MATRIX TRANSFORMATION OF CERTAIN SEQUENCE SPACES THROUGH MATRIX PRODUCT

S. D. PARASHAR* AND B. CHOUDHARY**

*Head, Department of Mathematics, Bhim Rao Ambedkar College, Geeta Colony, Delhi 110 031, India

**Department of Mathematics and Statistics, The University of Zambia, P.O. Box No. 32379, Lusaka (Zambia); E-mail: bchoudhary@natsci.unza.zm

(Received 4 January 1999; after revision 14 July 1999; accepted 23 October 1999)

The purpose of the present paper is to find necessary and sufficient conditions for $AB = AoB$ with reference to sequence sets $X_p, Z(p)$ and V_o for A and B in some special classes of infinite matrices.

Key Words : Sequence Spaces; Matrix Transformation; Invariant Mean

1. INTRODUCTION

Let ω be the family of all real or complex sequences and ϕ denote the family of finite sequences. Any linear subspace of ω is called a sequence space.

The following sequence spaces have been defined and discussed in [1], [2] and [3]. For $1 \leq p < \infty$, X_p is defined to be the space

$$\left\{ x \in \omega ; \sup_{n=1}^{\infty} \left\{ \frac{1}{n} \sum_{i=1}^{n} x_i \right\}^p < \infty \right\}.$$

Let $p = (p_n)$ be a sequence of strictly positive real numbers. $Z(p)$ is defined to be the sequence set

$$\left\{ x \in \omega ; \sup \left\{ \frac{1}{n} \sum_{i=1}^{n} x_i \right\}^{p_n} < \infty \right\}.$$

Note that $Z(p)$ defined above is not a linear space in general. For example, if $p_n = n$ for all n and $x_n = 1$ for all n, then $x \in Z(p)$ but $2x \notin Z(p)$.
Let \(\sigma \) be a one-to-one mapping of the set of positive integers into itself such that \(\sigma^m(n) \neq n \), for all positive integers \(m \) and \(n \). A continuous linear functional \(\phi \) on \(l_\infty \) is said to be an invariant mean if

\begin{enumerate}
 \item \(\phi(x) \geq 0 \) whenever \(x_n \geq 0 \) for all \(n \),
 \item \(\phi(e) = 1 \), where \(e = (1, 1, 1, \ldots) \),
 \item \(\phi(x_{\sigma(n)}) = \phi(x) \) for all \(x \in l_\infty \).
\end{enumerate}

\(V_\sigma \) denotes the space of bounded sequences all of whose invariant means are same.

Let \(X \) and \(Y \) be any two non-empty subsets of \(\omega \). Let \(A = (a_{nk}) \) \((n, k = 1, 2, 3, \ldots) \) be an infinite matrix of complex numbers.

We write \(Ax = (A_n(x)) \) if \(A_n x = \sum_{k=1}^{\infty} a_{nk} x_k \) converges for each \(n \in N \). If \(x \in X \) implies \(Ax \in Y \), then \(A \) defines a matrix transformation from \(X \) into \(Y \) and we denote it by \(A : X \to Y \). The sequence \(Ax \) is called the \(A \)-transform of \(x \). By \((X, Y) \) we mean the class of matrices from \(X \) into \(Y \).

Let \(A \) and \(B \) be two infinite matrices. We say that matrix product \(BA \) is defined if for each \(n, k \in N \), \(\sum_{j=1}^{\infty} b_{nj} a_{jk} \) is convergent. We write \(BA = D \) with \(d_{nk} = \sum_{j=1}^{\infty} b_{nj} a_{jk} \) for each \(n \) and \(k \). \(A \) will be called row finite (column finite) if each row (column) of \(A \) lies in \(\phi \). If \(B \) is row finite then \(BA \) is defined for all \(A \)'s. We next note that if \(A \) is column finite then \(BA \) is defined for all \(B \)'s.

The question arises if \(BA \) is defined then does it represent the composition \(BoA \) of maps \(B \) and \(A \) induced by \(B \) and \(A \) respectively.

The following example given by Wilansky\(^4\) shows that the answer is no.

Consider the map \(A : \omega \to \omega \) given by \((Ax)_n = x_n - x_{n-1} \), where, for notational convenience we take \(x_0 = 0 \). \(A \) is given by the matrix \((a_{nk})\) defined by

\[
a_{nk} = \begin{cases}
 -1 & n = k - 1, \quad k > 1 \\
 1 & n = k, \quad k \geq 1 \\
 0 & \text{otherwise}.
\end{cases}
\]

Let \(B \) be the matrix with one at each place. Since \(A \) is row finite as well as column finite so \(D = BA \) is defined and for each \(n, k \)

\[
d_{nk} = \sum_{j=1}^{\infty} b_{nj} a_{jk} = \sum_{j=1}^{\infty} a_{jk}.
\]

But for \(x \in c \) (set of convergent sequence), \((BoA)x \) is defined and is given by

\[
(BoA)x = \sum_{n=1}^{\infty} (x_n - x_{n-1}) = \lim_{n \to \infty} x_n.
\]

In particular, \(BoA = 0 \) on \(\phi \). Thus \(BoA \) is not given by a matrix.
The main purpose of this paper is to find necessary and sufficient conditions for $BA = BoA$ with reference to sequence sets $X_p, Z(p)$ and V_{σ}.

