EXISTENCE OF POSITIVE SOLUTIONS FOR *P*-LAPLACIAN SINGULAR BOUNDARY VALUE PROBLEMS*

CUIZHE LI AND WEIGAO GE

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P. R. China

(Received 4 July 2001; after recision 29 May 2002; accepted 21 June 2002)

By using Leray-Schauder degree theory, positive solutions are established for p-Laplacian singular second-order boundary value problem, singularities at (i) u' = 0 but not u = 0, (ii) u = 0, and u' = 0 are 1 discussed, respectively.

Key Words: Singular Boundary Value Problem; Leray-Schauder Degree; P-Laplacian; Positive Solutions

1 INTRODUCTION AND PRELIMINARIES

Boundary value problems for ordinary diffferential with p-Laplacian arise in the search of radial solutions of nonlinear partial differential equations. The types of nonlinear partial differential equations we have in mind arise in a multitude of applied areas, such as the study of porous media, elasticity theory, plasma problems, astrophysics and etc. we can see these in [1] and the references therein. In addition, in the study of nonlinear phenomena, many mathematical models also give rise to the singular boundary value problems. They have been studied by a number of authors. We can erfer to Ravi P. Agarwal and O'Regan^{2&3}, Wang Hongzhou et al.⁴, Yang Zuodong⁵ and their references. However, almost all papers in the literature discussed the case that the system don't include p-laplacian. The aim of this paper is to extend the results in [2] [3] [4] and [5] to the following p-Laplacian singular boundary value problem:

$$\begin{cases} (\phi_p(u'))' + q(t)f(t, u, u') = 0, & 0 < t < 1, \\ u(0) = u'(1) = 0 \end{cases} \dots (1)$$

where $\phi_p(u) = |u|^{p-2}u$, p > 1, and our nonlinear term f may be singular at (i) u' = 0 but not u = 0, (ii) u = 0 and u' = 0. Sufficient conditions are established.

Let $C_B[0, 1] = \{u \in C[0, 1], \phi_p(u') \in C[0, 1], u(0) = a, u'(1) = b \text{ with norm } |u|_1\}$ and

^{*}The project supported by the National Sicence Foundation (19871005) and the Doctoral Programme Foundation of Institution of Higher Education of China (1999000722)

define $\|u\|_1 = \max \{\|u\|_0, \|\phi_p(u')\|_0\}$ where $\|u\|_0 = \sup_{t \in (0, 1)} \|u(t)\|$. Then $C_B[0, 1]$ is a normed linear space.

In this section, we want to establish some important lemmas. First considering

$$\begin{cases} (\phi_p(u'))' + q(t) F(t, u, u') = 0 & 0 < t < 1 \\ u(0) = a, u'(1) = b \end{cases}$$
 ... (2)

we have

Lemma 1 - Suppose

$$F: [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$$
 is continuous

and

$$q \in C(0, 1)$$
 with $q > 0$ on $(0, 1)$ and $q \in L^{1}[0, 1]$

In addition, assume that there is a constant M independent of λ such that

$$|u|_1 \leq M$$

for any solution $u \in C^1[0, 1]$, $\phi_p(u') \in C^1[0, 1]$ to

$$\begin{cases} (\phi_p(u'))' + \lambda q(t) F(t, u, u') = 0, & 0 < t < 1, \\ u(0) = u'(1) = 0 \end{cases} \dots (3)_{\lambda}$$

for each $\lambda \in (0, 1)$. Then (2) has a solution $u \in C^1[0, 1], \phi_p(u') \in C^1[0, 1]$.

PROOF: Solving (3)_{λ} is equivalent to finding a $u \in C^1$ [0, 1] with $\phi_p(u') \in C^1$ [0, 1] which satisfies

$$u(t) = a + \int_{0}^{t} \phi_{p}^{-1} \left[\phi_{p}(b) + \lambda \int_{s}^{1} q(x) F(x, u(x), u'(x)) dx \right] ds, \qquad ... (4)$$

where $\phi_p^{-1}(w) = |w|^{\frac{1}{p-1}} sgn(w)$ is the inverse function of $\phi_p(u)$.

