NEW CRITERIA FOR p-VALENCE

R. M. GOEL AND N. S. SOHI

Department of Mathematics, Panjabi University, Patiala 147002

(Received 6 October 1979)

In this paper we consider the classes $T_{n+p-1}(\alpha)$ of functions

$$f(z) = z^{p} + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \dots,$$

regular in the unit disc E and satisfying

Re
$$\frac{(D^{n+p-1}f)'}{pz^{p-1}} > \alpha$$
, $0 \leqslant \alpha < 1$, $z \in E$

where $D^{n+p-1} f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z)$. It is proved that

$$T_{n+p}(\alpha) \subset T_{n+p-1}(\alpha).$$

Since $T_0(\alpha)$ is the class of functions f(z), with $\operatorname{Re} \frac{f'(z)}{pz^{p-1}} > \alpha$ all functions in $T_{n+p-1}(\alpha)$ are p-valent.

1. Introduction

Let A(p) denote the class of functions

$$f(z) = z^{p} + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + ..., ...(1.1)$$

p a positive integer which are regular in the unit disc $E = \{z : |z| < 1\}$. Let

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$$

$$g(z) = z^p + \sum_{n=1}^{\infty} b_{p+n} z^{p+n}$$

belong to A(p). We denote the Hadamard product or the convolution of f and g by

$$(f * g)(z) = z^p + \sum_{n=1}^{\infty} a_{p+n}b_{p+n}z^{p+n}.$$

In this paper we shall prove that a function $f \in A(p)$ and satisfy one of the conditions

Re
$$\frac{(D^{n+p-1}f(z))'}{pz^{p-1}} > \alpha$$
, $0 \le \alpha < 1$, $z \in E$...(1.2)

n any integer greater than p, where ()' stands for the first derivative and

$$D^{n+p-1}f(z) = \frac{z^p}{(1-z)^{n+p}} * f(z) \qquad ...(1.3)$$

is p-valent in E. We denote by $T_{n+p-1}(\alpha)$ the classes of functions $f(z) \in A(p)$ and satisfying (1.2). It is easy to see that

Using (1.4) condition (1.2) can be re-written in the form

Re
$$\left\{ (n+p) \frac{D^{n+p} f(z)}{pz^p} - n \frac{D^{n+p-1} f(z)}{pz^p} \right\} > \alpha, \quad z \in E.$$
 ...(1.5)

We shall show that

$$T_{n+p}(\alpha) \subset T_{n+p-1}(\alpha). \qquad \dots (1.6)$$

Since $T_0(\alpha)$ is the class of functions which satisfy the condition

$$\operatorname{Re} \frac{f'(z)}{pz^{p-1}} > \alpha \geqslant 0$$

and we know from (Umezawa 1957) that such functions are p-valent, the p-valence of functions in $T_{n+p-1}(\alpha)$ follows from (1.6).

By putting p = 1, we shall get the criteria for univalence.

2. The Classes
$$T_{n+p-1}(\alpha)$$

Theorem $1 - T_{n+p}(\alpha) \subset T_{n+p-1}(\alpha)$, $0 \le \alpha < 1$, n is any integer greater than p.

We need the following lemma due to Jack (1971).

Lemma 1 — Let w(z) be non-constant and regular in |z| < 1, w(0) = 0. Then if |w(z)| attains its maximum value on the circle |z| = r < 1, at z_0 , we can write

$$z_0 w'(z_0) = k w(z_0)$$

where k is a real number greater than or equal to one.