2. MAIN RESULTS

Throughout this section C denote the same matrix. Let $C : \omega \to \omega$ be the linear map given by

$$Cx = \left| \frac{1}{n} \sum_{i=1}^{n} x_i \right|.$$

Then C is one-one and onto and

C^{-1} is given by

$$C^{-1}y = (ny_n - (n - 1)y_{n-1}),$$

where, for notational convenience, we put $y_0 = 0$. Then the sequence sets X_p and $Z(p)$ can also be written as

$$X_p = C^{-1}(l_p)$$

and

$$Z(p) = C^{-1}(l_{\infty}(p)),$$

where

$$l_p = \left\{ x \in \omega; \sum_{n=1}^{\infty} |x_n|^p < \infty \right\} (1, p < \infty)$$

and

$$l_{\infty}(p) = \left\{ x \in \omega; \sup_{n} |x_n|^p < \infty \right\}.$$

In matrix notation C and $R = C^{-1}$ correspond to the matrices

$$C = (c_{nk}) \quad \text{and} \quad R = (r_{nk}) \quad \text{given by}$$

$$c_{nk} = \begin{cases} \frac{1}{n} & k \leq n \\ n & k > n \end{cases}.$$
and
\[r_{nk} = \begin{cases}
 -(n-1) & k = n-1, n > 1, \\
 n & k = n, n \geq 1, \\
 0, & \text{otherwise}.
\end{cases} \]

Let \(A = (a_{nk}) \) be any infinite matrix. In this case the matrix product \(AC^{-1} \) exists and is given by
\[AC^{-1} = (k (a_{nk} - a_{n,k+1})). \]

Theorem 1 — Let \(A \) be an infinite matrix. Consider an \(x \in \omega \).

(i) Suppose \((AoC^{-1})x\) and \(AC^{-1}(x) \) both exist in \(\omega \). Then \((AoC^{-1})x = AC^{-1}(x) \) if and only if \(\lim_{k \to \infty} ka_{nk}x_k = 0 \) for each \(n \).

(ii) If \(\lim_{k \to \infty} ka_{nk}x_k = 0 \) for each \(n \), then \((AoC^{-1})x \) exists in \(\omega \) if and only if \(AC^{-1}(x) \) exists in \(\omega \).

Proof (i): We first note that, since \((AoC^{-1})x\) exists, we have for each \(n \),
\[\sum_{k=1}^{\infty} a_{nk}(kx_k - (k-1)x_{k-1}) \text{ converges and equals } ((AoC^{-1})x)_n. \]
Again since \(AC^{-1}(x) \) exists, we have,
\[\sum_{k=1}^{\infty} k(a_{nk} - a_{n,k+1})x_k \text{ converges and equals } (AC^{-1}(x))_n. \]

Now suppose \((AoC^{-1})x = AC^{-1}(x)\). Let \(n \in N \).

Then
\[\sum_{k=1}^{\infty} a_{nk}(kx_k - (k-1)x_{k-1}) = \sum_{k=1}^{\infty} k(a_{nk} - a_{n,k+1})x_k. \]
So
\[\lim_{s \to \infty} \left[\sum_{k=1}^{s-1} k(a_{nk} - a_{n,k+1})x_k + sa_{ns}x_s \right] = \lim_{s \to \infty} \sum_{k=1}^{s} k(a_{nk} - a_{n,k+1})x_k. \]

Therefore, \((AoC^{-1})x = AC^{-1}(x)\) if and only if for each \(n \),
\[\lim_{k \to \infty} ka_{nk}x_k = 0. \]

(ii) This follows on noting, as in the proof of (i), for each \(n \) and \(s \),
\[\sum_{k=1}^{s} a_{nk}(kx_k - (k-1)x_{k-1}) = \sum_{k=1}^{s-1} k(a_{nk} - a_{n,k+1})x_k + sa_{ns}x_s. \]

Theorem 2 — Suppose either \(A \in (X_p, \omega) \) or \(AC^{-1} \in (l_p, \omega) \). Then both \(AoC^{-1} \) and \(AC^{-1} \) define map on \(l_p \) to \(\omega \) with \(AoC^{-1} = AC^{-1} \) on \(l_p \) if and only if for each \(n \), \((ka_{nk})_{k=1}^{\infty} \) is bounded.
Proof: Suppose for some \(n, (ka_{nk})_{k=1}^{\infty} \) is unbounded, let \(r > 1/p \), then there exists a strictly increasing sequence \((k_j)\) such that

\[\|k_j a_{nk_j}\| > j^r \quad \text{for each } j. \]

Put

\[x_m = \begin{cases}
\frac{1}{j^r} & \text{for } m = k_j, j = 1, 2, \\
0 & \text{otherwise.}
\end{cases} \]

Then \(x = (x_m) \in l_p \) and, for each \(j \), \(\|k_j a_{nk_j} x_{k_j} \| > 1 \). So, \(\lim_{k \to \infty} ka_{nk} x_k \) can not be zero.