Define the operator $N_{\lambda}: C_{B}[0, 1] \rightarrow C_{B}[0, 1]$ by setting

$$N_{\lambda} u(t) = a + \int_{0}^{t} \phi_{p}^{-1} \left[\phi_{p}(b) + \lambda \int_{s}^{1} q(x) F(x, u(x), u'(x)) dx \right] ds.$$

Consequently, $(3)_{\lambda}$ is equivalent to the fixed point problem $N_{\lambda} u = u$ in C_B [0, 1].

Next we will prove $N_{\lambda}: C_B[0,1] \to C_B[0,1]$ is completely continuous. To see this, let $\Omega \subseteq C_B[0,1]$ be bounded, i.e. there exists a constant $M_0 > 0$, with $|u|_1 \le M_0$ for each $u \in \Omega$, so we have

$$|N_{\lambda}u| \le |a| + \int_{0}^{1} G(s) ds$$

here

$$G(s) = \max$$

$$\left\{\left|\begin{array}{cccc} \phi_p^{-1} \left(|\phi_p(b)| + M_1 \int\limits_s^1 q(x) dx\right) \right|, \left|\begin{array}{cccc} \phi_p^{-1} \left(-|\phi_p(b)| - M_1 \int\limits_s^1 q(x) dx\right) \right|\right\},\right.$$

$$M_1 = \sup |F(t, x, y)| \text{ for } (t, x, y) \in [0, 1] \times [-M_0, M_0] \times [-M_0, M_0]$$

and $|\phi_p(N_\lambda u)'(t)| = \left|\phi_p(b) + \lambda \int_t^1 q(s) F(s, u(s), u'(s)) ds\right| \le |\phi_p(b)| + M_1 \left|\int_0^1 q(s) ds\right|.$

So we obtain the boundedness of $N_{\lambda} \Omega$. Next consider $u \in \Omega$ and $s, t \in [0, 1]$, then since

$$|N_{\lambda} u(t) - N_{\lambda} u(s)| \le \left| \int_{s}^{t} G(v) dv \right|$$

$$\left| \phi_{p} \left(N_{\lambda} u \right)'(t) - \phi_{p} \left(N_{\lambda} u'(s) \right) \right| \leq \left| \int_{s}^{t} q(x) F(x, u(x), u'(x)) dx \right| \leq M_{1} \left| \int_{s}^{t} q(x) dx \right|$$

the equicontinuity of $N_{\lambda} \Omega$ follows from the above inequalities. Consequently, the Arzela-Ascoli theorem implies that $N_{\lambda}: C_B[0,1] \to C_B[0,1]$ is completely continuous. Let

$$U = \{u \in C_B[0, 1] : |u|_1 < 2M + M_1 + 2\}$$

so for $u \in \partial U$, we have $(1 - N_{\lambda})(u) \neq 0$. then by using Leray-Schauder degree theory [6] [7], we obtain

$$deg \{I-N_1, U, 0\} = deg \{I-N_0, U, 0\}$$

where $N_0 = a + bt = \theta(t)$ (let |a|, |b| < M+1), we have $|N_0 u| < 2M+2$, so $N_0 u = \theta(t) \in U$, then we get

$$deg \{I - N_1, U, 0\} = deg \{I, U, \theta(t)\} = 1 \neq 0$$

and we deduce that $N_1 u = u$ has a fixed point in U, i.e. (2) has a solution $u \in C^{1}[0, 1]$ with $\phi_n(u') \in C^{1}[0, 1]$.

Lemma 2 — Suppose $u \in C^1[0, 1]$ with $\phi_p(u') \in C^1[0, 1]$ and satisfies

$$\begin{cases}
-\left[\phi_{p}\left(u'\left(t\right)\right)\right]' > 0 & 0 < t < 1 \\
u\left(0\right) = 0, u'\left(1\right) = a \ge 0
\end{cases} \dots (5)$$

Then we have $u(t) \ge tu(1) = t \sup_{t \in [0, 1]} |u(t)|$.

