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An approximate solution has been obtained for the axisymmetric boundary
layer with suction over a porous sphere. In the region of pressure decrease
from the front stagnation point to the point of the maximum velocity the
direct quadrature formula has been used. In the region of pressure rise the
momentum and the kinetic energy integral equations have been numerically
integrated with the aid of a singly infinite family of velocity profiles.

1. INTRODUCTION

Walz (1948) first developed a method based on the joint use of the momentum
and the kinetic energy integral equations to study the two-dimensional laminar
boundary layers along solid walls. Head (1961) put the momentum and the kinetic
energy integral equations for two-dimensional boundary layers along porous walls in
dimensionless forms and showed that results with sufficient accuracy could be
achieved by the joint use of the two integral equations. Rott and Crabtree (1952)
gave a direct quadrature formula for the calculation of the momentum thickness for
axisymmetric boundary layers along solid walls.

In this paper the quadrature formula of Rott and Crabtree (1952) has been
extended to the axisymmetric boundary layers with suction and has been used to
obtain the momentum thickness for the boundary layer with suction over a sphere in
the region of favourable pressure gradient (0 < # < 1 =). The method suggested
by Head (1961) has been extended to the investigation of the axisymmetric boundary
layers with suction. The momentum and the kinetic energy integral equations for
axisymmetric boundary layers have been used with the aid of Schlichting’s (1949)
profiles to obtain a step-by-step solution for the boundary layer with suction in the
region of adverse pressure gradient (¥ > } =) over a porous sphere,

2. EQUATIONS

The momentum and the kinetic energy integral equations for axisymmetric
boundary layers with suction are given below.

(@) Momentum Integral Equation

The boundary layer equation for steady laminar incompressible flow past
axisymmetric bodies is
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and the equation of continuity is
dur) | 2o0r) _ 0 - (2)

ex oy

Idtegrating eqn. (1) with respect to y from y = 0 to y = oo and using the
equation of continuity (2), we obtain

d (6 2
E(T)=F[l—(2+H)A+c—Z] (3
where v = ufp, kinematic viscosity,

U(x) = potential flow velocity

@®
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V40 .
¢ = —,c < 0, suction
v

r(x) = radius of cross section,

Introducing the dimensionless quantities

% = Xx/a, where ais a representative length,

U = U(x)/U,, where U, is the free stream velocity,
and t* = (0/a)?. Uyaly,

the momentum integral equation in dimensionless form is

dt 2
F-pl-Q+ma+e—-2) -(4)

x
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(b) Kinetic Energy Integral Equation
Adding —— > [a(ur) 8((3‘;)] to the left-hand side of eqn. (1), multiplying

through by u and integrating with respect to y from y = 0 to y = oo with the aid of
eqn. (2) we get

4 (%’L) 2 2p - HGA + 2) + o (5
2=

(o) (&) (5)

Ha = E/e,

where € =

D =

St 8

The direct variation of H is given by

dH . _ 1 de do
& =0 Lax z;]
. dH. 1
ie. e = gD —H{l—~ (H—1A+ o} + o] ...(6)

(¢) Wall Compatibility Condition
At the surface of the body where u = 0, v = v, the boundary layer equ. (1)

reduces to
dtu _ au (au)
Y (8y2)y de t oy
ie. m=—7£+ o (D
otu
where m= — (6)’ )

3. FAMILY OF VELOCITY PROFILES

The one-parameter family of velocity profiles given by Schlichting (1949) for
the approximate calculation of boundary layers with suction is

+ = R + KR (8
where n= S(Lx) Fp =1~ e
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Fyn) = Fy(n) — sin 2,0 < 1< 3
=FhM@ -1, 712>3
and 3(x) is a measure of the local boundary layer thickness.

