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A NOTE ON RIESZ MEAN

P. C. MAHAPATRA
Department of Mathematics, J.K.B.K. College, Cuttack, Orissa

(Received 8 November 1978; after revision 24 May 1980)

In the present paper, three theorems are proved which generalize the results
of Das (1969) and Varshney and Prasad (1969).

§1. Let T*a, be a given series with sequence of {s.} for its nth partial sum.
We suppose that sequence {A:} to be a sequence of non-decreasing, nonnegative
numbers tending to infinity with n. Further let R, denote the (R, A4, 1) mean of the
sequence {s»} defined

n

1
Ra = A z Ay — Av1) sy, (A = 0). ~(1.1)
v=0

If Ra—> 5 as n— oo, the sequence {s,} is said to be summable (R, As, 1) and if in
addition {Ra} is of bounded variation, then it is said to be absolutely summable or
summable | R, An, 1 | .

X

Let {pa} be a sequence of constants such that P, = EO P # 0 (n= 0) and

P_, = p_, = 0. Then the (&, p) mean of {s,} is defined by
n

1y =

1
E pn—vsv- ...(1.2)

v=0

when X a. is absolutely (N, p) summable, we write, for brevity Sa, € | N, p | -
Let T, be the (N, p) mean of the sequence {na,}.

We define the sequence of constants {c.} formally by
(Z poxn)1 = T coxn, (c-y = 0). ..(1.3)
We write for the sequence { fn}

fO=fivfitfit o +h

SO =g g,

*Summation without limit is from 0 to co.
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§2. The main object of this paper is to give three general theorems which
generalize the following results.

Theorem A (Das 1969, Theorem 9) — Let z an € IN, ’71— and

1

{mea} € [ R e, 1] (0<a<])

then
X an € | ¢, 0], or absolutely covergent,

Theorem B [Varshney and Prasad 1969] — If the series T a, is summable
| N, k| (k = 1)and the sequence {n®a,} is of bounded variation for some 3(0 <38 < 1),
then the series Z a, is absolutely convergent.

§3. We establish the following:

Theorem 1 — Let X(p) be some function of the integer p such that

(1)
PCXI(P) o) ..(3.1)
bt ()
T [Gl=o001C™]) (32
n=y41
p+X(@)
23 e = 06 (39
v=p

Then

Z AELYE <oo=>zan€]RAn,1|

if and only if

p+X(p)
oPs z | cw | ]A(A“’ |_ o). (3.4

v=p

Theorem 2 — Let 2* < = Prnt < SEhpe>0,
Pnydl =™ Page
P,
= 0 ...(3.5

Px(ey M (3.3)
X(o) = O(). (3.6

Then }
Ta. € {N,p|=>Zan € | R, M, 1}
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if and only if
p+X (9)

pP, ] AAV—I

= 0Q). (3.7

v=p

Theorem 24 — Let the conditions (3.5) and (3.6) of Theorem 2 hold and let
further the following conditions also hold:

—A—%\)‘—"—”—l)— is monotonic decreasing, ...(3.8)
X(e) A(Ava) _
T L0 — o, (3.9)

Then
Zan € [N,pi=>Za. €| R s 1 |.
Theorem 3 — Let Z as € | N, 3 | for 8 > 0 (however large) and
{n=*a,} € | R, en*, 1] for 0 <« < 1. ...(3.10)
Then Z a, is absolutely convergent.

§4. We need the following lemmas for the proof of Theorem 1.

Lemma 1 —
[e0]
G € | R, A, 1] (40
n=1
if and only if
n
v=p

uniformly in p = 1,
Proor: Now using the inversion formula

v
vy == pX L'v_prP'

we obtain
n
An — An_
Ry — Rpy = m::Tl z ayAy—1
v=1

(equation continued on p. 1437)
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A n v
- n — An—-l /\v—l
- An . I\n‘_l z v z CV_FPP TF
v=1 p=1
_ An b An_l Av 1
- I\n .l\n—-l z z Cv .
v=p

Thus (4.1) is true if and only if uniformly in p = 1,

- ~— An_1 | Av_1 _
J PP z /\n . /\n—-l 2 v Cv—p

n=; v=p

This completes the proof.