If \(A \in (X_p, \omega) \) then \(AoC^{-1} (x) \) exists. On the other hand, if \(AC^{-1} \in (l_p, \omega) \) then \(AC^{-1} (x) \) exists. The first of the Theorem 1 gives that if \(AC^{-1} \) and \(AoC^{-1} \) exist they cannot be equal.

Now suppose for each \(n, (ka_{nk})_{k=1}^{\infty} \) is bounded. Let \(x \in l_p \). Then for each \(n \), \(\lim_{k \to \infty} ka_{nk} x_k = 0 \) and given assumptions on \(A \) imply that at least one of \(AoC^{-1} \) or \(AC^{-1} \) exists. The result now follows from Theorem 1.

Theorem 3 — Suppose \((ka_{nk})_{k=1}^{\infty} \) is bounded for each \(n \), then the infinite matrix \(A \in (X_p, V_\sigma) \) if and only if \(AC^{-1} \in (l_p, V_\sigma) \).

Proof: It follows from Theorem 2 because \(A \in (X_p, V_\sigma) \) if and only if \(AoC^{-1} \) maps \(l_p \) to \(V_\sigma \).

Lemma — Let \(A = (a_{nk}) \) be an infinite matrix and \(Y \) be any subset of \(l_\infty \) then the following hold —

(i) Suppose \(\lim_{k \to \infty} ka_{nk} = 0 \) for each \(n \). Suppose either \(A \in (C^{-1} Y, \omega) \) or \(AC^{-1} \in (Y, \omega) \), then both \(AoC^{-1} \) and \(AC^{-1} \) define maps on \(Y \) to \(\omega \), with \(AoC^{-1} = AC^{-1} \) on \(Y \).

(ii) Suppose there is a sequence \(x \in Y \) with \(\inf_{k} \|x_k\| > 0 \), and \(AoC^{-1} = AC^{-1} \) on \(Y \), then \(\lim_{k \to \infty} ka_{nk} = 0 \) for each \(n \).

(iii) \(A \in (C^{-1} Y, \omega) \). Suppose \(C^{-1} Y \) contains a sequence \(z \) such that \(\inf_{k} \frac{|z_k|}{k} > 0 \) then \(\lim_{k \to \infty} ka_{nk} = 0 \) for each \(n \).

Proof: (i) Let \(x \in Y \). Then \(x \in l_\infty \). So, if \(\lim_{k \to \infty} ka_{nk} = 0 \), for each \(n \), then \(\lim_{k \to \infty} ka_{nk} x_k = 0 \), for each \(n \). Using part (ii) of Theorem 1, \((AoC^{-1}) x \) exist in \(\omega \). Now \((AoC^{-1}) x \) and \((AC^{-1}) x \) both exist in \(\omega \) and \(\lim_{k \to \infty} ka_{nk} x_k = 0 \) for each \(n \). Part (i) of Theorem 1 gives \((AoC^{-1}) x = (AC^{-1}) x \). Therefore, \(AoC^{-1} = AC^{-1} \) on \(Y \).
(iii) Since $AoC^{-1} = AC^{-1}$ on Y, we have by Theorem 1 part (i) for each $x \in Y \lim_{k \to \infty} ka_{nk} x_k = 0$ for all n. Now there exists a sequence $x \in Y$ such that $\inf k x_k > 0$. So, we have $\lim_{k \to \infty} ka_{nk} = 0$, for each n.

(iii) $A \in (C^{-1} Y, \omega)$ implies that for each $z \in C^{-1} Y \sum_{k=1}^{\infty} a_{nk} z_k$ converges for each n and which gives $\sum_{k=1}^{\infty} ka_{nk} \frac{z_k}{k}$ converges for each n. This gives $\lim_{k \to 0} ka_{nk} = 0$ for each n.

The following theorem now follows from the above Lemma.

Theorem 4 — Let Y be any subset of l_∞ such that $C^{-1} Y$ contains a sequence z with $\inf_{k} \frac{1}{k} z_k > 0$, and $Z \subset \omega$, then an infinite matrix $A \in (C^{-1} Y, Z)$ if and only if (i) and (ii) hold, where

(i) $\lim_{k \to 0} ka_{nk} = 0$ for each n,

(ii) $AC^{-1} \in (Y, Z)$.

Further, in this case, $AoC^{-1} = AC^{-1}$ on Y.

ACKNOWLEDGEMENT

Authors are thankful for useful comments of the referee which have improved the presentation of the paper.

REFERENCES