gy(x) and G_= Lim G(x,1) are

t—> 00
positive definite, that is there exists two positive constants ¥, and y,, such that :

G WE.E2ylEP, G (ME.E2y |EP Vie Q.

(iii) The sine Fourier transform of ¢ :

oo

G, (x,w) = j G(x, s) sinwsds
0

1s such that :

C';s(x, w)E.E<OQ Vxe 0, Yw > 0, VE# 0. .. (5)

A quasi-static problem for a viscoelastic body with homogeneous Dirichlet boundary
conditions has recently been studied in [2] and [3].

Here, we consider a boundary condition related to a viscous force acting on the boundary.

We find the set of equations and inequalities which describe the optimal control of this
system.

2. SYSTEM DESCRIPTION AND SOME EXISTENCE THEOREMS

Consider the quasi-static problem of a viscoelastic body of the type (1) occupying a bounded open
domain of £ of R' when a subset of I o of its boundary J 2 is fixed and remaining part
I' =90 Q\ I is subject to a viscous force. In this case quasi-static behaviour of the material is

governed by the following system :

-V.T(x,)=fix, 1) (x,H) e 2XR,
yx,5)=0 (x,Ne 'y xR ... (6)
and Ay, )+ T(x,1).n=0 (x,)e I' xR,

where A (x)>0, Vxe I'| represents the viscosity coefficient corresponding the dissipative stress on
I"|. Substituting the constitutive eq. (1) into (6), we obtain the following integro-differential
problem : '
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- V.| Gx)W(x, 1+ J G(x, s) Vy(x, t — s)ds
0

=fix, 1) x,)e QxR

y(x, t)=0 (x,t)e FOXR r (7)

A @)y(x, 1)+ Gy Vy(x, 1) .n+

J‘G(x,s)Vy(x,t—s).nds=0, (x,ne I' XR
0

we make use the functional space V=Hé (2MTI|) which denotes the closure, in H' norm, of
C” (£2) functions whose support is a compact subset of Qx I I

Following [6] a function y is said to be a weak solution of the quasi-static problem (7),
with fe L2 (R, L2(£2)), if ye L2(R, V) and if Vo e V and Ve R, it satisfies the following variational
form :

[| e vwe 9+ [ RE Ve 1- 0)éo |. vy&se
0

Q
d .. (8)

+;;5; e AOWE D W= [ [ (&1 wese
1 Q2

To prove the existence and uniqueness of solutions for (7), we consider the Fourier transform
of (7). We identify G(x,.) with its casual extension to R, that is we consider G(x,s) = O when s

< 0, so that the Fourier transform G of (G can be written as

G(x, w) = G(x, w) — iGs(x, w),

where (';s and Gc are sine and cosine Fourier transforms. Therefore, if G denotes the following

fourth-order symmetric tensor
G(x, w) = Go(x) + G(x, w),
the transformed problem of (6) is defined for each we R as :
— V. (G(x, w) Py(x, ) =F (x, w) xeQ
?(x,w)zO xel, .. (9)
iwV(x)y (x, w) + (Gx, WV (x, w)) .n=0 xeT,

In this way, we reduce the study of an intrgro-differential problem to a family of elliptic
problems depending on a parameter w € R.
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We say that 9 is a weak solution of problem (9) for each fixed w, if Qe V and for each
ye V, we have : '

J Glx, )V (x) Py *®9x 4y j 209y () y *Par

Q r,

= | P ww ™ @
0

holds for every ve V.

Remark 1: Observe that the Fourier transform and its inverse are continuous mappings of
L2(€) into itself. Therefore if y is a weak solution of (7) then ?(., w) is a weak solution of (9) for

almost all we R, whereas if 5\;(_, w) is a weak solution of (9) almost all we R and 96 L2 (R, V)),
then y is a weak solution of (7).

Theorem | — For each fixed we R, if G satisfies (i)-(iii) and if means (I" ;) #0, then
Vf(., w) € L2(£) there exists a unique weak solution §(., w)e V of (9).
ay, y,w)= j G(x, w) Vy(x) Vi “(x)dx + iw J. A )y (x)dlr
Q n

is coercive in V ie. there exists constant C(w) such that

a(y,y,w) = C(w) Ilyll%i(')(g) . (1D
the following theorem is also proved in [I].
Theorem 2: Under the hypotheses of theorem (1) on G and I, for every fe L2
(R, L2()), the integro-differential problem (7) has a unique weak solution y e L? (R, V).
Remark 2 — In problem (7), if I'y=¢, then V=H!(£). In order to ensure existence of
solution, it is no longer sufficient that fe L2 (R, L2(£2)), but we must require also that the impulse

t

glx, 0= J fix, s)ds .. (12)

belongs to the space L? (R, Lz(Q)) and then we have the following theorem'.

Theorem 3 — Under the hypotheses of Theorem (1) on G, for each f such that g defined
by (12), belongs to H (R, LZ(Q)), the integro-differential problem (7) with I y= ¢ has unique solution

ye L* (R, H' (Q)).

Remark 3: If G, A and 0 Q are sufficiently regular, we can state that the weak solution y
of (7) with F0=¢ is induced a classical solution.

Theorem 4 — If G satisfied (i)-(iii), A€ C'@Q) and 3Q is of C2-class, then for every f
such that g defined by (12), belongs to H' (R, Lz(.Q)), the integro-differentail problem (7) with
I'y=¢ has unique solution ye L* (R, H* (2)).

Now we can formulate our control problem.



OPTIMAL CONTROL FOR QUASI-STATIC PROBLEM 771
3. CONTROL PROBLEM

The space L? (R, L? (R)) is the space of controls.

For a control ue L? (R, L? (R)), the state y(u) of the system is given by the solution of :

-V.Tx, t)=£fix, t,u) +u (x,He xR
y(x, tLu)y=0 (u, ) e FOXR .. (13)
Ay, t,u)+T(x, t,u).n=0 (x,n)e I' | xR

The observation equation is given by

Z(u) = y(x, t, u)
and the cost function is given by :

J0) = [ 1yt 1) = 24P de+ (N, v, v) . (14)
Q2

where N is hermitian positive definite operator i.e.
(Nuty u) 2 c i .. (15)

The control problem is to find

ue Uad such that

J(u) £J(v) ve Uy,

where U, is a closed convex subset of L2 (R, L2(.Q)). Under the above consideration, we may apply
theorems in [4] - [5] and [7] to obtain our main theorem :
Theorem 5 — Assume that (11) and (15) hold. If the cost function is given by (14), then

the optimal control exists and characterized by following equations and inequalities :

-V.Tx,)=fx,t,u)+u (x,H)e QxR
yix,r,u)=0 (u,r)e I'y xR
Ay, t,u)+T(x, t,u) .n=0 (x,f)e I' xR

J pu) (v —uw)dx+ (Nu,v-u)20 ve U,
Q

together with (13), where p(u) is the adjoint state.
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