SOME NECESSARY CONDITIONS FOR ABSOLUTE MATRIX SUMMABILITY FACTORS

B. E. RHoades

Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, U.S.A.

AND

EKREM SAVAŞ

Department of Mathematics, Yüzüncü Yıl University, Van, Turkey

(Received 1 January 2001; after revision 8 May 2001; accepted 16 October 2001)

We obtain necessary conditions for a lower triangular matrix to have the property that \(\sum a_n \Lambda_n \) is summable \(\left\| T \right\|_k \) whenever the series \(\sum a_n \) is bounded \(\left\| T \right\|_k \).

Key Words: Absolute Matrix Summability; Lower Triangular Matrix

The concept of absolute summability of order \(k \) was defined by Flett as follows. Let \(\sum a_n \) be a given infinite series with partial sums \(s_n \) and let \(\sigma_n^\alpha \) denote the \(n \)th Cesáro means of order \(\alpha, \alpha > -1 \), of the sequence \(\{s_n\} \). The series \(\sum a_n \) is said to be summable \(\left\| C, \alpha \right\|_k, k \geq 1, \alpha > -1 \) if

\[
\sum_{n=1}^{\infty} n^{k-1} \left| \Delta \sigma_{n-1}^\alpha \right|^k < \infty, \tag{1}
\]

where, for any sequence \(\{b_n\} \), \(\Delta b_n := b_n - b_{n+1} \).

In defining absolute summability of order \(k \) for weighted mean methods Bor and others used the definition

\[
\sum_{n=1}^{\infty} \left(\frac{p_n}{p_n} \right)^{k-1} \left| \Delta u_{n-1} \right|^k < \infty, \tag{2}
\]

where \(u_n := \sum_{v=0}^{n} p_v s_v \).
In using (2) as the definition, it was apparently assumed that the n in (1) represented the reciprocal of the nth main diagonal term of $(C, 1)$. But this interpretation cannot be correct. For, if it were, then the Cesáro methods (C, α), for $\alpha \neq 1$ would have to satisfy the condition

$$\sum_{n=1}^{\infty} |a_n^{\alpha} - 1| A_{n-1}^\alpha |^k < \infty.$$

However, Flett4 stays with n for all values of $\alpha > -1$.

Let A be a triangle; i.e., A is a lower triangular matrix with nonzero diagonal entries. Let

$$A_n = \sum_{\nu=0}^{n} a_{n \nu} s_{\nu}$$

As noted in7, we shall say that a series Σa_n is summable $|A|_k$, $k \geq 1$ if

$$\sum_{n=1}^{\infty} n^{k-1} \sum_{\nu=0}^{n} |A_{n-1}|^k < \infty. \quad \ldots \quad (3)$$

There is a fairly large literature dealing with questions related to absolute summability of order $k \geq 1$. For example, using (3), Bor2 obtained necessary and sufficient conditions for $|\bar{N}, p_n|_k$ to imply $|\bar{N}, q_n|_k$, and Orhan and Cakar6 obtained necessary and sufficient conditions for $|\bar{N}, p_n|_k$ to imply $|\bar{N}, q_n|_k$, where A is a lower triangular matrix. However, many of the papers use (2). See also [5] and [8]. For additional references the interested reader is encouraged to consult Math. Reviews, or the AMS Math Sci Net Search engine on the internet.

Recently, Bor and Kuttner3 obtained necessary conditions for absolute weighted mean summability factors using (2).

In this paper we use (3) to obtain a generalization of the Theorem of3.

Let T be a triangle with positive entries and row sums one. Let

$$\bar{t}_{n \nu} := \sum_{i=\nu}^{n} t_{ni} \quad \text{and} \quad \hat{t}_{n \nu} := t_{n \nu} - \hat{t}_{n-1, \nu}$$

Theorem 1 — Let Σa_n be bounded $|T|_k$, $k \geq 1$. If $\Sigma a_n \lambda_n$ is summable $|T|_k$, then the following conditions are necessary:

(i) $\lambda_{\nu} = O((\nu t_{\nu \nu})^{1/k - 1})$,

(ii) $\sum_{n=\nu+1}^{\infty} n^{k-1}|\bar{t}_{n \nu} \lambda_{\nu}|^k = O(1)$,

(iii) $\sum_{n=\nu+1}^{\infty} n^{k-1}|\Delta(\hat{t}_{n \nu} \lambda_{\nu})|^k = O(t_{\nu \nu})$.