PROOF: Since $-[\phi(u'(t))]' > 0$, we have $(\phi_p(u'))' < 0$, it implies that $\phi_p(u')$ is decreasing on (0, 1) and hence u'(t) is decreasing. Because of $u'(1) = a \ge 0$, u(0) = 0, we have $u'(t) \ge 0$ and $u(t) \ge 0$ for $t \in [0, 1]$, also from (5) and u is concave, then we get $u(t) \ge tu(1) = t \sup_{t \in [0, 1]} |u(t)|$.

·2. SINGULARITY AT u' = 0 BUT NOT AT u = 0

In this section we discuss (1). Our nonlinearity f may be singular at u' = 0 but not at u = 0. Throughout this section, we always assume that

$$(H_1)$$
 $q \in C(0, 1)$ with $q > 0$ on $(0, 1)$ and $q \in L^1[0, 1]$

$$(H_2)\ f\colon [0,\,1]\times [0,+\infty)\times (0,+\infty)\to [0,+\infty)$$

is continuous with f(t, x, y) > 0, $\lim_{y \to 0+} f(t, x, y) = \infty$, for $(t, x, y) \in [0, 1] \times (0, +\infty) \times (0, +\infty)$

$$(H_3) \ f(t, x, y) \le h(x) [g(y) + r(y)] \ \text{on} \ [0, 1] \times (0, +\infty) \times (0, +\infty)$$

with g > 0 continuous and nonincreasing on $(0, +\infty)$, and $h \ge 0, r \ge 0$ continuous and nondecreasing on $(0, +\infty)$.

$$(H_4) \sup_{c \in (0, +\infty)} \frac{c}{\phi_p^{-1} \left(\Gamma^1 \left(h \left(c \right) \int_0^1 q \left(s \right) ds \right) \right)} > 1$$

where

$$I(z) = \int_{0}^{z} \frac{du}{g(\phi_{p}^{-1}(u)) + r(\phi_{p}^{-1}(u))}$$

for z > 0, $I(\infty) = \infty$.

 (H_5) for constants H>0, L>0, there exists a function $\Psi_{H,L}$ continuous on [0, 1] and positive on (0, 1), and a constant $\gamma, 0 \le \gamma < 1, f(t, x, y) \ge \Psi_{H,L}(t) x^{\gamma}$ on $[0, 1] \times [0, H] \times (0, L]$.

$$(H_6) \int_{0}^{1} q(t) g(k_0) \phi_p^{-1} \left(\int_{t}^{1} s^{\gamma} \Psi_{H,L}(s) q(s) ds \right) dt < \infty, \text{ for any constant } k_0 > 0.$$

We have

Theorem 1 — Suppose (H_1) – (H_6) hold. Then (1) has a solution $u \in C^1[0, 1]$, $\phi_p(u') \in C^1[0, 1]$ with u > 0 on (0, 1].

PROOF: Choose M > 0 with

$$\frac{M}{\phi_p^{-1}\left(I^{-1} h\left(M\right) \int\limits_0^1 q(s) ds\right)} > 1$$

Next choose $\varepsilon > 0$ and $\varepsilon < M$ with

$$\frac{M}{\phi_p^{-1} \left(I^{-1} \left(h \left(M \right) \int_0^1 q \left(s \right) ds + I \left(\phi_p \left(\varepsilon \right) \right) \right) \right)} > 1. \tag{6}$$

Take $n_0 \in \{1, 2, ...\}$ such that $\frac{1}{n_0} < \varepsilon$ and let $N_0 = \{n_0, n_0 + 1, ...\}$. We first show that

$$\begin{cases} (\phi_p(u'))' + q(t)f^*(t, u, u') = 0 & 0 < t < 1 \\ u(0) = 0, u'(1) = \frac{1}{m} & \dots (7)^m \end{cases}$$

has a solution for each $m \in N_0$; here

$$f^{*}(t, x, y) = \begin{cases} f(t, x, y), & x \ge 0, y \ge \frac{1}{m} \\ f\left(t, x, \frac{1}{m}\right), & x \ge 0, y < \frac{1}{m} \\ f(t, 0, y), & x < 0, y \ge \frac{1}{m} \\ f\left(t, 0, \frac{1}{m}\right), & x < 0, y < \frac{1}{m} \end{cases}$$

and from (H_2) , we have $f^*(t, x, y) \ge 0$.

