Indian J. pure appl. Math., 34(1) : 163-172, January 2003
© Printed in India.

GENERALIZED INDICES OF NON-PRIMITIVE GRAPHS"

ZHOU BO

Department of Mathematics, South China Normal University, Guangzhou 510631,
P.R. China
E-mail:zhoubo@scnu.edu.cn

(Received 10 September 2001; accepted 21 June 2002)

We obtain the maximum values for generalized indices over the class of non-primitive graphs of order n and
over the class of non-primitive simple graphs of order n, and determine the generalized index sets for the class
of bipartite graphs of order n, the class of non-primitive graphs of order n and the class of non-primitive simple
graphs of order n.
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1. INTRODUCTION

The index and period of a given digraph D are the minimum nonnegative integer k = k(D) and
minimum positive integer p = p(D) such that for any ordered pair of vertices x and y, there is a
walk of length k from x to y if and only if there is a walk of length k + p from x to y in D. A
digraph D is primitive if D is strongly connected and p(G) = 1.

Let D be a digraph of order n with period p, and let x e V (D). The index, kp (x), of x in

D is defined to be the minimum nonegative k such that for each y € V (D), there is a walk of length
k from x to y if and only if there is a walk of length £ + p from x to y in D. If we choose to

order the vertices of D in such a way that kp (V) <k, (V)< ...Skp(v,), then we call kp, (v,) the
ith generalized index of D, denoted by k(D, i). It is obvious that k(D, 1)<k(D,2)<...<k (D, n)
= k(D).

Generalized indices have been investigated in [1]. If D is ‘a primitive digraph of order

n22, then k(D, i) is just the generalized exponent expp, (i) introduced in [2]. Indices of digraphs

and generalized exponents of primitive digraphs have been extensively studied.
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Natural Science Foundation (021072) of China (10071025, 990447)
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A symmetric digraph D is a digraph where for any xy e V (D), (x, y) is an arc if and only
if (¥, x) is. An (undirected) graph G naturally corresponds to a symmetric digraph D, by replacing
each edge [x, y] by a pair of arcs (x, y) and (y, x). In this paper we will identify the graph G and
digraph D. Note that any edge of G corresponds to a directed cycle of length 2 in Dg. 1t follows

that (see [1]) for any graph G, p(G) = 1 or 2. If G is connected, then G is primitive if and only
if p(G) = 1, and G is bipartite if and only if p(G) = 2.

Let B(n) be the class of all bipartite graphs of order n, S(n) be the class of all simple graphs
of order n, P(n) be the class of all primitive graphs of order n, and N(n) be the class of all
non-primitive graphs of order n. Note that B(n) =S (n) M\ N (n).

For a class D(n) of graphs of order n, let E(D (n), i) = {k(G,i)IGe D (n)} be the
generalized index set of this class, and let e (D (n), i) = max {k(G,i)|Ge D(n)} be the largest
value in E(D (n), i).

By [2, Theorem 6.2}, [3, Lemma 2.1] and [8, Theorem 2], we have for 1<i<n,

e(P(n),)=n—-2+Ii, .. (L1
n-2 if i=1,2 and n is even,
ePM)A\Sn),)={ n-1 if i=1,2 andnisodd v (1.2)
n—4+i if 3<i<n,
e (B (n) i)=|_———”+i"3_| . . (1.3)
’ 2

The generalized index sets E (P (n), i), E (P (n) (M S (n), i) have been determined in [4 & 3].

In this paper, we obtain expressions for e (N (n), i), e (N (n) () S (n), i) and determine the generalized

index sets E(B(n), ), E(N(n),i) for 1<i<n.

2. MAXIMUM VALUES

In this section we will determine the value e (N (n),i) and e (N(n) M\ S (n),i) for 1Si<n.

Let P, be a path of order n, K| be a simple graph of order 1, K(l) be a graph of order 1
with a loop. Let mG be the disjoint union of m copies of a graph G.
Theorem 2.1 — For n22,
max{l_%]—l,l}, if i=1,

e(N(n),i)= . (2.1)

max{ n-4+i,1} if2<i<n.

