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The thermal instability of micropolar fluids heated and soluted from below in porous medium in the presence
of a uniform magnetic field is considered. It is found that the presence of coupling between thermosolutal and
micropolar effects may introduce oscillatory motions in the system. The increase in Rayleigh number for the
stationary convection and its decrease for overstability with increase in permeability, is depicted graphically. Also
the Rayleigh number is found to increase with magnetic field and solute parameters.
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1. INTRODUCTION

Micropolar fluids theory was introduced by Eringen1 in order to describe some physical systems
which do not satisfy the Navier-Stokes equations. To explain the kinematics of such media,
micropolar fluid involves a spin vector, responsible for microrotation and microinertia tensor which
accounts for the atoms and molecules inside the macroscopic fluid particles in addition to the velocity
vector. These fluids are able to describe the behaviour of suspensions, liquid crystals, animal blood
etc.. Ermgen generalized the micropolar fluid theory and developed the theory of thermomicropolar
fluids.

Now-a-days, the stability of micropolar fluids have become an important field of research.
The Rayleigh-Bénard instability in a horizontal thin layer of fluid heated from below is an important
particular stability problem. An extensive account of Rayleigh-Bénard instability in a horizontal thin
layer of Newtonian fluid heated from below under varying assumptions of hydrodynamics and
hydromagnetics has been given by Chandrasekhar’. Ahmadi* and Pérez-Garcia et al.5 have studied
the effects of the microstructures in the Rayleigh-Bénard instability and have found that in the
absence of coupling between thermal and micropolar effects, the principle of exchange of stabilities
holds good. Pérez-Garcia and Rubi® have shown that when coupling between thermal and micropolar
effect is present, the principle of exchange of stabilities may not be fulfilled and hence oscillatory
motions are present in micropolar fluids. The presence of oscillatory motions have been found in
micropolar fluids by Laidlaw (in binary mixtures’), Lekkerkerker (in liquid crystals8) and Bradley
(in dielectric fluids?).

The heat and solute are two diffusing components in thermosolutal convection phenomena.
The buoyancy forces can arise not only from density differences due to variations in temperature
but also from those due to variations in solute concentration. Thermosolutal convection problems
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arise in oceanography, limnology and engineering. Examples of particular interest are provided by
ponds built to trap solar heat (Tabor and Matz!%) and some Antarctic lakes (Shirtcliffe!l). Brakke!2
explained a double-diffusive instability that occurs when a solution of a slowly diffusing protein is
layered over a denser solution of more rapidly diffusing sucrose.

Sharma and Kumar!3 have studied the effect of vertical magnetic field in non-porous medium
on thermal convection in micropolar fluids heated from below. Keeping in mind the applications of
thermosolutal convection in oceanography, limnology, chemical engineering and petroleum
engineering, the present problem deals with the thermal convection of micropolar fluids heated and
soluted from below in the presence of uniform magnetic field in porous medium.

2. FORMULATION OF THE PROBLEM AND DISTURBANCE EQUATIONS

Here we consider the stability of an infinite, horizontal layer of an incompressible micropolar fluid
of thickness d in porous medium. The uniform vertical magnetic field H(0, 0, H) and gravity field
g (0, 0, — g) prevade the system. The fluid is heated from below and subjected to a stable solute
gradient such that steady adverse temperature gradient B(=1d7/dz[) and a solute concentration
gradient ' (=1dC/dz|) are maintained. The critical temperature gradient depends upon the bulk
properties and boundary conditions of the fluid.