Lemma 2 — We write m = min {n, p + X(p)}.
Let (3.2), (3.3), (3.4) hold. Then

oo n

)\n - An—-l z (AV—.I) z Cr e

pPe

/\n-/\n—-l - O(l)

n=p v=p r=1y0

uniformly in p = 1.

ProOF: Now

@ m v
s S 3 e
n—1 v
n=p v=p r=0
P+X(p)
<SS o ) e
- An- V_Pl
n=p v=p
w0 ©m
An — An-1 AV 1 (1)
+ el DR ( ) |
n=p+X(p)+1 v=p
p+X(e) A R n A
_ n — An—1 Av-1 (1)
- An . Auo z A ( v ) CV"F
n=p v=p
© p+X ()

An - An—l A___\J—_—l (1)
+ Z /\n-/\n—l z A ( v ) CVHPJ

n=p+X(p)+1 i
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p+X(p) R 9+X(p),\ A
< fv-1 1) n — An-l
= 2 A ( v ) CV—P An . )\n—l
v=p n=vy
© \ R p+X(p) )
n — /n—1 Av-1 (1)
+ z An s An- Z A( v )lc"—"
n=g+X(@)+1 v=p
p+X(o) \ 0 \ A
= -1 ) fn " Ant
- z A ( v ) | C"_F ‘ An . Anat
v=p n=y
p+X(e)
AT
v V Av
v=p
p+X(p) 9+X(°)
A(Av-l) |+ cw
VA v—-l-‘ Cle
v=p v=p
: %)=, )
= 0| — Ol -+ 0
(PPP> - (P“Pp pPe

by the relations (3.2), (3.3) and (3.4).
This completes the proof.

Lemma 3 — Let (3.1) and (3.4) hold. Then

“ 1
A — Ana (1) ( )
An 7~ An of =
A | C P‘m+1 -5,
n=p
when m = min {n, p + X(p)}.

ProoF : Now

[e o]
z — An_ An — An-1 (1) Am -
Xn_l m e m + 1

p+X(p))\ N
< n n-1 (l)
= /\n /\n 1 m + l I C I
n=p
[v 0]
, An = Anl Am | (1)
- z Amdna m g 11 Cmoe ]
n=p+X(p)+1

(equation continued on p. 1439)
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p+X ()
- n — /\n—l l (l) l
Andaa 1 + n+ 1
n=p
[+
" z A — At AeiX(e) o |
Ao A p + X(p) ' TX)
n=¢+X(e)+1
e+ X (o)
_ ,_/\n — An- l )
B+ 1) Aag ' mF
n=p
[e0]
4 AerX(p) | cW [ z An = Ana
P + X(p) Xx(e) /\n . An1
n=p+X(c)
p+X(e)
_AM | ¢
"+ 1) dsg ' TP
n=p
o
p+X(P) )E_L'l
+ o + X(p) Ic (P) | z An.Ana
n=p+X()
e+X () AN \
_ " (1) p+X(p) (1)
@+ e | Coe I T ot X | Cxn |- Awr( )
n=p

i
o]
~
==
~—~—

by the conditions (3.1) and (3.4).

§5. Proof of Theorem 1 — It follows from (Das 1969, Theorem 6) on general
infinite series that

[en)
n=1

0]
ifand only if T | ts =~ ta1| = O(1)

n=1

(5.1

Therefore for the proof of the theorem, it is enough to show that
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< | T
2

From Lemma 1, the necessary and sufficient condition for the result (5.2) is

= O0(1) = {R.} € bounded variation. ..(5.2)

< A A Ava
=3 hn 2 70l = o(ir)
n=p
Now
) n
CED% e eall DIEIDIN LA
n=p ve=p v=m+1
= Juy + Ji (say)
where

An — An_l

T = z An - Auca
n=p
[es]

An ~— An-1

J(Z) = z " An 1

Now applying Abel’s transformation to inner sigma of J(;) and then using the '
relation (1.3) we get