Proof of Theorem 1 — Let $f(z) \in T_{n+p}(\alpha)$. Define a regular function w(z) in E such that w(0) = 0, $w(z) \neq -1$ by

$$(n+p) D^{n+p} f(z) - n D^{n+p-1} f(z) = p z^p \frac{1 + (2\alpha - 1) w(z)}{1 + w(z)} \cdot \dots (2.1)$$

Differentiating (2.1), we get

$$\frac{(D^{n+p}f(z))'}{pz^{p-1}} = \frac{1 + (2\alpha - 1) w(z)}{1 + w(z)} - \frac{2(1 - \alpha)}{n + p} \frac{zw'(z)}{(1 + w(z))^2} \qquad \dots (2.2)$$

We claim that |w(z)| < 1 for all $z \in E$. For, otherwise, by Lemma 1, there exists a z_0 , $|z_0| < 1$ such that

with $|w(z_0)| = 1$ and $k \ge 1$.

(2.2) in conjunction with (2.3) gives

$$\frac{(D^{n+p}f(z_0))'}{pz_0^{p-1}} = \frac{1 + (2\alpha - 1)w(z_0)}{1 + w(z_0)} - \frac{2(1-\alpha)}{n+p} \frac{kw(z_0)}{(1+w(z_0))^2} \cdot \dots (2.4)$$

Since Re $\frac{1+(2\alpha-1)\ w(z_0)}{1+w(z_0)}=\alpha, k\geqslant 1$ and $\frac{w(z_0)}{(1+w(z_0))^2}$ is real and positive we see that Re $\frac{(D^{n+p}f(z_0))'}{pz_0^{p-1}}<\alpha$. This contradicts the hypothesis that $f(z)\in T_{n+p}(\alpha)$.

Hence |w(z)| < 1, $z \in E$ and it follows from (2.1) that $f(z) \in T_{n+p-1}(\alpha)$.

Theorem 2 — Let c be any real number greater than p. If $f(z) \in T_{n+p-1}(\alpha)$, then

$$F(z) = \frac{c+p}{z^c} \int_{0}^{z} t^{c-1} f(t) dt \in T_{n+p-1}(\alpha), \text{ for } c+p > 0.$$

PROOF: One can easily verify that the function F(z) satisfies

$$z(D^{n+p-1}F(z))' = (p+c) D^{n+p-1}f(z) - cD^{n+p-1}F(z). \qquad ...(2.5)$$

Define a regular function w(z) in E by

$$\frac{(D^{n+p-1}F(z))'}{z^{p-1}} = p \frac{1 + (2\alpha - 1) w(z)}{1 + w(z)}.$$
 ...(2.6)

Obviously w(0) = 0, $w(z) \neq -1$ for $z \in E$.

Using (1.4), (2.6) can be re-written as

$$(n+p) D^{n+p}F(z) - nD^{n+p-1}F(z) = pz^{p} \frac{1 + (2\alpha - 1) w(z)}{1 + w(z)} \cdot \dots (2.7)$$

Differentiating (2.7) and using (2.5), we get

$$\frac{(D^{n+p-1}f(z))'}{pz^{p-1}} = \frac{1 + (2\alpha - 1)w(z)}{1 + w(z)} - \frac{2(1-\alpha)}{p+c} \frac{zw'(z)}{(1+w(z))^2} \cdot \dots (2.8)$$

Now proceeding as in Theorem 1, we can show that $F(z) \in T_{n+p-1}(\alpha)$.

Theorem 3 — Let $f(z) \in A(p)$ and satisfy the condition

Re
$$\frac{(D^{n+p-1}f(z))'}{pz^{p-1}} > \alpha - \frac{(1-\alpha)}{2(p+c)}, c+p > 0.$$

Then the function

$$F(z) = \frac{p+c}{z^{\mathfrak{o}}} \int_{0}^{z} t^{\mathfrak{o}-1} f(t) dt \in T_{n+p-1}(\alpha).$$

The proof of this theorem is similar to that of Theorem 2 and so we omit it.

Corollary 3(a) — By putting n + p = c = 1 and $\alpha = 0$ in Theorem 3, it follows that if $f(z) \in A(p)$ and satisfies the condition

Re
$$\frac{f'(z)}{pz^{p-1}} > -\frac{1}{2(p+1)}$$

then

$$\operatorname{Re} \frac{F'(z)}{pz^{p-1}} > 0$$

and hence F(z) is p-valent in E.