Let v, v, T, C, py P, €k p. 1, 8, 2, and j denote velocity, spin, temperature, solute

concentration, total density, reference density, density of solid matrix, medium porosity, medium
permeability, pressure, coefficient of viscosity, gravitational acceleration, unit vector in the z-direction
and microinertia constant. €, 7, ¥’ and x are micropolar coefficients of the viscosity,
Cy o Kp K 1‘ 6 and & are specific heat at constant volume, heat capacity of solid matrix, thermal

conductivity, solute conductivity, coefficients giving account of coupling between the spin flux with
heat flux and spin flux with solute flux respectively. Then the mass, momentum, internal angular
momentum, internal energy balance equation and analogous solute equation, following

Boussinesq approximation, are

V-v=0, ¢))
Podv 1 A 1 ,
e d - Vp—kl (,u+x)-u+xva—pgez+4ﬂ(VxH)xH, .. (2)
poj%=(5’+ﬂ") V(V-v)+y'Vzv+’—;va—2xv, .. 3)
1-en L CVT=K,VT+8(V VT, 4)
[pgc,€+p e (1-8)] dt+p0cvv- =Kr +0(Vxv)- ) o
dc ' 2
[Pocu8+PsCs(1‘5)]’(},_‘”’0%”' VC=K; C+8(Vxv)-VC, .. (5)

and the equation of state is given by

p=pyll-a(T-Ty+a’(C-Cyl, . (6)
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where pg, 7)), C,, are reference density, reference temperature and reference solute concentration at

the lower boundary, @, o are the coefficients of thermal expansion and the analogous solvent
coefficient respectively.

The Maxwell’s equations yields

e%%: Vx(vxH)+e€en VH . (D
and
V-H = 0. .. (8)

Let us now consider the stability of the system in the usual way by giving small perturbations
on the initial state and seeing the reaction of the perturbations on the system. The initial state is
v=0,v=0, p = p(2), p=p@), T = T(z) and C = C(2).

Let u(u, Uy u),w, 5p, 5p, 6,y and h(h, hy, h,) denote respectively the perturbations in

velocity v, spin Vv, density p, pressure p, temperature 7, solute concentration C and magnetic field
H. The change in density 6, caused mainly by the perturbations 6 and y in temperature and solute

concentration, is given by
op=-py(@xb-a’y. .. (9)

Egs. (1)-(8) yield the linearized perturbation equations

Vou=0, .. (10)
Po du 1
- dt——V&p—kl(,u+rc)u+K(V><w)
A 1
+ 8Py (aB—o/y)eZ+ZT;(Vxh)xH, .. (1D
pojci—‘:=(e'+/3") V- +y Viw+E Vxu-20w, . (12)

do
[Py ¢, £+ P, (1-O) - =Ky V2 0-8(Vxw), B+8(Vxw)- V O+ pyey, Bu,... (13)

ay_ ,
[Py ¢y £+ Py, (1~ G = K7 V2 - 8" (Vxw),

ﬂ’+6’(wa)-Vy+p0cDB'uZ. .. (14)
%:Vx(uxH)ﬂan Vzh, .. (15)

and

.. (16)

I
e

V-h
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Using

2 *
Podt .
0 6=Bd6", y=p dy,

2=z d t=

u=

* * 172
A LA L O )
£ P= :w: ’ = b

d & & &

and then removing the stars for convenience, the non-dimensional forms of egs. (10)-(16) become

ldu s 1 Prian 1
P Vép 3 (1+K)u+K(qu)+(R9—Syq )e2+4n(Vxh)xH, ... (18)
> _c v VX (Vxw)+K| L Vxu-2
Jdt— L V(Vow)—cy VX(Vxw)+ . Xu-2w |, .. (19)
de
Ep) 5=V 0+u +3[VO- Vxw—(Vxw)], - (20)
qur V27+u +8'[Vy Vxw- (wa)] .. 2D
oh £
£ &—Vx(uxH)+p2 Vh . (22)
and
V-h=0. .. (23)

The new dimensioniess coefficients are

s _, & k

~_1 = — - _K
j [} 5 - yk]———’ K"‘_’
d2 1)alz pocud2 & H
l C - £/+ﬁn+,)/ €+(l—£)pscs (24)
udz Iy Pocy )

and the dimensionless Rayleigh number R, analogous solute number S, Prandtl number p,, the
analogous Schmidt number g and magnetic Prandtl number p, are