St

v=p

n
>
v

v=m+1

0 m v A m
/\n - An—l Av_l m z
Joy = An - At Z A ( N ) z Cp-e + m_‘+ 1 Ch-e
n=p v=p w=0 u=0
J&; + J((f)) (say)
where
< A
(1) >\n ha An—l v-1
Joy = AnAn1 z A( ) z Cor
n=p v==p ={

(2) Au—‘ An—l (1) Am-1 .
and J z o Ame C.. w1
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By Lemmas 2 and 3 we get
a) _ _1__
7o = 0(pp,)’

(2) __ L
and ‘](1) = 0(pPP)

respectively. Therefore for the proof of the Theorem, it is enough to show that

1
Jiy = 0(—~)-
(2} PPp

Now using change of summation, the relations (3.1), (3.2) and the fact that
m = min {n, X(p) + o},

we get
e e} w0
Auo1 An — An_t
T D BRG] > i
v=p+X(3) n=v
- A 1
= > Mol
v=p+X(p)
o 0]
— ' CV-e l
v
v=p-+X(p)

1 )
=55 % 2 G D

1
= 0|4 )
(PPP)
This completes the proof.

Proof of Theorem 2 — 1t is known from Das (1969) that

o0}
2 an € |N,p | & z li’;"]=0(l).
n=1

Since C,f‘) = 0, the relation (3.3) of Theorem I reduces to the condition

P,,Cf‘f(’e) = 0(p). .(5.3)

But from (3.5) and (3.6) we have

c® o o(X(.L)).

O T T\ Pxp
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Therefore (5.3) reduces to

X(p) PP

= O(1).
Prin (1)

Since all the conditions of Theorem 1 are satisfied, the proof of Theorem 2
follows from Theorem 1.

Proof of Theorem 2A — It can be easily seen that the relations (3.5), (3.8) and
(3.9) imply the necessary and sufficient condition of Theorem 1 (i.e.) the relation
(3.4). The proof follows from Theorem 2.

Corollary —Z as € |[N,8 | > Zan € [ R, e", 1 [for$ > 0,0 < « < 1.

PrOOF : Let us take up X(p) = [p1%] + 2.

So that
X(p) = O(p)

and Pp == O(PX(p))
and other conditions of Theorem 2A are satisfied.
The proof follows from Theorem 2A.

Proof of Theorem 3 — We know that (Das 1969, Theorem 9)
Zan € | R e, 1| =2 3 |an| < oo,

if and only if the relation (3.10) holds.
Now the proof follows from the Corollary of Theorem 2A.

Remark 1 : Here we show examples to satisfy the conditions from (3.1) to (3.3).

Example 1 — Let p, = X(n) = n.

n+ 1
Then (Das 1969, Lemma 5) we have

C(l) — O( 7_1\‘ C(Z) = 0 n )
n logn/)’ ~n log n

so that the condition (3.1) reduces to O(1). (3.3) reduces to

2n
log (n+ 1) > € = log (n + 1) €

v=n

n

= 0(n).
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Example 2 — Let pa = A2 X(n) = n

—&
n

so that C, = A;(“"“) and Ci’) = 4
Then the condition (3.1) reduces to

PoCY)

o = o).

And (3.3) reduces to

A 22” C(l) = A” C(z)
n v-n  “n Vn

v=n

— Aoz Al—u

= O(n).

Remark 2 : In Theorems 1,2 and 2A, we have established a very general
theorem on inclusion relation i.e.

[Mpl=|Ra,1].
As a Corollary to Theorem 2A we have obtained the inclusion
C*YIN,S{=>|Re™,1](0<a<1),3>0.

Since | N, 3| C | N.d | (see Mahapatra 1979) &' > 3 > 0 we get (**) is trivial in
the case 0 < 8 < 1 in view of Theorem 8 of Das (1969). But in the case § > 1, our
Theorem is sharper than the result of Das (1969). Again if we put 8 = 1 in Theorem 3
we get Theorem 9 due to Das (1969). It is also more general than that of Varshney
and Prasad (1969) in the sense that they took the condition {n*-*a,} € BV instead of
the lighter condition (3.10). Also they have taken 3 as positive integer greater than
one, whereas in our case 8 > 0,
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