To show (7)^m has a solution, we consider the family of problems

$$\begin{cases} (\phi_p(u'))' + \lambda q(t) f^*(t, x, y) = 0 & 0 < t < 1 \\ u(0) = 0, u'(1) = \frac{1}{m} & m \in N_0 \end{cases} \dots (8)_{\lambda}^{m}$$

for $0 < \lambda < 1$. Let $u' \in C^1[0, 1], \phi_p(u') \in C^1[0, 1]$ be any solution of $(8)_{\lambda}^m$.

The differential equation and $(H_1)(H_2)$ immediately imply that $(\phi_p(u'))' \le 0$ on (0, 1), $u'(t) \ge \frac{1}{m}$, on [0, 1], and $u(t) \ge \frac{1}{m}$ on [0, 1], also from (H_3) we have

$$-(\phi_{p}(u'))' = \lambda q(t) f^{*}(t, u, u') = \lambda q(t) f(t, u, u')$$

$$\leq \lambda q(t) h(u) [g(u') + r(u')]$$

$$\leq q(t) h(u(1)) [g(u') + r(u')]$$

for $t \in (0, 1)$, and we have

$$\frac{-(\phi_p(u'))'}{g(u') + r(u')} \le q(t) h(u(1))$$

for $t \in (0, 1)$. Integration from t to 1 yields

$$\int_{\phi_{p}\left(\frac{1}{m}\right)}^{\phi_{p}(u'(t))} \frac{dx}{g(\phi_{p}^{-1}(x)) + r(\phi_{p}^{-1}(x))} \le h(u(1)) \int_{0}^{1} q(s) ds$$

i.e.,
$$I\left(\phi_{p}\left(u'\left(t\right)\right)\right) - I\left(\phi_{p}\left(\frac{1}{m}\right)\right) \leq h\left(u\left(1\right)\right) \int_{0}^{1} q\left(s\right) ds$$

and so
$$u'(t) \le \phi_p^{-1} (I^{-1} (h(u(1))) \int_0^1 q(s) ds + I(\phi_p(\varepsilon)))$$

Now integrate from 0 to 1 to obtain

$$\frac{u\left(1\right)}{\phi_{p}^{-1}\left(I^{-1}\left(h\left(u\left(1\right)\right)\int_{0}^{1}q\left(s\right)ds+I\left(\phi_{p}\left(\varepsilon\right)\right)\right)\right)}\leq1\qquad \dots (9)$$

now (6) together with (9) implies

$$|u|_0 = u(1) \neq M.$$
 ... (10)

Notice any solution u of $(8)^{m}_{\lambda}$ that satisfies $0 \le u(t) < M$ for $t \in [0, 1]$, also satisfies

$$\frac{1}{m} \le u'(t) < \phi_p^{-1} \left(I^{-1} (h(M) \int_0^1 q(s) ds + I(\phi_p(\varepsilon))) \right) + 1 \equiv M_1 \qquad \dots (11)$$

for $t \in [0, 1]$. Let $M_0 = \max \{M, \phi_p(M_1)\}$ in lemma 1, and from (10) and (11) that

$$|u|_{1} = \max \{|u|_{0}, |\phi_{p}(u')|_{0}\} < M_{0}$$
 ... (12)

thus lemma 1 implies $(7)^m$ has a solution u_m . In fact

$$0 \le u_m(t) < M, \quad \frac{1}{m} \le u_m'(t) < M_1$$
 ... (13)

for $t \in [0, 1]$, and u_m satisfies

$$\begin{cases} (\phi_p(u'))' + q(t)f(t, u, u') = 0 & 0 < t < 1 \\ u(0) = 0, u'(1) = \frac{1}{m} \end{cases}$$