PROOF : Suppose G € N(n).
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If G is connected, then G is bipartite, and we have by (1.3)

. A n e
k(G,i)Sl—n+;_3_|S |_2J—1 if i=1,
n—-4+i if 2<i<n.

Suppose G is not connected. Let G, G,, ..., G, be all the components of G with r22, and

let n; be the order of GJ. for 1 <j<r. Suppose n = min #n. Then n; <n/2. Let G]'- be the graph
b o1gjsr !
obtained by deleting the vertices of Gj from G. For 1<j<r, choose to order the vertices

n @ | 1 2 (n)
v, 07, ., 07 of G, such that kg (v) kg W) <. Skg (v; 7). It follows from (1.1) and (1.3)

that for 1<m< n,

(m)
ke (0"

(m)
)=ij(vj )=k(Gj, m) < max {nj—2+m, 1}, . (2.2)
and hence for nj+ 1<i<n,

k(Gj,i—nj)Sn—nj—2+i-nj. . (2.3)

Using (2.2) and (2.3), we have
. . . n .
k(G )Sk(Gpsmax {n ~2+i,1) Smax{|_3_|-2+;,1}

for 1£i<n
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Now it follows that

max z —1,1} if i=1,
k (G, i) < {l- 2] . (24)

max (n—4 + ) if 2<i<n.

Note that £ (2K}, i)=1 for i = 1, 2, k (3K, 1)=1. Suppose n>3. Let Pg be the graph

obtained by adding a loop at an endvertex of a Pn. Take G1=Pf(n+1)/2.JUP[?,,/2J,

0
Gy=P,_, UK). Then G, Gye N(w) and k(G D=Ln2]-1,k@Gpir= k(P _,i-1) =

n—4+i for 2<i<n. Hence the bound in (2.4) can be attained for any n, i with 1<i<n,n=22.

[
Theorem 22 — If n = 2, 3, then e (N(n) M\ S(n),i)=1. If n24, then
L%J——l if i=1, .
e(Nn)yMSn), =4 n-3 if i=2 and nis odd, .. (2.5)
n-2 ifi=2 andn iseven,

n~6+i if 3<i<n.

PROOF : The case n = 2, 3 is trivial. Suppose n 24 and G e N (n) M S (n). If G is connected,
then G is bipartite, and we have by (1.3)

L21-1 if i=1,

k(G,i)sl_i%}-Js n-3  if i=2 and nisodd,
n-2 ifi=2 andn iseven,
n-6+i if 3<5i<n.

N

Suppose G is not connected. Let G,, G,, ..., G, be all the components of G with r22, and

let n; be the order of Gj for 1 <j<r. Suppose n = min n. Then n; <n/2. Let G]'. be the graph
boo1gjgr 1

obtained by deleting the vertex of Gj from G. For 1<j<r, choose to order the vertices

1 2 ) O (2) (n)
o o, L 0 of G such that kg (v; ) Skg (V) S ... Sk (07). Tt follows from (1.2) and (1.3)

that for ISmSnj and nj22,

) (m)
ke W)= kg (0 =k (G, m)
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nj—2 if m=1,2andnjt'seven,
< nj—l if m=1andnjisodd, . (2.6)
nj—4+m if 3<sm<n,

and. hence for nj_<_i5n and njz 1,

( max{n—nj-2,l} if i—nj=1,2andn—njiseven,

k(Gyi-ny< max{n~—nj-1,1} if i-n;=1,2andn~n,is odd, . (2.6)
\ n——nj—4+i—nj if 3Si—ann—nj
(-3 if i+nj+1,nj+2andn—njiseven,
<{ n-=2 if i=nj+1,nj+2andn—njisoff, . 27

n-6+i if nj+3SiSn.
L

Using (2.6) and (2.7), we have

k(G, )<k (Gjl, i)

njl—Z if i=1,2andnj is even,
1
< max(njl—l,l) if i=1,2andnj is odd,
1
. —4+1 if 3<i<n.
nj‘ if 3_t_nj1
n .
L2J—1 if i=1,
< n-3 if i=2 and nisodd,
n—-2 ifi=2 andn iseven,
n—-6+i if 3Si.<_nj
1.
for 1<i<n,,