The compatibility condition (7) takes the form

(K+1)g;+%o{1+1<(1—%)}—1\=0. (9

4. DIreCcT INTEGRATION FORMULA

Thwaites (1949) constructed a simplified method and approximately represented
the function in the numerator of the momentum integral equation for two dimensional
boundary layers as

2[0 — 2+ H)A + o] = 045 — 6A + 1.28¢ + 0.76c2. ..(10)

Following Rott and Crabtree (1952) and using the approximation eqn. (10)
given by Thwaites (1949) the momentum integral eqn. (4) for the axisymmetric
boundary layers with suction can be put in a simpler form as

% (T°r2t*) = (0.45 + 1.28¢ + 0. 7642) r20s .10
- _r = v (Ua\”
where r...a,vs__m(T)

U= ez, v,
v

<
[~

[}

Directly integrating eqn. (11) from ¥ = 0 to % for constant values of ¢ we have

X

2 -
_ 045 4 1285 + 0.765 g Feisdz -(12)

t*
;.'2(76

Thwaites integration formula (12) would give sufficiently accurate values of ¢* in
the region of favourable pressure gradient but would diverge from the actual value
in the region of adverse pressure gradient.

5. POROUS SPHERE

It is proposed to investigate the laminar incompressible boundary layer over a
porous sphere.

The velocity distribution along the contour of the sphere is given by

U(x) = 2 U, sin (x/R)
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i.e. U= 23sinz
where a = R, radius of the sphere
Fo X
~ R
x
r(x) = R sin N3
ie. r = sin %
du
— ¥ 2 3 4% =
and N=1 P 2t* cos %

Equations (4) and (6) and the compatibility condition (9) become

—= =J& t*, H) (13)
where
4
7 pE — — 3% ¥
f(x’t’H‘)_SsinE[l St*(H + 3cos % + o
dH.
Ve = g(x, t*, H) ...(14)
where
= L% . 2 _ ag _
g%, t*, H) = TR Sm,_C[2D H {l — 3t*(H — 1)cos % + o} + o]
and
(K—,—I)H+ce {l—{—K(I—-Z—)}—%t*COSE—_—O ..(15)

(a) Direct Integration

For the porous sphere eqn. (12) becomes

Rl

2
o 2 [045 + 1535:: +- 076c] I P
ie Pra 0.45 + 1.28¢ + 0.760% __ cos%sin® ¥ sm6
e - sin ¥
6 g 8 s
— 35 COS ¥ sin® ¥ — 75 ©OS ¥ sin® x]. : ...(16)

At the stagnation point ¥ = 0, eqn. (16) takes the indeterminate form ¢ and the value
of t* is obtained by the simple process of taking the limit.
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At any other point 0 < x < } = the value of #* is computed by eqn. (16) and
with the known value of t* the value of the profile parameter K is obtained by a
numerical solution of the compatibility condition (15). The value of K gives the
other corresponding parameters He, H, [ and D (Mishra and Choudhary 1972).

(b) Solution of the Momentum and the Kinetic Energy Integral Equations

After having obtained the values at ¥ = } = the momentum integral eqn. (13)
only has been solved for a few steps by Runge-Kutta method (Scarborough 1956) with
the satisfaction of compatibility condition (15).

After a few steps the momentum and the kinetic energy integral equations both
have been solved by Runge-Kutta method. Having obtained the values at five initial
points by Runge-Kutta method repeated ascending differences upto the fourth are
computed for the functions f and g. The increments in #* and H. over a step-
length are calculated by Adams method (Scarborough 1956) using a quadrature
formula. Taking the step-length A ¥ = 0.0] the calculations have been made step-
by-step up to the point of separation given by / = 0.

6. RESULTS

Calculations have been made for three different constant values of ¢ = 0,
—0.2, —0.4. The results of calculations are shown in Figs. 1 and 2. With an increase
in the rate of suction the boundary layer thickness decreases (Fig. 1) and the point of
separation shifts downstream.

For o = 0 the problem reduces to the solid boundary problem and the point
of separation obtained by the present method is ¥ = 1.979 which agrees well with the

S=POINT OF SEPARATION s

F 1.55

N

I
1.45
1.35.
1.33

0.8
Fic. 1. Variation of ¢* againsi % for different FiG. 2. Variation of H, against % for different

values of c. values of o,
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point of separation at % = 1,913 given by the exact method of solution (Schlichting
1968). It is expected that the results with suction would be sufficiently accurate.

Point of separation on a porous sphere

Suction parameter Point of separation
G = t*l/z‘;s Xs 96:
0.0 1.979 113°24'
—0.2 ' 2.100 120°28’
—04 2.320 130°14
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