The condition (H_5) guarantees the existence of a function $\Psi_{M, M_1}(t)$ continuous on [0, 1] and positive on (0, 1) and a constant $\gamma, 0 \le \gamma < 1$, with

$$f(t, u_m(t), u_m'(t)) \ge \Psi_{M, M, (t)} [u_m(t)]^{\gamma}$$

for $(t, u_m(t), u_m'(t)) \in [0, 1] \times [0, M] \times (0, M_1]$, we claim

$$u'_{m}(t) \ge \begin{bmatrix} 1 \\ 0 \end{bmatrix} \phi_{p}^{-1} \begin{bmatrix} 1 \\ t \end{bmatrix} q(s) \Psi_{M, M_{1}}(s) s^{\gamma} ds dt$$

$$\phi_{p}^{-1} \begin{bmatrix} 1 \\ t \end{bmatrix} q(s) \Psi_{M, M_{1}}(s) s^{\gamma} ds$$
... (14)

from (H_5) we have

$$-\left(\phi_{p}\left(u_{m}^{'}\right)\right)'=q\left(t\right)f\left(t,u_{m}^{'},u_{m}^{'}\right)\geq q\left(t\right)\,\Psi_{M,\,M_{1}}\left(t\right)\left[u_{m}\left(t\right)\right]^{\gamma}$$

Integration from t to 1 yields

$$\phi_{p}(u_{m}^{'}(t)) \ge \phi_{p}\left(\frac{1}{m}\right) + \int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) [u_{m}(s)]^{\gamma} ds$$

$$> \int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) [u_{m}(s)]^{\gamma} ds$$

and from lemma 2, we get

$$u'_{m}(t) > \phi_{p}^{-1} \left(\int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) [u_{m}(s)]^{\gamma} ds \right)$$

$$> \phi_{p}^{-1} \left(\int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) u_{m}^{\gamma}(1) s^{\gamma} ds \right) \qquad \dots (15)$$

Now integrate from 0 to t to obtain

$$u_{m}(t) > \int_{0}^{1} \phi_{p}^{-1} \left(\int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) u_{m}^{\gamma}(1) s^{\gamma} ds \right) dt$$

$$u_{m}(1) > \int_{0}^{t} \phi_{p}^{-1} \left(\int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) u_{m}^{\gamma}(1) s^{\gamma} ds \right) dt$$

$$= \int_{0}^{1} \phi_{p}^{-1} (u_{m}^{\gamma}(1)) \int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) s^{\gamma} ds dt$$

$$= [u_{m}(1)]^{\frac{\gamma}{p-1}} \int_{0}^{1} \left(\int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) s^{\gamma} ds \right) dt$$

and so

and so

$$u_{m}(1) > \begin{bmatrix} 1 & \phi_{p}^{1} \begin{pmatrix} 1 & q(s) \Psi_{M, M_{1}}(s) s^{\gamma} ds \\ t \end{pmatrix} dt \end{bmatrix}^{\frac{p-1}{p-1-\gamma}} = a_{0}.$$

from (15) we have

$$u'_{m}(t) > \phi_{p}^{-1}(u_{m}^{\gamma}(1)) \phi_{p}^{-1} \left(\int_{t}^{1} q(s) \Psi_{M, M_{1}}(s) s^{\gamma} ds \right)$$

$$> \phi_p^{-1} (a_0^{\gamma}) \phi_p^{-1} \left(\int_t^1 q(s) \Psi_{MM_1}(s) s^{\gamma} ds \right)$$

$$= a_0^{\frac{\gamma}{p-1}} \phi_p^{-1} \left(\int_t^1 q(s) \Psi_{M,M_1}(s) s^{\gamma} ds \right).$$

so (14) is true.

Next we show that $\{u_m\}_{m \in N_0}$ and $\{\phi_p(u_m')\}_{m \in N_0}$ are bounded, equicontinuous families on [0, 1].