Ji

k(G,i)Smax{n. —4+i,k(G-,i—n.)}Sn—6+i for n, +1<i<n and n, 22,
71 J1 7 , 1 Jy

n-3 if i=2and n is odd,
k(G iysmax{1,k(G,i-1)}<{ n=2  if i=2andniseven,
n-6+i if 35i<n

for n.+1<i<n and n, =1.
N Ny
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Hence, we have proved that

L%J—l if i=1,
k(G DL n-3 if i=2 and nisodd, .. (2.8)
n-2 if i=2 andn iseven,

n—6+i if 3<i<n:

Let G, = e U K; where G\ is the graph obtained by identifying an endvertex of P, 3

with a vertex of a triangle, G,=C,_{\ UK, where C,_; is a cycle of order n — 1. Then
P,,G,Gy,e N(n) M S(n) and it is easy to see that kP, 1)=Ln/2_|,k(Gl,2)=n—1—2=n—3 if
n is odd, k(Gy2)=k(C,_;,1)=n-2 if n is even, and k(G,,)=k(GV,i-1)=n-1-4 +

i-1=n-6+i for 3<i<n. Hence, the bound in (2.8) can be attained for any n, i with

1<ign,nz2. O

3. GENERALIZED INDEX SETS

In this section we will determine the sets E(B(n), i}, E(N(n),i) and EWN@m) M S @), i) for
1 <i<n explicitly.

Lemma 3.1% — Let G be a connected bipartite graph with ue V(G) and let

d= max dg;(u,x), where d (u, x) is the distance between u and x in G. Then k; (W)=d~1.
x€ V(G)

Lemma 3.2 — Suppose G € B (n) with odd n. Then & (G,n) 2 1.

PROOF : Suppose k(G, n) = 0. Then G contains at least one edge and no isolated vertex,

and k (G, n):k(Gj, nj) for any component Gj of G. By Lemma 3.1, d;(u,x)=1 for all
U, x€ V(Gj), ie., Gj is both complete and bipartite. This implies each component is isomorphic to

a P2, so n is even, a contradiction. 0

By Lemma 3.1, we can show the following lemma easily.
Lemma 3.3 — Let Tn, j be the graph obtained by identifying an endvertex of Pj +1 With the
center of Kl,n—j—l where 1<j<n-2. Then

i+l"‘1_| . <i<i
e, o=f L5 ] i 1sisie

j if j+3<i<n.
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Theorem 3.1 — For any integers i and n with 1<i<n,nz4,

{1,2,..,eB(n),i)} ifnisoddandi=n,
E(B(n),i)= - (.1
{0,1,....,e(B(n),i} otherwise.

PROOF : Take an integer j with max {i - 2, 1} <j<n-2. By Lemma 3.3 we have

L ii%ljﬂ‘ (T, ;D€ EB ).

( {i—z,i—l,...,l_%ﬁ_l} if 3<i<n,

So, E (B (n), i) 2 {1,2, L"—%J} if i=2, . (32)

\ {12L%ﬁ_|} ifi=1.

For i > 3, take an integer j with 1<j<i-3. By Lemma 3.3,

j=k(T, ;e E@B @),

So {1, 2, ., i - 3} CE(B(n),i). . (33
Note that
k[-’zle,iJe E (B (n), i) ifnisevenand 1<i<n,
0= . (3.4)
k(";leuKl,i]e E(B(n).i) ifnisoddand1<i<n—1.

By combining (3.2), (3.3) and (3.4), we have

[1,2,..,eB (), i)} ifnisoddandi=n,
EB@n),. )2
{0,1,...,e(B(n),i} otherwise.
By (1.3) and Lemma 3.2, (3.1) follows. ] ]

Lemma 3.4%5 _ For n>2,

{1,2,.,n=2+i} if1<isn-1,

E@@).i=
{1L,2,..,2n=2]\S, if i=n,

where S is the set of odd integers in {n, n + 1, ..., 2n — 3}.
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Lemma 3.5 — Suppose Ge€ N(n). Then k(G,n)e {0, 1, .., 2n — 4} §, where § is the
set of -odd integers in {n - 1, n, ..., 2n - 5}.

