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ON A CHARACTERIZATION OF GEODESIC SPHERES
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A previous theorem, due to Hasegawa and Abe, asserts that any Euclidean compact convex connected hypersurface
which scalar curvature is bounded from above by a certain function is a geodesic sphere. Two different proofs
are given: one using the Weitzenbock-Bochner formula, the other using the Minkowski integral formulae. Actually,
this last method provides a natural extension to the above theorem.
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1. RESULTS

Any distance sphere S(p, r) of centre p and radius r in R s a totally umbilical hypersurface

with constant scalar curvature equal to n(n — 1)/ r%. On the other hand, Hasegawa and Abe” proved

the following
Theorem — If M, is a closed (compact without boundary) connected orientable Euclidean

hypersurface (n 22) with non-negative Ricci curvature and scalar curvature Scal which satisfy
d;-ScaISn(n—l).

dp being the Euclidean distance function to some point p of IR"* ! then M is a geodesic sphere

of centre p in R

Let (0,); <4<, be the kth symmetric elementary functions of the principal curvatures of M
and (H, =0 k/Cﬁ)OS k< n be the k-th-mean curvatures of M. For example, Hy=1, H; = H is the mean
curvature of M, n(n—1) Hy=Scal and H, is the Gauss-Kronecker curvature of M. The hypersurface

M will be called convex if the sectional curvature of M is everywhere non-negative. This is equivalent
to say that the Ricci curvature Ric of M is everywhere non-negative: indeed, let ki, ..., k, be the

principal curvatures of M at a point of M and v,, ..., v, an associated orthonormal basis of principal
vectors. If ki>0 and kj<0, then the assumption on the Ricci curvature and the Gauss formula imply
that k(nH —k;)20 and kj(nH—kj)ZO which provides the contradiction kiSnHSkj. So the product
of any two principal curvatures is non-negative, that is the sectional curvature of M is non-negative.
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The above theorem is a special case of:
The Main Result — Let M, be a closed connected Euclidean convex hypersurface (n22)
which kth-mean curvature H, satisfies

T AEY

for some point p of R**! and some integer ke {1, ..., n}. Then M is a geodesic sphere of center
pin R"H1

Remark : Note that any compact connected Euclidean hypersurface is orientable by the
generalized Jordan curve theorem.

As a consequence, we obtain:

Corollary 1 — Let M, be a closed connected Euclidean convex hypersurface (n 22) included

in a closed ball Ep(r) of R**1(pe R**1,r>0) and which kth-mean curvature H, satisfies
FOH <1

for some integer ke {1, ..., n}. Then M =J§p (r), that is M is the geodesic sphere of centre p and
radius r in R"* .

Corollary 2 — Let M, be a closed Euclidean convex hypersurface (n22) included in a
closed ball B,(r) of R+l (pe R+ 1, r>0). Then

for k=01, ..., n, maxIHklzik.
M r

Remark : For close results, one can see articles 1, 2 and 5.

2. FIRST PROOF

We show in this section how the Weitzenbock-Bochner formula can be used to give a new proof
of Hasegawa-Abe result.

Let ¥ (resp. (-,-)) be the euclidean connection (resp. scalar product) of R"*!, V (resp.

(+,+)) the one induced on M, n a smooth unit vector field normal to M, h the second fundamental
form of M valued on the normal bundle of M, A its shape operator and H its mean curvature. We

also consider the function F:IR"*+*! 5 R :gq— di (g)/2, its smooth restriction f=F,,, and the

support function a=(VF,n):M—IR. Let finally £ be a unit vector field on M such that
VF=1Vfl. £

A straightforward computation shows that for any vectors fields X, Y on M,

V2RX, 1)=(X, Y )+(VF, h(X, 1)) yeR)
which by contraction leads to

Af=n+nHa .. 2.2)
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Considering a local orthonormal basis {X : }] of principal vectors on M, we deduce from
<i<n

equation (2.1), that

n

1= (1+(TF kX, X))}

i=1

n+ 3 AVFAX, X)) +2 Y (VF (X, X))

i=1 i=1

n+ o Trace (A2) +2nHa

Since VF=Vf+om on M, we have a2=d§—l V£12 on M. On the other hand, the Gauss

formula implies that Scal = (nH)? — Trace (A2). So, the squared norm of V2f can be rearranged
into

1V2f% = {n(n=1)=d -Scal) + | Vf- {Scal + Ric (& &)
+ (anH)? +2Af-n* - Ric (V£ V) . (23)
At last,
(VAVAN)Y=n(Vf,V(aH)) = n-Div(cH -V f) — naHAf . (2.4)
= n-DivaH - Vf) - nAf+n® - (anH)?
Integrating the classical Weitzenbdck-Bochner formula:
%A(I VIR =1 VI +( V£ V(Af) )+ Ric (VF, Vf)
on M and using equations (2.3), (2.4) and the Green theorem, we obtain :

0= | {{n(n-1)-d,-Scal) + | Vf- (Scal + Ric (& )} dM
M

The hypothesis yield to :

n(n—l)=d2p-Sca[
| V13- (Scal + Ric (£, £) =0
So Scal is positive on M and Vf=0 on M, that is M is included in a geodesic sphere

F-1(r) for some nonzero r. As M is closed and open in the connected set F~!(r), M coincides
with F=1(r) and this achieves the proof.
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3. PROOF OF THE MAIN RESULT

This section gives a proof of the main result and by the same way a second new proof of
Hasegawa-Abe result.

The classical Minkowski integral formulae say that

for k=0, 1, o n— 1, [ (Hy+aH,, ) dM=0. ER)
M

Since the Ricci curvature of M is non-negative, the principal curvatures of M are of the
same sign by the Gauss formula. By reversing the orientation if necessary, we can assume that the
principal curvatures are all non-negative. On the other hand, we have3

H2H?2H > 20" .. 32)

Moreover, if there exists k€ {2, ..., n} and ge M such that H,”*= " (q)=H,"* (g), then ¢
is an umbilical point.

As lal Sdp, we deduce from (3.1), (3.2) and the assumption on H, that

(k- 1)/k

k-1)/k 17k
> H! k-1)

By Minkowski formula, all these inequalities are in fact equalities. In particular,
H,'/_(’;' D= H,'(/ k on M, that is each point of M is an umbilical point. As M is compact and connected,

M is a geodesic sphere in R"+1.
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