SUFFICIENT CONDITIONS FOR CARATHÉODORY FUNCTIONS

MAMORU NUNOKAWA,

Department of Mathematics, University of Gunma, Aramaki, Maebashi, Gunma 371-8510, Japan

SHIGEYOSHI OWA.

Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

NORIHITO TAKAHASHI

Department of Mathematics, University of Gunma, Aramaki, Maebashi, Gunma 371-8510, Japan

AND

HITOSHI SAITO

Department of Mathematics, Gunma College of Technology, Toriba, Maebashi, Gunma 371 8530, Japan

(Received 4 July 2001; accepted 10 December 2001)

For Carathéodory functions \(p(z) \) which are analytic in the open unit disk \(U \) with \(p (0) = 1 \), Miller (Bull. Amer. Math. Soc. 81 (1975), 79-81) has shown some sufficient conditions applying the differential inequalities. The object of the present paper is to derive some improvements of results by Miller.

Key Words: Analytic Function; Carathéodory Function; Subordination

1. INTRODUCTION

Let \(A \) be the class of functions \(p(z) \) of the form

\[
p (z) = 1 + p_1 z + p_2 z^2 + \ldots
\]

which are analytic in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). If \(p (z) \) in \(A \) satisfies \(\text{Re} \ p(z) > 0 \) for \(z \in U \), then we say that \(p (z) \) is the Carathéodory function. For Carathéodory functions, Miller\(^1\) has given
Theorem A — Let \(p(z) \) be in the class \(A \).

(i) If \(\text{Re} \left\{ p(z)^2 + z p'(z) \right\} > 0 \) \((z \in U)\), then \(\text{Re} \ p(z) > 0 \) \((z \in U)\).

(ii) If \(\text{Re} \left\{ p(z) + \alpha z p'(z) \right\} > 0 \) \((z \in U)\) for some \(\alpha (\alpha \geq 0) \), then \(\text{Re} \ p(z) > 0 \) \((z \in U)\).

(iii) If \(p(z) \neq 0 \) \((z \in U)\) and \(\text{Re} \left\{ p(z) - \frac{z p'(z)}{p(z)^2} \right\} > 0 \) \((z \in U)\), then \(\text{Re} \ p(z) > 0 \) \((z \in U)\).

Let \(f(z) \) and \(g(z) \) be analytic in \(U \). If there exists an analytic function \(w(z) \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) \((z \in U)\) such that \(f(z) = g(w(z)) \), then \(f(z) \) is said to be subordinate to \(g(z) \) in \(U \). We denote this subordination by \(f(z) < g(z) \). We note that the subordination \(f(z) < g(z) \) implies that \(f(U) \subset g(U) \). Applying the subordination principles, we improve Theorem A by Miller\(^1\). To prove our results for Carathéodory functions, we have to recall here the following lemma due to Nunokawa\(^3\) (also due to Miller and Mocanu\(^2\)).

Lemma — Let \(p(z) \in A \) and suppose that there exists a point \(z_0 \in U \) such that \(\text{Re} \ p(z) > 0 \) for \(|z| < |z_0| \) and \(\text{Re} \ p(z_0) = 0 \) with \(p(z_0) \neq 0 \). Then we have

\[
 z_0 p'(z_0) \leq -\frac{1}{2} (1 + a^2),
\]

where \(p(z_0) = ia \ (a \neq 0) \).

2. Subordination Theorems for Carathéodory Functions

Our first result for Carathéodory functions is contained in

Theorem 1 — Let \(p(z) \in A \) and \(w(z) \) be analytic in \(U \) with \(w(0) = \alpha \) and \(w(z) \neq k \) \((k \in \mathbb{R}, z \in U)\). If

\[
\alpha p(z)^2 + \beta z p'(z) < w(z),
\]

then \(\text{Re} \ p(z) > 0 \) \((z \in U)\), where \(\beta > 0, \alpha \geq -\frac{\beta}{2} \), and \(k \leq -\frac{\beta}{2} \).

PROOF: Let us suppose that there exists a point \(z_0 \in U \) such that

\[
\text{Re} \ p(z) > 0 \ \text{for} \ |z| < |z_0|,
\]

and

\[
\text{Re} \ p(z_0) = 0 \ (p(z_0) \neq 0).
\]

Then Lemma gives that \(p(z_0) = ia \ (a \neq 0) \) and \(z_0 p'(z_0) \leq -\frac{1}{2} (1 + a^2) \). It follows that

\[
\alpha p(z_0)^2 + \beta z_0 p'(z_0) = -\alpha a^2 + \beta z_0 p'(z_0)
\]
\[\leq \frac{1}{2} \left(\beta + (2 \alpha + \beta) a^2 \right) \]

\[\leq -\frac{\beta}{2}. \] \hspace{1cm} \text{(2.2)}

Since \(w(0) = \alpha \) and \(w(e^{i\theta}) \leq -\frac{\beta}{2} \), the inequality (2.2) contradicts our condition (2.1).

