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Suzuki (1965) proved local saturation theorems for the operators L,(f; x).
In the present paper we have shown that analogous theorems hold true if we
consider the linear positive operators of Jackson type i.e, Ly, ¢(f; x).

§1. Let f(x) be an integrable function in (—=, =) and periodic with period
2x and let its Fourier series be

e o] [+0]
S[f]=1aq, +k21 (ar cos kx + by sinkx) = I dx(x). (L1L1)
= k=0

Let us consider the family of linear operators
o« ")
La(f; x)kEO g Au(x) (1.2

where gi"’, k=01,2,.. (gf()") == 1) are summating functions,

If there are a positive nonincreasing function ¢(n) and a constant K of functions
such that
1 () — La(f; %) | = o(g(n))
if and only if f(x) is constant,
ff(x) — La(f; x) | = O ($(n))
if and only if f(x) belongs to class K;
then it is said that this method of approximation is saturated with the order ¢(»n) and

the class K.

The above definition was given by Favard (1949) and he proposed to determine
the order and class of saturation for various summation methods. Since then a
number of contributions have been made and the problem was also extended to more
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general approximation processes (Alexits 1944, Butzer 1956, Favard 1957, Sunouchi
and Watari 1958, Suzuki 1965, Zamansky 1949, etc).

Let
Ua(t) = } + z gMcoskt 30, (—x <1< 7)

be a nonpegative trigonometric polynomial of degree n. Then the linear positive
operator (1.2), associated with Uy(t), can be represented by

La(f; %) = }_— j F(x + 1) Ua(t) d. (13

For the operator of this type Suzuki (1965) proved the following saturation
theorems.

Theorem 1.1 — If
| La(f; %) ~ f) [awy = 0 (1 — 8,7,
then f(x) is a linear function in [c, d], where [c, d] is any fixed interval of [a, b].
Theorem 1.2 — If
| Lo f; ) = f(x) | = 00 — &),
then f7(x) belongs to the class Lip (1, p; ¢, d).

Theorem 1.3 — If f(x) € Lip (I, p; g, b) and La{r?, 0) = O(1 — gi"), then
| La(f; %) — ) liesr = O (1 — 7"

§2. Schurer (1965) gave an example of a sequence of positive linear operators
of which the Féjer and Jackson operators are particular cases. Here we shall
determine the order of saturation and its class in the local approximation by a
special form of the Jackson type operators Lnss(n = 1, 2, ...) which is defined by

LT sin Jnr\*
= A I fx+18) ( sin 11 ) dt 21)

-

Lns——s(f; x)

where

T

i 2s
Ans—s = J (Sl‘n %’”) dt (71 = 1, 2, ...).

sin 1

-—T
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Here s is an arbitrary but fixed positive integer; the subscript ns — s denotes that

sin nt \* . . . . :
Snit is an even trigonometric polynomial of degree ns — s.
g

The sequence of the form (2.1) is a special case of the sequence of operators
(1.3) because

ns—s
sin 4 nt \?s - -
(5@:) = 3l g1 _S_ o™ coskt 3 0 (—n < t < 7).
k=1

...(2.2)
In case s =1 and s = 2, we have well-known Féjer and Jackson operators
respectively:
™

Lostfin) = 5 | s 0 ()

sin 4 ¢

-7

-~
i

o 1 . sin § nt\¢
Laalf; %) = 35— j S+ ’)( sin—%t) a.

—_7%

Let us consider the family of linear positive operators

[oe)
Lus—(f; x) = zop;'“‘“ Ax(x) (2.3)
fo=
where o = 0@, k=0, 1, 2, ... ({7 > Canzd)

are summating functions.

{ns—s)

k {ns—s)

N is a polynomial of degree2s — 1,

— 1 as n— oo and p

Since
(ns—s)
0

we have
(ns—s)
k
lim ——— =k (k=1,2,..). . (2.4)

n—>o | _. p("-‘s—S)
1

Suppose that the linear positive operator (2.3) can be represented as follows:

T

Lm-—s(f; X) = 1 I f(x 4 I) u,.(t) dt
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where () is a kernel

nS—Ss (ns—s)

Py
un(?) = § + E coskt >0
{ns-s)
k=1 Po

_ 1 fsin}nr\>
Ans_s \ sin §¢

ki

S w@) dt =1 (—= < t < 7).

—T

with

A

§3. Throughout the paper the norm should be taken with respect to variable
x, and the subscript p(1 < p < o<) to L? norm will be generally omitted. Another
convention is that the space C is meant by the notation L*, and the interval [c, d] is
an arbitrary fixed subinterval of the given interval [a, 5] which is situated in (—=, =).
Also, let us write

[ Lus-s(f: %) — (%) ll(a0

b
<{’(af | Los—s(f3 x) — f(x) | 7adx)1/? (1 < p < o0)
| max | Lus(f; x) ~ f(x)| (p = o),
Lx€la, b]

and

Lip(1, psa, b) = {f(x): sup | flx + k) — f(x) Jtapy = O@)}
| h|<8

§4. We establish the following results which are similar to Theorems 1.1, 1.2
and 1.3 of Suzuki (1965). We remark that this method is saturated locally; the order
of saturation is n~2 and the class of saturation {f € L?: f' € Lip (1, p)}. Again
note that no extra assumptions are involved in proving our results for Lns—s( f; X).