We need only check equicontinuity since (13) holds. Of course for $t \in (0, 1)$, we have

$$0 \leq -\left(\phi_{p}\left(u_{m}^{'}\left(t\right)\right)' \leq h\left(M\right)\left[g\left(u_{m}^{'}\left(t\right)\right) + r\left(M_{1}\right)\right]q\left(t\right)$$

$$\leq h\left(M\right)\left[g\left(a_{0}^{\frac{\gamma}{p-1}}\phi_{p}^{-1}\int_{t}^{1}s^{\gamma}q\left(s\right)\Psi_{M,M_{1}}\left(s\right)ds\right)+r\left(M_{1}\right)\right]q\left(t\right)$$

now equicontinuity comes immediately from the above (H_6) and (13).

The Arzela-Ascoli theorem guarantees the existence of a subsequence N of N_0 and a function $u \in C^1[0,1], \phi_p(u') \in C^1[0,1]$ with u_m converging uniformly on [0,1] to u and $\phi_p(u'_m)$ to $\phi_p(u')$ as $m \to \infty$ through N; Also u(0) = 0 = u'(1). In addition, since

$$\phi_p(u_m'(t)) \ge a_0^{\gamma} \int_{t}^{1} s^{\gamma} q(s) \Psi_{M, M_1}(s) ds$$

for $t \in [0, 1]$. We have

$$\phi_p(u'(t)) \ge a_0^{\gamma} \int_t^1 s^{\gamma} q(s) \Psi_{M, M_1}(s) ds$$

for $t \in [0, 1]$, and so u' > 0 on [0, 1) and u > 0 on [0, 1]. Now $u_m, m \in N$ satisfies

$$\phi_{p}(u'_{m}(t)) = \int_{t}^{1} q(s) f(s, u_{m}(s), u'_{m}(s)) ds + \frac{1}{m}$$

for $t \in [0, 1]$. Fix $t \in [0, 1]$, let $m \to \infty$ through N in the above equality to obtain

$$\phi_p(u'(t)) = \int_t^1 q(s) f(s, u(s), u'(s)) ds$$

for $t \in [0, 1]$, and we deduce immediately that $u \in C^1(0, 1], \phi_n(u') \in C^1[0, 1]$,

and
$$(\phi_p(u'))' = -q(t)f(t, u, u')$$

for $t \in (0, 1)$.

Remark: In theorem 1, if we let p = 2, then the result is the same result as [1]. Example 1 — Consider the boundary value problem

$$\begin{cases} (\phi_p(u'))' + \mu(u')^{-\alpha} [u^{\beta} + 1] = 0 & 0 < t < 1 \\ u(0) = u'(1) = 0 \end{cases} \dots (16)$$

with $0 < \alpha < 1, \beta \ge 0$ and $\mu > 0$. If

$$\mu < \frac{p-1}{\alpha+p-1} \left(\sup_{c \in (0, \infty)} \frac{c^{\alpha+p-1}}{(c^{\beta}+1)} \right) \qquad \dots (17)$$

then (16) has a solution $u \in C^1[0, 1], \phi_p(u') \in C^1[0, 1]$ with u > 0 on (0, 1].

To see that (16) has a solution, we will apply theorem 3 with q=1, $g(u)=u^{-\alpha}$, r=0, and $h(u)=\mu[u^{\beta}+1]$. Clearly, $(H_1)(H_2)(H_3)(H_5)$ (with $\Psi_{H,L}=L^{-\alpha}$ and $\gamma=0$) and (H_6) (since $0<\alpha<1$) are satisfied. Next notice that $I(z)=\frac{p-1}{\alpha+p-1}z^{\frac{\alpha+p-1}{p-1}}$. Also

$$\sup_{c \in (0, \infty)} \frac{c}{\phi_p^{-1} \left(\int_0^{-1} (h(c) \int_0^1 q(s) ds) \right)} = \sup_{c \in (0, \infty)} \frac{c}{\left[\frac{\alpha + p - 1}{p - 1} \mu(c^{\beta} + 1) \right]^{\frac{1}{\alpha + p - 1}}}$$

so (17) guarantees that (H_A) holds. Theorem 3 now establishes the result.