Therefore \(p(z) > 0 \) for all \(z \in U \). \hspace{1cm} \square

Remark 1: Theorem 1 is the improvement of (i) of Theorem A by Miller\(^1\).

Corollary 1 — If \(p(z) \in A \) satisfies

\[\alpha p(z)^2 + \beta z p'(z) < \frac{2 \alpha + \beta}{2} \left(\frac{1+z}{1-z} \right)^2 - \frac{\beta}{2}, \] \hspace{1cm} \text{(2.3)}

where \(\beta > 0 \) and \(\alpha \geq -\frac{\beta}{2} \), then \(\Re p(z) > 0 \) (\(z \in U \)).

PROOF: Taking

\[w(z) = \frac{2 \alpha + \beta}{2} \left(\frac{1+z}{1-z} \right)^2 - \frac{\beta}{2}, \] \hspace{1cm} \text{(2.4)}

in Theorem 1, we see that \(w(z) \) is analytic in \(U \), \(w(0) = \alpha \) and

\[w(e^{i\theta}) = \frac{2 \alpha + \beta}{2} \left(\frac{1+e^{i\theta}}{1-e^{i\theta}} \right)^2 - \frac{\beta}{2} \leq -\frac{\beta}{2}. \] \hspace{1cm} \text{(2.5)}

Thus \(w(z) \) satisfies the conditions in Theorem 1. \hspace{1cm} \square

Theorem 2 — Let \(p(z) \in A \) and \(w(z) \) be analytic in \(U \) with \(w(0) = \alpha \) and \(w(z) \neq ik \) \((k \in \mathbb{R}, z \in U) \). If

\[\alpha p(z) + \beta \frac{z p'(z)}{p(z)} < w(z), \] \hspace{1cm} \text{(2.6)}

then \(\Re p(z) > 0 \) (\(z \in U \)), where \(\alpha > 0, \beta > 0 \) and \(k^2 \geq \beta (2 \alpha + \beta) \).

PROOF: From the subordination (2.6), we have \(p(z) \neq 0 \) in \(U \), because if \(p(z) \) has a zero of order \(l \) at \(z = z_0 \in U \), then we have \(p(z) = (z - z_0)^l q(z) \), where \(q(z) \) is analytic in \(U \), \(q(z_0) \neq 0 \), and \(l \) is a positive integer.

Letting \(z \to z_0 \) such that

\[\arg (z - z_0) = \arg (z_0) - \frac{\pi}{2}, \]

we have
\[
\lim_{z \to z_0} \text{Im} \left(\alpha p(z) + \beta \frac{zp'(z)}{p(z)} \right) = \lim_{z \to z_0} \text{Im} \left(\alpha p(z) + \frac{\beta z (lq(z) + (z-z_0)q'(z))}{(z-z_0)q(z)} \right) = +\infty.
\]

This contradicts (2.6) and so we conclude that \(p(z) \neq 0 \) for all \(z \in U \). We assume that there exists a point \(z_0 \in U \) such that

\[\text{Re } p(z) > 0 \text{ for } |z| < |z_0| \]

and

\[\text{Re } p(z_0) = 0. \]

Then using Lemma, we have

\[
\alpha p(z_0) + \beta \frac{z_0 p'(z_0)}{p(z_0)} = i \alpha a + \frac{\beta}{ia} z_0 p'(z_0)
\]

\[= i \left(\alpha a - \frac{\beta}{a} z_0 p'(z_0) \right) = i \nu, \quad \ldots \ (2.7)
\]

where \(\nu \) is real, because \(z_0 p'(z_0) \leq -\frac{1}{2} (1 + a^2) \). Furthermore, we have, if \(a > 0 \), then

\[\nu \geq \alpha a + \frac{\beta}{2a} (1 + a^2) \geq \sqrt{\beta (2 \alpha + \beta)}, \quad \ldots \ (2.8) \]

and if \(a < 0 \), then

\[\nu \leq -\alpha b - \frac{\beta}{2b} (1 + a^2) (b = -a > 0) \leq -\sqrt{\beta (2 \alpha + \beta)}. \quad \ldots \ (2.9) \]

This contradicts our condition that \(w(e^{i\theta}) = ik (|k| \geq \sqrt{\beta (2 \alpha + \beta)}) \). Thus we conclude that

\[\text{Re } p(z) > 0 \text{ for all } z \in U. \]

Using Theorem 2, we have the following corollary.