Our results are:
Theorem 4.1 — For f(x) € L(~=, =) N L¥a, b) (1 < p < o), if
I Zns—s(f; X) — f(%) [(a0) = 0o(n7?) ...(4.1)
then f(x) is a linear function in [c, d].
Theorem 4.2 — For f(x) € L(—~=, =) N L(a, b) (1 < p < o), if
I Las—s(f5 X) — £(%) fitapy = O(n7%) -(4.2)
then f'(x) belongs to Lip (1, p; ¢, d).



1198 A. WAFI

Theorem 4.3 — If f(x) belongs to the spaces L(—m, n) N L?(a, b) (1 < p < <o),
and f'(x) belongs to the class Lip (1, p; a, b), then

I Lns=s(f5 x) = f(X) [(ep0y = O ().

§5. Now, we start out with some well-known results that may be found in
Sunouchi (1962) which will be peeded in proving our theorems. His results read as
follows:

Theorem I — A necessary and sufficient condition for f’(x) to exist and belong
to the class B* over (g, b) is the uniform boundedness of c [x, S”] over [a, b}, where

ofn [x, S”] means the (C, 2)-means of the second derived series of (1.1).

Theorem II — A necessary and sufficient condition for f”(x) to exist and belong
to the class L*(p > 1) over (aq, b) is

b
§ 16 [x, S| ?dx = 0(l).

Theorem IIf — A necessary and sufficient condition for f'(x) to exist and
belong to the class BV over (a, b) is

b
[ 1o [x, 87 dx = 0O().

Proofs of Theorems 4.1 and 4.2 — The proofs of Theorems 4.1 and 4.2 are
almost the same. So we shall only give the proof of Theorem 4.2 with respect to
(C)-norm. The proof of Theorems 4.1 and 4.2 in the L? space are analogous to the

(C)-space.
Since
Luas(f3 X) — F(¥) = O(1 — o) = O(n7?),
uniformly over (a, b), we have
o[y et 9~ S ] = OW)
1 — plmed

for every m and uniformly in x on any fixed subinterval of [a, b}, i.e. on [c, d]
because

(m—a)

———— {Lnso [ %) — f(X)} ~ Z ————— Ax(x)

1 — (ns—s) (ns—s)

£y — b

*f7 is the Fourier series of bounded function (p = o).
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(see Zygmund 1959, Theorem 9.20, p. 367). Letting n » oo, we get by (2.4)
<0
o [x, T kAu(x)] = O(1)
k=0

hence we have f“(x) € Bin [c, d] from Theorem I

Remark : We have only to apply Theorem 1I or III in order to verify the facts
(4.1) and (4.2) in L? space (p > 1).

Proof of Theorem 4.3 — For the sake of simplicity, we shall only give the
proof with respect to Lr-norm (I € p < oo). The case of C-norm may be treated
by similar method.

Let us write § = min (¢ — a, b — d). By generalized Minkowski inequality.
we have

T

( f | Lo £i9) = ) 1 7de) " = 5 f Jue+n

0

G 1) = Y] ) e | dx}“”

"5 ”d} (f " Y)mx 1)+ 1= 1) = S untr) di |}
<2]? {jil f[f(x 1) + f(x — 1) — 2f(x)] ua(t) dt}p dx}l/,

= I, + 1,, say
I = ﬁ {f‘ f[f(x 4 1) F f(x — 1) — 2f(x)] ua(t) dz|” dx}”
<2—11; fun(t) dt(f|f(x 1) 4 S — 1) — 26 | ’dx)lln
0 c
<§]; fun(t)dep(ltl)
0

(equation contirued on p. 1200)
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f un(t) dt wy (n bt %)
0

8
< 1—([) () di(n | 2] + 1) W(%)

':?’l'—

[
B

I 1y [
gz—;wp(;z—)j(n]tl%—l)un(t)dt
0

e (D) [ d a1y ]
0 0

= K,wp (:T) [1 +n jl tua(t) dt]

< Kywp (%) (following Korovkin 1960, p. 71)

= 0(n?) ..{5.1)
where wy(3) is the modulus of continuity of f(x) in L*(c, d).

I= o {jdl j [/(x + 1) + f(x — 1) = 2(2)] unt) dt|” dx}

c
d
de
[+

< Ky {‘j dx(j [ f(x+ 1) + f(x—1) — 2f(x) | (s;nnzntt)28 dt)l?}llp
c 3

1/p

<‘-{

T

o

i 2} 1/p
(sj | f(x + 1) + f(x — 1) — 2f(x) | un(,)d,) }

Apes
Since
sin 4 nt
. — n
sin 41 <
for all n and ¢t and
sin ¢ sin /2 2

V

! -n:/2 = _ﬂ—, t E [0, W/zl
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And hence we have

1

sin 3 nt
| sin 3¢

sin £ ¢

< nft.

=

In view of the above inequalities, we have

d w
K,

Sk (i 0+ == A | z~2sdt)p}w

c

I, <

1 .
< Kowy (-n—) (following Suzuki 1965)

= Q(n2). ..{5.2)
Hence by (5.1) and (5.2), we have
| Lns—s{ 3 %) — f(X) lic,ay = O(n72).

Thus the approximation method is saturated locally for space L7(1 < p < o),
its order of saturation is n~2 and its class of saturation is {f : f* € Lip (1, p)}.
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