_gaBp,d S_ga’ﬂ’pod“ u ,1 _ B

P =

, §= — - = . 25
H Kr ukp Po"'r pOKT 2- pom

where k=K /pyc, and Kp=Ky/pyc, are thermal diffusivity and solute diffusivity. Here we
consider both the boundaries to be free and perfectly heat conducting. The case of two free
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boundaries is a little artificial but it enables us to find analytical solutions and to make some
qualitative conclusions. The dimensionless boundary conditions are

Uu
-0 —2 — -0 = -
uZ—O, azz =0, w=0,0=0=% at z = 0 and 1. .. (26)

3. LINEAR THEORY : DISPERSION RELATION

As the perturbations applied on the system are assumed to be small, the second and higher order
perturbations are negligibly small and only linear terms are retained. Thus the non-linear terms
w - Vu,(u-V6,u-V)y Ve (Vxw), Vy-(Vxw) and (u- V)w in egs. (18)-(21) are neglected.

Applying the curl operator twice to eq. (18) and taking z-component, we get

12 52,k 22,20) o2y, F1)n
€ dt a9y It 9y

(1+K) Vu+KVQ o Ho @y @
oz F4

Applying the curl operator once to eqgs. (18), (19) and (22) and taking the z-component, we

get
1 35 aCz
€ dr (1+K)€ +47r az’ - 29
0%,
’ 2 1
i5=C V2, K(£V2u2+2ﬂzJ . (29)
4’ aéz £
—L=H—=24+—= ... (30
and 3 H 32 +p2 V2Cz (30)
The linearized form of egs. (20) and (21) are
Je 2
Ep, 57 v 9+uz—-5.Qz, .. 3D
and
EqQI=V2y+u T 0 . (32)
at 2 Z
Taking the z-component of eq. (22), we get
oh du
£—== H——+—-— Vh, . (33)

9t 3z
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Here § = (Vxu), § =(Vxh), are z-components of vorticity, current density respectively and
.QZ=(V>< w),. If the medium adjoining the fluid is electrically non-conducting, then the boundary

conditions are

Fu,  IE dh,
u,=0, Y =0, a—z=0, §,=0=y=9 =0, —8——Z-=o at z=0and z = 1. ... (34)
<

In the equation for spin (29), the coefficients C’o and K account for spin diffusion and
coupling between vorticity and spin effects respectively.

Analyzing the disturbances into the normal modes, we assume that the solutions of equations
(27)-(33) are given by

2,8, 8, 6.7 h])=[U@2), A2), Z(z), X(2), &z), IN2), B(2)]

exp (ikxx+ikyy+0't), ... (39

2 2 . . .- . .
where k=(kx+ky)]/2 is the resultant wave number and o is the stability parameter which is, in

general, a complex constant. For solutions having the dependence of the form (35), egs. (27)-(33)
takes the form

Sp,
(Dz—kz){e c+—(l+I()}U——Rk29+ p L r+kp* -1 0
1

H 2 2
+ - (D'-iHDB, .. (36)
H
[e a+—(1+K)j| 2 DX, . (37
[lo+24-(D* -k Q=-A€ ' D*-H U, . (38)
[Ep, 0~ (D*-k)] ©=U-3Q, . (39)
[Eqo—-(D* -k '=U-F Q .. (40)
[a p—(02 kz)]X 21574 . (@41
and
[o—;’l—(uz-kz)]he“’ HDU, (42
2

where [=jA/k,A= k/CZ) and D =d/dz. Eliminating ©, I, Z, B and 2 from eqs. (36)-(42), we obtain
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(D? - 1?) { elo+ k—l- (1+K) } (Ep, 06— (D* - k%) [Eqo— (D - k%)
1

