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Expressions for the displacement components together with the temperatures
for both compressive as well as distortional line sources over an isotropic
homogeneous generalized thermoelastic halfspace are obtained in what follows.
These results are later applied to determine the correction in the displacement
components and temperature when the free surface is slightly curved. As
expected, these turn out to be integrals of linear expressions involving the
displacements and temperatures over the plane-faced halfspace.

This paper dealing with surface line sources over a halfspaceforms an extension
of some of the earlier results in the theory of coupled thermoelasticity to generalized
thermoelasticity (cf. Harinath 1975).

Suppose we consider an isotropic. homogeneous perfectly elastic halfspace with
a plane boundary made up of a heat conducting material of density g, thermal
conductivity k, specific heat at constant strain s, and initially maintained at a constant
temperature 6°. Let us set up a rectangular Cartesian coordinate system (x, y, z)
with origin at the free surfacein such a way that the solid halfspace is represented
by z 0 with z = 0 as the free surface. We assume that all the quantities are
independent of the y-coordinate thereby reducing the problem considered into one
of two-dimensional plane strain. The displacement vector D in terms of two potential
functions Q and X may be expressed as:
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D= (40, w) = grad Q + curl (0, X, 0); Pl 0,div(0,X,0) =0

(1)
or equivalently as:
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where the potential functions Q, X and the temperature perturbation 8 from 0° satisfy
the partial differential equations:
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o represents the isothermal compressional wave velocity, 8 the shear wave velocity,
~ the ratio of the coefficient of thermal expansion to isothermal compressibility, <’
the relaxation time and a superimposed dot indicates differentiation with reference to
the time ¢, Moreover, the second equation in (3), shows that shear waves are
uninfluenced by the thermal terms.

In order to determine waves propagated along the x-direction, we assume that the
solutions are proportional to exp (ipt — ifx) where p denotes the frequency parameter
and f denotes the wave number, As in Harinath (1976), solving (3) we obtain;

= T AU).explgz + ipt — 3l df
+ J B(f).explg.z + ipt — ifx} df

X = [ CU).explgsz + ipt — ifxl df ()

f

10 = o(pt — ¥2) [ A() explgiz + ipt — ifxl df
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wherein the unknown functions A(f), B(f), C(f) have to be determined using the
boundary conditions; the following notations are made use of in (4):
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The above solutions (4) are used to calculate the normal and shear stresses in the half-

space given by the expressions:
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We now separately consider the compressive and distortional line sources over
the halfspace.

Compressive line source — The boundary conditions across the free surface z =0
in this case are
b
L E 4 h =0
4z -+
where 3(x) denotes the Dirac 3-function and 4 is a constant. These conditions in
conjunction with eqns, (4) and (6) lead to the equations:

Cue = pS(X), Gzz = O

(2f2g2 — p®) [4(f) + B(f)] + 2ipg:p*C(f) = 1/2= 7
2if B* {g14(S) -+ &B()} — (2f*3* — p*) C(f) = 0 l} ()
(h — gD (p* — «*43) A(S) + (h — g») (P* — o*C}) B(f) = O J'
which on solving yield
A(f) = 2f*8* — ) (h — &) (P* — *C3)2m A(S) 1
B(f) =— 2f*8 — p*) (h — &) (P* — ¥ (D)2 A(S) {>---(8)
C(f) = if B8 — &) [* — «* {A(f* + £,8) [
— (&1 + 82) §:1.8))/= A(S) JI
where
2f2p2 — p? 2fp* — p? 2ipg,B?
Af) = 2ifg,B? 2ifg,B* —(2f** — p?)
(h—g)(p*— (D) (h—g)(p* — a®L3) 0
= (h— g) (p* — «?LF) [(2f?B* — p°)* — 4g:8, /3]
— (b — ) (P* — «*LD) [(2f2B* — p*)* — 4g,8, 1284 (9

Substituting eqns. (8) in eqns. (4) we get Q, X, 0. Since we are concerned with the
surface displacements over the free surface z = 0, we denote these by un(x,0) and
wa(x, 0). The temperature is denoted by 6x(x, 0). These are due to the compressive
line source produced by a normal force along the y-axis, and a calculation yields
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un(x,0) = 5 | { 2727 — PO [(h — 8,) (P2 — o2D) — (h — 25) (P* — @3] }
’ 2 —28:8%(gy — &) [hp? — ha®([f% + £18,) + *£18:(81 + &)
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wa(x, 0) = 227;“ I (g1 — o) [p® — ha¥(f* + £,8,) + %8,8:(8: + &)
—
exp (ipt — ifx) 10
X AS) o ~(10)
2 42r2 _ y2r2 &
tn(x, 0 = L= =B [ apage — gy g, — 2
exp (ipt — ifx)
xS . (1)

Distortional line source — In this case the boundary conditions across z = 0 are
0
6o = 0, 0 = p3(x), 27 4 B =0,

These conditions in conjunction with eqns. (4) and (6) lead to equations connecting
A(f), B(f), C(f) similar to (7) which on solving yield the solutions of Q, X, 6.
Denoting the surface displacements across the surface by ur(x, 0), wr(x, 0) and the
temperature by 67(x, 0), which are due to a distortional line source produced by a
tangential force along the y-axis, a calculation yields:

0

p2
urCe, ) = 2= [ 10h = £ (0 — o) — (h — £ (2* — 323)
g3 exp (ipt — ifx) 12
X A df ...(12)
wr(x, 0) = —un(x, 0)
Hpt — o) (0 — 0¥ [ . fexp (ipt — if¥)
br(x, 0) = - g g:(81 — &) AD df.