3. SINGULARITY AT
$$u' = 0$$
 AND $u = 0$

In this section our nonlinearity f may be singular at u' = 0 and u = 0. Throughout this section we will assume that the following conditions hold;

$$(G_1)$$
 $q \in C[0, 1]$ with $q > 0$ on $(0, 1)$;

$$(G_2) \ f \in C([0, 1] \times (0, +\infty) \times (0, +\infty), (0, +\infty)); \text{ and}$$

$$(G_3) \ f(t, x, y) \le [h(x) + w(x)] [g(y) + r(y)] \ \text{on} \ [0, 1] \times (0, +\infty) \times (0, +\infty)$$

with w > 0, g > 0 continuous and nonincreasing on $(0, +\infty)$, and $h \ge 0$, $r \ge 0$ continuous and nondecreasing on $[0 + \infty)$.

$$(G_{4}) \sup_{c \in (0, +\infty)} \frac{c}{\phi_{p}^{-1} \left[I^{-1} \left[|q|_{0} ch(c) + |q|_{0} \int_{0}^{c} w(x) dx \right] \right] > 1$$

where

$$I(z) = \int_{0}^{z} \frac{\phi_{p}^{-1}(u) du}{g(\phi_{p}^{-1}(u)) + r(\phi_{p}^{-1}(u))}$$

for

$$z > 0$$
, $|q|_0 = \sup_{t \in [0, 1]} |q(t)|$, $I(\infty) = \infty$. $\int_0^a w(x) dx < \infty$, for any $a > 0$;

 (G_5) for constants H>0, L>0, there exists a function $\Psi_{H,L}(t)$ continuous on [0, 1] and positive on (0, 1), such that $f(t, x, y) \ge \Psi_{H,L}(t)$ on $[0, 1] \times (0, H] \times (0, L]$; and

$$(G_6) \int_{0}^{1} q(t) w(k_0 t) dt < \infty, \int_{0}^{1} q(t) g(\phi_p^{-1} \left(\int_{t}^{1} \Psi_{H, L}(s) q(s) ds) \right) dt) < \infty,$$

for any constant $k_0 > 0$.

We have

Theorem 2 — Suppose (G_1) – (G_6) hold. Then (1) has a solution $u \in C^1$ [0, 1], $\phi_n(u') \in C^1$ [0, 1] with u(t) > 0 on (0, 1].

PROOF: Choose M > 0, and $\varepsilon > 0$ with $\varepsilon < \frac{M}{2}$ and with

$$\frac{M}{\phi_p^{-1}(\varepsilon) + \phi_p^{-1} \left\{ I^{-1} \left[Mh(M) \mid \phi \mid_q + \mid \phi \mid_q \int_0^M w(x) dx + I(\varepsilon) \right] \right\}} > 1 \qquad \dots (18)$$

Choose $n_0 \in \{1, 2, ...\}$ with $\phi_p\left(\frac{1}{n_0}\right) < \varepsilon$ and let $N_0 = \{n_0, n_0 + 1, ...\}$

Consider the following system

$$\begin{cases} (\phi_p(u'))' + q(t)f^*(t, u, u') = 0 & 0 < t < 1 \\ u(0) = u'(1) = \frac{1}{m} & \dots & (19)m \end{cases}$$

We first prove that (19)m has a solution for each $m \in N_0$; here

$$f^{*}(t, x, v) = \begin{cases} f(t, x, v), & u \ge \frac{1}{m}, v \ge \frac{1}{m} \\ f\left(t, u, \frac{1}{m}\right), & u \ge \frac{1}{m}, v < \frac{1}{m} \end{cases}$$

$$f\left(t, \frac{1}{m}, v\right), & u < \frac{1}{m}, v \ge \frac{1}{m}$$

$$f\left(t, \frac{1}{m}, \frac{1}{m}\right), & u < \frac{1}{m}, v < \frac{1}{m}$$