2 2
[lo+2A - (Dz—kz)][ o-Q—p—”—k—l} U = - Rk [Eg6 - (D? - IP)]
2

2 12
[lo+24 - (D* - k%)) [ a—@-pi—)} U-RI*SAe (D> - 1)
2

2 2
(Eqo— (D? - K¥)] { G_Lll;il} U+ s%‘k2 (Ep,0~ (D* - )]
2

2 2
[o—(—ll—l;—’—‘l}uo+u-a)2-k2)] U+Sl—;1-k23'A£‘l (D* - 1%
2

2
[Ep, 6~ (D —k2)][ c—gl;"—ﬁ)-} U-KAE ' (D* - k%) [Ep, - (D*~ k)]
2

) 2 -1
[qu-(DZ—kz)][m D p2" )}U+H4jr (D*~ 1) [Ep, 6 (D* - #2)]

[Eqo— (D - K*)] [lo+ 24 - (D* - ¥*)] D*U. . (43)

The boundary conditions (34) transform to

U=D*U=0,DZ=0,X=0=I=02=0,DB=0atz=0 and z = 1. . (44)
Using (44), egs. (36)-(42) give
D*r=p*0=0, D’Q=0,D>Z=D*X=D’B=0at 7 = 0 and z = 1. .. (45)

Differentiating (36) twice with respect to z and using (45), it can be shown that D2U=0.
It can be shown from equations (36)-(42) and from (44)-(45) that all even order derivatives of U
vanish on the boundaries. The proper solution for U belonging to the lowest mode is

U= U, sin (72), ... (46)

where U, is a constant. Substituting (46) in (43) and putting b=17+k’, we obtain

RK? [Eqo + b] [

a+£—] [lo+2A+b-bSAE 1]
2

= qul—kz [Ep, o+ b] [o‘+;§’—j‘[la+QA+b—b§’A£‘1]+b[s’l 0+—£—(1+K):'[Ep1 o+ b]
2 1
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[Eqo+b] [lo+2A + b][ a+p£}- KAg ! b2 [Ep, 0+ b] [Eq0+ b]
2
2 ~1
I:O'+p£:!+iz-€—~[Epl ob + b?] [Eqo + b] [lo+ 24 + b, - (4T
2

In the absence of solute parameter (S = 0) ie. §’ = 0 and magnetic field (H = 0), eq. (47)
reduces to

b{e‘l o+ﬂ%]ﬁ}[Epl o+ bl [lo+2A +b]

= RK*[lo+2A+b-BA€ ' b+ KAe ' b? [Ep, 6 +b], .. (48)

a result derived by Sharma and Gupta'* (eq. 28).

4. CASE OF OVERSTABILITY AND CONCLUSIONS

Let us put 0=0,+i0;, where 0,, 0; are real; it being remembered that o is in general, a complex
constant. The marginal state is reached when 6,=0; if ,=0 implies ¢;=0, one says that principie
of exchange of stabilities is valid otherwise we have overstability and then o=io; at marginal
stability. Putting 0=i0; in eq. (47), the real and imaginary parts of (47) yields

Sp IEp
R=[—q—lk2|:—a,.2{b(l+—;—l+Epl (1-3 A€ 1)]+2AEp1]
2

2

+ f)—{ZA+b(1--3A8-])} + [O’?I:bz(Els_l (p1+q)+E2p1 q£—1(1+;’l—\]]
2 2

i

+b 2AE2p1q£_1+E2plql£1—;l—K)-J —0'.2

~1
4 € 1 3 (1+k)
[b ———-pz }t—b (El szl P, +9)

+ ! (2A+b){1+f—(pl+q)}+g—%—ﬁl +b2[9—;—19—(m+b)
2 1 1

E

Ep,q b
+
2

- 2 3
—_—4p, + —(1+ 2A +b) |~ KAE 1[0. -Eb
ot ([ (R @A) Al
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Ep,q 5 2 1
[p1+q+—l—]:l+2— +§—’Z£—[af {b* (—El(p, +q)
2