The phrase \(\Sigma a_n \) is bounded \(\| T_n \|_k \) means

\[
\sum_{v=1}^{\infty} t_{n,v} s_{n,v}^k = O(1).
\]

... (4)

Proof: Writing

\[
T_n = \sum_{v=0}^{n} \tilde{t}_{n,v} a_v \lambda_v
\]

we define

\[
Y_n = T_n - T_{n-1} = \sum_{v=1}^{n} \tilde{t}_{n,v} a_v \lambda_v, n \geq 1, Y_0 = 0, a_0.
\]

... (5)

Since the series \(\Sigma \lambda_v a_n \) is summable \(\| T_n \|_k, k \geq 1 \), we have

\[
\sum_{n=1}^{\infty} n^{k-1} |Y_n|^k < \infty.
\]

... (6)

The space of sequences \(\{ Y_n \} \) satisfying (6) is a Banach space, if normed by

\[
\| Y \| = \left(\sum_{n=1}^{\infty} n^{k-1} |Y_n|^k \right)^{1/k}.
\]

... (7)

The space of sequences \(\{ s_n \} \) satisfying (4) is also a Banach space with norm

\[
\| s \| = \sup_{n \geq 0} \left(\sum_{v=0}^{n} t_{n,v} s_{n,v}^k \right)^{1/k}.
\]

... (8)

Note that (5) transforms the space of sequences satisfying (4) into the space of sequences satisfying (6). Applying the Banach-Steinhaus theorem, there exists a positive constant \(M \) such that

\[
\| Y \| \leq M \| s \|
\]

... (9)

for all sequences satisfying (4).

For any fixed \(v \geq 1 \) we apply (9) with

\[
a_v = 1, a_{v+1} = -1, a_n = 0, n \neq v, v + 1.
\]

Then

\[
s_v = 1 \) and \(s_n = 0, n \neq v.
\]
\[
\sum_{v=0}^{n} t_{n,v} \hat{s}_v k = \begin{cases}
0, & \text{if } n < v \\
t_{v,v} & \text{if } n \geq v
\end{cases}
\]

and
\[
Y_n = \begin{cases}
0, & \text{if } n < v, \\
\hat{t}_{v,v} \hat{\lambda}_v & \text{if } n = v, \\
\Delta (\hat{t}_{n,v} \hat{\lambda}_v) & \text{if } m \geq v.
\end{cases}
\]

Noting that \(\hat{t}_{v,v} = t_{v,v}\) it follows from (9) that
\[
\left(t_{v,v}^{k-1} t_{v,v} \lambda_v^k + \sum_{n = v+1}^{\infty} n^{k-1} \Delta (\hat{t}_{n,v} \lambda_v)^k \right)^{1/k} = O (t_{v,v}^{1/k}).
\]

Since the sum is \(O (t_{v,v})\), each term must be \(O (t_{v,v})\). We then have
\[
t_{v,v}^{k-1} t_{v,v} \lambda_v^k = O (t_{v,v}) \quad \text{... (11)}
\]

and
\[
\sum_{n = v+1}^{\infty} n^{k-1} \Delta (\hat{t}_{n,v} \lambda_v)^k = O (t_{v,v}) \quad \text{... (12)}
\]

Eq. (11) becomes
\[
(t_{v,v})^{k-1} t_{v,v} \lambda_v^k = O (1),
\]

which is equivalent to (i).

Condition (12) is (iii).

We now apply (9) with
\[
a_v = 1, a_n = 0, n \neq v. \quad \text{... (13)}
\]

\[
s_n = \begin{cases}
0, & \text{if } n < v, \\
1, & \text{if } n \geq v.
\end{cases}
\]

Thus
\[
\sum_{v=0}^{n} t_{n,v} s_v k = \begin{cases}
0, & \text{if } n < v, \\
\hat{t}_{n,v} \hat{\lambda}_v & \text{if } n \geq v.
\end{cases}
\]

Since \(T\) has row sums 1, \(\bar{t}_{n,v} \leq 1\) for each \(n \geq v\), and the limit is 1.

Therefore (8) implies that \(\| s \| = 1\).

Using (13) in (5) yields
\[
Y_n = \begin{cases}
0, & \text{if } m < v, \\
t_{v,v} \lambda_v & \text{if } n = v, \\
\hat{t}_{n,v} \lambda_v & \text{if } n > v.
\end{cases}
\]
Substituting into (9) we have
\[\left(\sum_{n = \nu}^{\infty} n^{k-1} \hat{t}_n \lambda_n^k \right)^{1/k} \leq M, \]
or, equivalently,
\[\nu^{k-1} |t_{\nu} \lambda_\nu|^k + \sum_{n = \nu + 1}^{\infty} n^{k-1} \hat{t}_n \lambda_n^k = O(1). \] ... (14)

It then follows that
\[\nu^{k-1} |t_{\nu} \lambda_\nu|^k = O(1) \] ... (15)
and
\[\sum_{n = \nu + 1}^{\infty} n^{k-1} \hat{t}_n \lambda_n^k = O(1). \]

From (15),
\[\nu^{k-1} |t_{\nu} \lambda_\nu|^k = (\nu t_{\nu})^{k-1} |t_{\nu} \lambda_\nu|^k \leq (\nu t_{\nu})^{k-1} |\lambda_\nu|^k = O(1) \]
from condition (i), so (15) is automatically satisfied. Condition (16) is (ii).