Corollary 2 — If \(p(z) \in A \) satisfies

\[p(z) + \frac{zp'(z)}{p(z)} < \frac{1 + 4z + z^2}{1 - z^2}, \quad \ldots \ (2.10) \]

then \(\text{Re } p(z) > 0 \) (\(z \in U \)).
PROOF : Let us consider the case of $\alpha = \beta = 1$ in Theorem 2. Defining the function $w(z)$ by

$$w(z) = \frac{1 + 4z + z^2}{1 - z^2}, \quad \ldots \quad (2.11)$$

we know that $w(z)$ is analytic in U, $w(0) = 1$, and

$$w(e^{i\theta}) = \frac{2 + \cos \theta}{\sin \theta} \cdot i. \quad \ldots \quad (2.12)$$

Letting

$$g(\theta) = \left(\frac{2 + \cos \theta}{\sin \theta} \right)^2 (0 \leq \theta \leq 2\pi), \quad \ldots \quad (2.13)$$

we have $g'(\theta) = 0$ when $\cos \theta = -\frac{1}{2}$.

It follows from the above that $g(\theta) \geq 3$, that is, that $w(z) \neq ik (|k| \geq \sqrt{3})$.

Next, we derive

Theorem 3 — If $p(z) \in A$ satisfies

$$\text{Re} \left\{ \alpha p(z) - \beta \frac{z p'(z)}{p(z)^2} \right\} > -\frac{\beta}{2} \quad (z \in U) \quad \ldots \quad (2.14)$$

for some $\alpha \geq 0$ and $\beta > 0$, then $\text{Re} \ p(z) > 0 \ (z \in U)$.

PROOF : Applying the same method as the proof of Theorem 2, the condition (2.14), gives us that $p(z) \neq 0$ in U, because if $p(z)$ has a zero of order l at a point $z = z_0 \in U$, then we have $p(z) = (z - z_0)^l q(z)$, where $q(z)$ is analytic in U, $q(z_0) \neq 0$ and l is a positive integer. Letting $z \to z_0$ such that

$$\arg (z - z_0) = \frac{\arg (z_0) - \arg (q(z_0))}{l + 1},$$

we see that

$$\lim_{z \to z_0} \left(\alpha p(z) - \beta \frac{z p'(z)}{p(z)^2} \right) = \lim_{z \to z_0} \left(\alpha p(z) - \beta \frac{izq(z) + (z - z_0) q'(z)}{(z - z_0)^l + q(z)^2} \right)$$

$$= -\infty.$$

This contradicts our condition (2.14) and so we have $p(z) \neq 0$ in U.

By means of Lemma, if there exists a point $z_0 \in U$ such that
Re $p(z) > 0$ for $|z| < |z_0|$

and $\Re p(z_0) = 0,$

then $p(z_0) = ia$ ($a \neq 0$) and $z_0 p'(z_0) \leq -\frac{1}{2} (1 + a^2).$

This implies that

$$\Re \left\{ \alpha p(z_0) - \beta z_0 p'(z_0) \right\} \leq -\frac{\beta}{2a^2} (1 + a^2) \leq -\frac{\beta}{2}$$

... (2.15)

which contradicts our condition (2.14). Thus $\Re p(z) > 0$ for all $z \in U.$

Remark 2: Theorem 3 is the improvement of (iii) of Theorem A by Miller1.

Finally we have

Corollary 3 — If $p(z) \in A$ satisfies

$$\alpha p(z) - \beta zp'(z) < \frac{2 \alpha + \beta}{2} \left(\frac{1 + z}{1 - z} \right)^2 - \frac{\beta}{2}$$

... (2.16)

for some $\alpha \geq 0$ and $\beta > 0,$ then $\Re p(z) > 0$ ($z \in U$).

PROOF: Since the function

$$w(z) = \frac{2 \alpha + \beta}{2} \left(\frac{1 + z}{1 - z} \right)^2 - \frac{\beta}{2}$$

... (2.17)

maps the open unit disk U onto the complex domain which has the slit

$$\delta = \left\{ w : \Re(w) < -\frac{\beta}{2} \right\},$$

the proof of Corollary 3 follows from the above.

REFERENCES