PROOF : Note that k (G, n)=k(Gj, nj) for some component Gj of G with order
n 1 snisn. If Gj is bipartite, then we have by (1.3) that k(G) £n—2. Suppose Gj is primitive. If
n;= l., then k(G, n) = 0; otherwise let S, is the setof odd integers in {nj, n;+ 1, ..., 2n].-3}, we

have by Lemma 3.4 that k(G,n) € {1, 2, ., 2n;=21\S, < {1, 2, .., 2n — 4}\S. O

Theorem 3.2 — For any integers i and n with 1<i<n,n>4,

(0,1, eN @), )} if 1<isn-1,
E(mn),i= .. (3.5)
{0,1,..,e(N(n),)]\S ifi=n,
where S is the set of odd integers in {n — 1, n, ..., 2n - 5}.

PROOF : Note that E (B (n), ) cE(N(n),1) and e (B (n), 1)=e (N (n), 1).

The case i = 1 follows from Theorem 3.1.
Suppose 2<i<n. Let m be any integer (depending on i) with

[0,1,...,eW(@m),i)} if 1<isn—-1,
me

{0,1,....,e(N(®n),D]\S ifi=n.

We have 0=k(nK(1), iye E(N(n),i) for 2<i<n. Suppose m=1. Then there is a graph

G € P(n—-1) such that m=k(G’,i—-1) by Lemma 3.4, and hence m=k (G, i- 1)=k(G’UK(1), i)

€ E (N (n), i). Thus, we have proved that

{0,1,..,eN@m), D! if 2gisn—-1,

E(n(n), )2
[0, 1, e N(m),D]\S ifi=n,

Now by Theorem 2.1 and Lemma 3.4, this theorem follows. O
Lemma 3.63%6 — For n22,

{2,3, .on—2+i} if 1<i<n—1,
EPMmMSh),i)=
{2,3,..2n-2]\T;  ifi=n,

where T1 is the set of odd integers in {n — 2, n - 1, .., 2n - 5}.

Using Lemma 3.6, we can prove the following lemma by similar arguments as in
Lemma 3.5.
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Lemma 3.7 — Suppose Ge N(n)\S(n) and k(G,n)#20. Then k(G,n)e {1, 2, ..,

2n — 6]\T, where T is the set of odd integers in {n — 2, n - 1, ..., 2n - T}.
Lemma 3.8 — Suppose G e N (n) (M S (n) with odd n. Then k(G,n)21.

PROOF : If Ge B (n), then we have k(G,n)21 by Lemma 3.2. Suppose G ¢ B (n), then G

contains a primitive component Gj which is simple. We have k (G, n) Zk(Gj)ZZ. O

Theorem 3.3 — Denote e (n,iy=e (B (n) M S (n)i). Then for any integers i and n with

1<is<n nz4,

10,1, .., e(n i)}t if 1<i<n-1,
EINnmyMSh), D)= {0,1,....,e(n,i)}\T ifnisevenandi=n,
11,2, ...,e(m,)I\T ifnisoddandi=n.

where T is the set of odd integers in {n—2,n—-1,..,2n—7}
PROOF : The case i = 1 followd from Theorem 3.1.
Suppose 2<i<n. Let m be any integer (depending on i) with

10,1, ..,e(ni)! if 2<i<n-1,
med {0,1,...,e(ni)\T ifnisevenandi=n,

11,2, e, ) \T ifnisoddandi=n.

L

First we have 1=k (nK;,i)e E(IN(m)M\S(n), i), for 2<i<n, 0 = k(n/2 P, i)e E(N(n)

M Sn),i) for 2<i<n if n is even, and 0 = k((n=1)/Py\UK,,i)ye E(N(n)MS(n),i for
2<i<n - 1 if n is odd. Next suppose m=>2. Then we have by Lemma 3.6 that
m=k(G,i-1) = k(G'UKl’i)e ENmMS(n),i) for some GePmn-1)M\S(n-1) and

2<i<n. Hence have proved that by Lemma 3.6, we have

(0,1, .,e(n i)} if 2<i<n-1,
ENmMAS®, D23 10,1, .,e(m i) \T ifnisevenandi=n,

11,2, .,e(m, ) \T ifnisoddandi=n.

By combining Theorem 3.2, Lemmas 3.7 and 3.8, this theorem follows. ]
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