—Ezplq)—ZAEzplqb} + 2Ab3+b““ Xk'z{—c,-z[b{l +l—§—2‘1

2 1
Eq(l—?SAe'l)]+2AEq]+1b7— (24 +b’(1—3A£—1)}I . (49)
2

and

] By £ P
P bz{Ezqzle"l(l+Ep13A£_1)}+b——%——”—(1+K)
1

i 22
o b4{le"l(l+E—§— (1+Eplb‘Ae‘1)+E2qzs“(1—6As‘1)}
1%)

Ep, 2
kl

+ b3[E2q2Ae" (22-3AE )+ K(-Ep, (1-BAe 1)) + (1 +K){1 _%Eg}

2

2 2 Epl) E’p q*
_E gl iplsac vl =0+ K (1-BAg ) -2
K Py ky 1)

3 2
2AE Pq ] _
+ bz{ZAzEzqzs'l(2—KEp1)+——i——l——(1+K) 2{1—p—}-8A£ ‘)
1 2

4 I k,

2pe ! [ 1+
+M—-Ezqzl{Epl(pi-aAe‘lJ-1H+b 4A? B3 p g2 12K
2
p _ _
+ S;l-kz(Elz(pl—q)+E2p1ql(3'A£ 1 _34A¢ I))H

[ -1 _ E2 2
o b6{—8—2—’(1+Ep13Ae“)+1—3Ae“)e‘ 1454 }
Py

%)
i 2 2 1
B 1+EL et @-3ae )-8 5a6 By + 2 B,
2 3 3

L

Ep 2 _ ) ) . £
+;2—1k—(1+K)_KA81 1+—;§— (Ep, (1-3A€ hon l+b 1+;—‘21
2 %1 2
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2AE ) — El _
T<1+m<—@l+q)+p1 (1-BA€ ‘)—q>——<p1+q) —24% !
1 Py 1)

2 2 E|
1+ £ (2—KEp)+yﬂ(l+K) (1-3ae |1+ +2p d L1
1 T 1
P, Py % Py Py
H el / ~1 £2,2 _1 Ep,
- S| {1+ Ep, | —-3A€ ~E*(1-34 H{—-1
1) P

22
+ £Eql IBAE'I
1)

2 2 Ep.q
+ b 4AZEp1(]—li:—Q 1+EL |+ 1@as!—sac | 14—
! ) )

-1 -1, EP P2
+ E@ -9 (1-3A6 H(1-3'Ae HY+=5 (0, -9) |[S=k

Dy q
2 1 Ep ]
Hre 7= [2AE2q2(2~5A8°1){-1-)—1—1] +62[ 24E 2346 ' -5 4
2
p Ep p
(Pl—Q)S;1k2+H27r£"1A2E2q2{—;l—1 +b{s—qlk24AzE(pl~q)”
2

-1 ~1 ( K)

+| B85 (1-3a )+ 07| Bo—@-Bae i+ -Bas ) LS
pk

P2 P, 2%

(—1—(1+E(p1 +q) J+(1 -EAe“)(Qi—Q— 1 )—i (I+Eq(1-3A )}
Py ' k p

Pa Ky 2
-1 24Ep 2 -1
_ Kae {Ep, (I-BAE"I—I}}H;ﬁ 1+ K+ E 0 KEp)
Py 229 1)

2
2 Ep 4AEp
yHZE | sash| o1 |-Laag! ]+b5 ——(1+K)
4 Py Py szl

1 A -1 | -1 Py 2
+—5((1——5 A€ ) (1-0A€ )E(pl-—q)+l(5 A€ -0Ac€ ))qu
12}
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2_ -1 E
H . (Ep _
—%E—A(z—BAe DY =L | A -Zéizé(pl—q)(z—‘aAe“-a'Ae‘l)
Py Py
p _ Ep 2 p
s+ re ' a2l o1 ||+ 03] B E G -9 s =0, . (50)
q Py P, q

It is evident from eq. (49) that oscillatory modes will not be present for all values of
parameters. For example, in the absence of coupling between spin and heat flux (8=0) and that of
between spin and analogous solute flux (§’=0), magnetic field (H = 0), solute parameter (S = 0)

and permeability (k; — =), overstable solutions will not take place if
KEp, <2. .. (51

Thus the presence of the magnetic field, salinity, coupling between spin and heat fluxes and
that of between spin and solute fluxes may bring overstability in the system. The medium
permeability also brings overstability in the system.