..(13)

Equations (10) and (12) together yield the required displacement components while
eqns. (11) and (13) yield the temperatures over the free surface z = 0, All these
expressions are made use of in the application incorporated below.
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Application — Suppose the free surface of the halfspace is slightly curved in
the form of a cylinder with the y-axis along a generator, so that its equation is given
by, z = em(x), where ¢ is a small constant whose squares and higher powers are
neglected and m(x) is a function of x possessing a Fourier transform. Over the free
surface, the displacements and temperatures may be divided into zero order terms
and first order terms, the former yielding the results due to a plane-faced free
surface and the latter yielding the effects of curvature. Since we are interested
in the effects of curvature of the free surface, we denote the first order terms by
u,(x, 0), wy(x, 0), 8,(x, 0) and term these as the correction terms due to the curvature,

A lengthy calculation leads to the following integrals yielding the correction
terms involving f;, a root of A(f) = 0:

u(x, 0) = T {—pBZWT(x — £.0) E(f) + oBPur(x — f, 0) Ex(f, f3) }
o + yphofr(x — f, 0) Ey(f)/(p® — «®(d) (p* — «®¢f)

xm( f) exp (ipt — ifyf)df

+RBE(S) | ur(x — £, 0) m(f) exp (ipt — ifuf) df ...(14)

(e o]

wis, 0= | { oBtwn(x — £, 0) Ey(fy) — oBtun(x — f, 0) Ex(,fo) }
SR ) Lyprattalx — £, 0) ESI(R? — @%3) (2* — o))

x m(f) exp (ipt — ifof) df

— WE(f) | un(x — £, 0) m(f) exp (pt — ihof) df .-(15)

0.x, 0) = 980 | [nx — £, 0) Ex(fy) + 0r(x — £, 0) Ex(f, fo)

-~ 0

x m( f) exp (ipt — ifof) df

S RBE( | 0r(x — f, 0) m(f) exp (ipt — Fof) df

L eEf) T f {4f2!34g3 [g(P? — a2C3) — gy(p* ~u2c5)1}

Zrypt + o3t — C3) (2?8 — pP)*

- — 0

exp (ipt — ifyf + ifeq) dad ...(16)
X AU m(q) dq df (
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where the following notations have been employed:
(RfE8* — p*) (h — g2) (p* — «2(3) Ey(f)
= p'B¥(gl — g2) {hp® + ha*(f3 + g7g%) — %83 g2 (g7 + &)}
(2f5 82 — pr) (h — g2) (p* — «*C3) Ey(f, fo)
= — 2i(g} — g {[E] (fo) — fLE?™ (/o)}

EF(f)) = h{(2f38® — p)(2f3e® + p) (g8 + 83) — 4388 (p? + &3S 8)}
+ (238 — PSS — 8782 (p* + «*(f§ + g223))
— a¥fi(g) + 820 + 4/Go%gigigd(gl + g2 — h)
EX* (fy) = h{Q2f58® — p) (89 + g9) (2p* + 4a[3)
— (258 + P (Pt + «*f§ + «?182) g3}
+ (2f5p — ) {P°f§ + 2f§ — 322f58182
— 2p%gigy — 2¢%(g1g2)%}
— (2138 — PP {(g9)* + (g8)%} oS0
+ (25 8* + p?) (2 + g2) «"g1g2 gz
Ey(fo) = (82 — g2) (h — g%) (p* — o*¢})
(f582 — p?) (h — g2) (p* — «*¢3) EL(Sy)
= f3213 82 — p?) {(h — g9) (p* — oF) — (h — g1) (p* — «*C1)}
+ (2188 — p?) {(80)* (h — g8) (p* — #*C3)
— (g9* (h — g3) (p* — «*03)}
— 4f2g3 {82 (h — 83) (p* — a*L3) — g2 (h — g7) (P* — «*C1)}
and wherein any superscript zero indicates that such an expression is evaluated

at f = f, the root of A(f) = 0.

Equations (14), (15) and (16) completely characterize the correction terms
in the displacement components as well as the temperature due to the curvature of
the free surface. Moreover, these show that the correction terms are integrals of
linear expressions of the corresponding displacement components and temperatures
when the free surface is a plane. Even though the expressions appear cumbersome
these may be evaluated by the method of steepest descents for large values of p
and at large distances from the line sources yielding approximate values required
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in any numerical calculation, In conclusion, we remark that the Rayleigh wave
components may be analyzed similarly.
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