Corollary 1 — Let \(\Sigma \lambda_n \) be bounded \(|N, p_n|_k \). If \(\Sigma \lambda_n a_n \) is summable \(|N, p_n|_k \), then the following conditions are necessary.

\((i) \lambda_\nu = O\left(\left(\frac{p_{\nu}}{p_\nu}\right)^{1-1/k}\right) \)
\[(ii) |\lambda_\nu p_{\nu-1}|^k \sum_{n = \nu + 1}^{\infty} n^{k-1} \left(\frac{p_n}{p_n p_{n-1}}\right)^k = O(1), \]
\[(iii) |\Delta (p_{\nu-1}) \lambda_\nu|^k \sum_{n = \nu + 1}^{\infty} n^{k-1} \left(\frac{p_n}{p_n p_{n-1}}\right)^k = O\left(\frac{p_\nu}{p_\nu}\right). \]

Proof: With \(T = (N, p_n), t_{\nu} = \frac{p_\nu}{p_\nu} \), (i) follows immediately from condition (i) of Theorem 1.

From the definition of \(\hat{t}_{\nu} \) with \(t_{\nu} = \frac{p_\nu}{p_\nu} \),
\[\hat{t}_{\nu} = \hat{t}_\nu - \hat{t}_{\nu-1}, \nu = \sum_{i = \nu}^{n} t_{ni} - \sum_{i = \nu - 1}^{n} t_{n-1, i} \]
\[
= \frac{1}{p_n} \sum_{i=v}^{n} p_i - \frac{1}{p_{n-1}} \sum_{i=v}^{n-1} p_i \\
= \frac{1}{p_n} (p_n - p_{v-1}) - \frac{1}{p_{n-1}} (p_{n-1} - p_{v-1}) \\
= -\frac{p_n p_{v-1}}{p_n p_{n-1}}.
\]

Substituting into conditions (ii) and (iii) of Theorem 1 yields (ii) and (iii) of Corollary 1.

Corollary 2 — Let \(\Sigma a_n \) be bounded \((C, 1)_{k} \). If \(\Sigma \lambda_n a_n \) is summable \((C, 1)_{k} \), then the following conditions are necessary.

(i) \(\lambda_v = O(1) \),

(ii) \(\Delta \lambda_v = O(v^{-1/k}) \).

Proof: For \((C, 1)\), \(p_n = 1 \) for all \(n \). Condition (i) follows immediately from condition (i) of Corollary 1.

Condition (ii) of Corollary 1 becomes

\[
|v \lambda_v|^k \sum_{n = v+1}^{\infty} n^{k-1} \left(\frac{1}{(n+1)n} \right)^k = O(1).
\]

... (17)

\[
\sum_{n = v+1}^{\infty} \frac{1}{n (n+1)^k} > \sum_{n = v+1}^{\infty} \frac{1}{(n+1)^{k+1}} \\
> \int_{v+1}^{\infty} \frac{1}{(x+1)^{k+1}} dx = \frac{1}{k (v+1)^k}.
\]

... (18)

Substituting into (17) yields \(|v \lambda_v|^k = O(1) \), which is equivalent to (i). Using (18), condition (iii) of Corollary 1 implies that

\[
\frac{|\Delta (v \lambda_v)|^k}{v^k} = O \left(\frac{1}{v} \right),
\]

which implies that \(\Delta (v \lambda_v) = O(v^{1-k}) \).

Thus \(v \Delta \lambda_v = \lambda_v - \Delta (v \lambda_v) = O(v^{1-1/k}) \)

or \(v \Delta \lambda_v = \lambda_v + O(v^{1-1/k}) = O(v^{1-1/k}) \).
Therefore $\Delta \lambda_v = O(v^{-1/k})$, which is condition (ii).

Remark: The following example shows that the conditions of Theorem 1 are not sufficient. Let T be the identity matrix and set $k = 1$. Then condition (i) becomes $\lambda_v = O(1)$, so we shall set $\lambda_v = 1$ for all v. For $n > v$, $t_{n,v} = \bar{t}_{n,v} - \bar{t}_{n-1,v} = 1 - 1 = 0$, so conditions (ii) and (iii) are automatically satisfied. For the identity matrix, $T_n = t_{nn}$, so the condition $\sum a_n \lambda_n$ summable $|T|$ reduces to

$$
\sum_{n=1}^{\infty} |a_{n-1} - a_n| < \infty
$$

... (19)

The condition that $\sum a_n$ is bounded $|T|$, see (4), becomes $t_{nn} |s_{n-1}| = |s_n| = O(1)$. Now set $a_n = (-1)^n/(n + 1)$. Then $s_n = \log 2$ for large n, and $s_n = O(1)$. But

$$
\sum_{n=1}^{\infty} |a_{n-1} - a_n| = \sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{n+1} \right) = \infty,
$$

contradicting (19).

REFERENCES