Corollary 3(b) — Taking n + p = c = 1 and $\alpha = 1/(2p + 3)$, we see that if

Re
$$\frac{f'(z)}{pz^{p-1}} > 0$$
, then Re $\frac{F'(z)}{pz^{p-1}} > \frac{1}{2p+3}$.

Remark: By taking p = 1 in Corollary 3(a) and Corollary 3(b) we get the following results:

- (i) Re $f'(z) > -\frac{1}{4}$ implies Re F'(z) > 0;
- (ii) Re f'(z) > 0 implies Re $F'(z) > \frac{1}{5}$.

Both these results are extensions of an earlier result due to Libera (1965) viz.; Re f'(z) > 0 implies Re F'(z) > 0.

3. Converse of Theorem 2

In this section we prove the converse of Theorem 2.

Theorem 4 — Let c + p > 0 and f(z) be defined by

$$F(z) = \frac{p+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt, c+p > 0.$$

If $F(z) \in T_{n+p-1}(\alpha)$, then $f(z) \in T_{n+p-1}(\alpha)$ in $|z| < \frac{p+c}{1+\sqrt{(p+c)^2+1}}$. The result is sharp.

PROOF: Since $F(z) \in T_{n+p-1}(\alpha)$, we can write

$$z(D^{n+p-1}F(z)) = pz^{p} [\alpha + (1-\alpha) u(z)] \qquad ...(3.1)$$

where $u(z) \in P$, the class of functions with positive real part in the unit disc E and normalized by u(0) = 1. We can re-write (3.1) as

$$(n+p) D^{n+p}F(z) - nD^{n+p-1}F(z) = pz^{p} [\alpha + (1-\alpha) u(z)]. \qquad ...(3.2)$$

Differentiating (3.2) and making use of (2.5) we get after a simple computation

$$\left(\frac{(D^{n+p-1}f(z))'}{pz^{p-1}}-\alpha\right)(1-\alpha)^{-1}=u(z)+\frac{1}{p+c}zu'(z). \qquad ...(3.3)$$

Using the well-known estimate $|zu'(z)| \le \frac{2r}{1-r^2} \operatorname{Re} u(z)$, |z| = r, (3.3) yields

$$\operatorname{Re} \left\{ \left(\frac{(D^{n+p-1}f(z))'}{pz^{p-1}} - \alpha \right) (1-\alpha)^{-1} \right\} \geqslant \left(1 - \frac{1}{p+c} \frac{2r}{1-r^2} \right) \operatorname{Re} u(z).$$
 ...(3.4)

The right-hand side of (3.4) is positive if $r < \frac{p+c}{1+\sqrt{(p+c)^2+1}}$. The result is sharp for the function f(z) defined by

$$f(z) = \frac{z^{1-c}}{p+c} (z^c F(z))'$$

where F(z) is given by

$$(D^{n+p-1}F(z))' = pz^{p-1}\left(\frac{1+(2\alpha-1)z}{1+z}\right).$$

Corollary 4(a) — By Putting n + p = 1 and $\alpha = 0$, we see that if

Re
$$\frac{F'(z)}{pz^{p-1}} > 0$$
, $z \in E$, then Re $\frac{f'(z)}{pz^{p-1}} > 0$ for $|z| < \frac{p+c}{1+\sqrt{(p+c)^2+1}}$.

By putting c = 1, we get the result obtained by Goel (1972).

REFERENCES

Goel, R. M. (1972). On radii of starlikeness, convexity, close-to-convexity for p-valent functions. Arch. ration. Mech. Analysis, 44, 320-28.

Jack, I. S. (1971). Functions starlike and convex of order α . J. Lond. math. Soc. (2), 2, 464-74. Libera, R. J. (1965). Some classes of regular univalent functions. Proc. Am. math. Soc., 6, 755-58. Umezawa, T. (1957). Multivalently close-to-convex functions. Proc. Am. math. Soc., 8, 869-74.