In the absence of coupling between spin and heat flux (6=0), analogous solute flux
(6'=0) and 0;=0, eq. (49) reduces to

p]{ 1 3 1 —1
R=) S—{2A+b+—| b"| -- (1 +K) - KA€
{ 2| }kz[ (Fl( K )

7r£'1

2 ~1 2
+b2[2A%1—(1+K)+£1—7—r£——p2] + 2Ab£————-—p2 x[24 +b]° 1. (52)
1

4 4

For stationary convection i.e., 0;=0 and in the presence of coupling between spin and heat
flux (8#0) and analogous solute flux (& #0), eq. (49) reduces to

R=[S%2A+b(1—3’As‘1)+-klz-[b2£il-(l+K))(2A+b)—KAe“lb3
1

|
+H 7;8 p,b (2A +b) x[24 +b(1-3A HI L ... (53)

In the absence of magnetic field (H = 0) and solute parameter (S = 0), eq. (52) reduces to
31 -1 2 1 2 -1
R=|b E—(1+K)—KAe +2Ab T A+K) | [x[k"(QA+D)] ... (54)
1 1

a result derived by Sharma and Gupta14 eq. (32). For a Newtonian viscous fluid i.e.
3=0=K=5=H=0, eq. (52) reduces to
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FiG. 1. Variation of Rayleigh number (R) with wave number (k) having § = 10, &1 =1 for (a) H = 50, (b} H = 100
and (c) H = 200 Gauss. Lines with dots represent stationary and without dots represent overstability convection.
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FIG. 2. Variation of Rayleigh number (R) with wave number (k) having S = 10, H = 100 for (a) k1 =1, (b) &1 =3 and
(c) k1 =5. Lines with dots represent stationary and without dots represent overstability convection.
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FiG. 3. Variation of Rayleigh number (R) with wave number (k) having &y = 1, H = 100 for (a) S =5, (b) § = 10
and (c) § = 15. Lines with dots represent stationary and without dots represent overstability convection.
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We have plotted the variation of the Rayleigh number (R) with wave number (k) using eq.
(49) satisfying (50) for both stationary and overstable cases for values of the fixed dimensionless
parameters A = 0.5, §=1,5"=0.02,K=1,/=1,p;=1, ¢ =001, p,=1, E = 1 and £=0.5. Figures

1 (a-c) correspond to three values of magnetic field H = 50, 100 and 200 Gauss respectively for
stationary and overstability. Figures 2 (a-c) correspond to three values of permeability k; =1, 3 and

5 respectively and Figs. 3 (a-c) correspond to three values of solute parameter S = 5, 10 and 15
respectively. It is evident from figures 1 (a-c) that the Rayleigh number increases with increase in
magnetic field depicting the stabilizing effect of magnetic field. Moreover, the magnetic field
introduces oscillatory modes in the system. The presence of coupling between thermal and micropolar
effects may bring overstability in the system.

Figs. 2(a-c) show that the Rayleigh number decreases with the increase in permeability.
However, the reverse may also happen for certain wave numbers in case of overstability. It is also
evident from the figures 3 (a-c) that the Rayleigh number increases with increase in solute parameter
depicting the stabilizing effect of solute parameter. It is also noted from Figs. 1 (a-c), 2(a-c) and 3
(a-c) that the Rayleigh number for overstability is always less than that of stationary convection, for
a fixed wave number.
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