Consider the family of problems

$$\begin{cases} (\phi_p(u'))' + \lambda q(t) f^*(t, u, u') = 0 & 0 < t < 1 \\ u(0) = u'(1) = \frac{1}{m} & m \in N_0 \end{cases} \dots (20)_{\lambda}^{m}$$

for $0 < \lambda < 1$. Let $u \in C^1$ [0, 1], $\gamma_n(u') \in C^1$ [0, 1] be any solution of $(20)_{\lambda}^m$. Then according to the definition of f^* and (G_2) , we get: $f^* \in C([0,1] \times \mathbb{R}^2, \mathbb{R})$ and $f^*(t, u, v) > 0$, for $(t, u, v) \in [0, 1] \times \mathbb{R}^2$. We have $(\phi_p(u'))' = -\lambda q(t) f^*(t, u, u') \le 0$, so $\phi_p(u')$ nonincreasing, also since $\phi_p(u')$ increasing, we obtain u' nonincreasing. It is immediate that $u'(t) \ge u'(1) = \frac{1}{m}$ on $t \in [0, 1]$, and

$$u(t) = \int_{0}^{t} u'(t)dt + u(0) \ge \frac{1}{m}t + \frac{1}{m} \ge \frac{1}{m} \text{ on } t \in [0, 1]. \text{ That is}$$

$$u'(t) \ge \frac{1}{m}, u(t) \ge \frac{1}{m}, t \in [0, 1]$$
... (21)

by the definition of f^* , we have

$$-(\phi_{p}(u'))' = \lambda q(t)f^{*}(t, u, u') = \lambda q(t)f(t, u, u')$$

$$\leq q(t)[h(u) + w(u)][g(u') + r(u')] \qquad \dots (22)$$

and
$$\frac{-(\phi_p(u'))'}{[g(u')+r(u')]} \le q(t) [h(u)+w(u)] \qquad \dots (23)$$

and so
$$\frac{-u' (\phi_p(u'))'}{[g(u') + r(u')]} \le |q|_0 [h(u) + w(u)]u'$$

Integration from t to 1 yields

$$\int_{t}^{1} \frac{-u'd(\phi_{p}(u'))}{g(u') + r(u')} \le |q|_{0} h(u(1))u(1) + |q|_{0} \int_{u(t)}^{u(1)} w(x)dx.$$

Notice that

$$\int_{t}^{1} \frac{-u'd(\phi_{p}(u'))}{g(u') + r(u')} = \int_{\phi_{p}(u'(1))}^{\phi_{p}(u'(1))} \frac{\phi_{p}^{-1}(z)dz}{g[\phi_{p}^{-1}(z)] + r[\phi_{p}^{-1}(z)]}$$

$$= I(\phi_{p}(u'(t))) - \phi_{p}(u'(1)))$$

we have

$$\phi_p(u'(t)) \le I^{-1} \left[I(\phi_p(u'(1))) + |q|_0 h(u(1))u(1) + |q|_0 \int_{u(t)}^{u(1)} w(x) dx \right]$$

$$\leq I^{-1} [I(\varepsilon) + |q|_0 h(u|1))u(1) + |q|_0 \int_0^{u(1)} w(x)dx].$$

Now integrate from 0 to 1 to obtain

$$u(1) \le \frac{1}{m} + \phi_p^{-1} \left\{ I^{-1}[I(\varepsilon) + |q|_0 h(u(1))u(1) + |h|_0 \int_0^{u(1)} w(x) dx \right\}$$

and so,

$$\frac{u(1)}{\phi_p^{-1}(\varepsilon + \phi_p^{-1} \left\{ I^{-1} \left[I(\varepsilon) + |q|_0 h(u \ 1) \right) u(1) + |q|_0 \int_0^u w(x) dx \right\}} \le 1 \qquad \dots (23)$$

Now (G_4) together with (23) implies

$$|u|_0 = u(1) < M.$$
 ... (24)

Next notice any solution u of $(20)_{\lambda}^{m}$ that satisfies $\frac{1}{m} \le u(t) < M$ for $t \in [0, 1]$ also satisfies

$$\frac{1}{m} \le u'(t) < \phi_p^{-1} \left\{ I^{-1} \left[| q |_0 h(M)M + | q |_0 \int_0^M w(x) dx + I(\varepsilon) \right] \right\} + 1 := M_1 \qquad \dots (25)$$

Let $M_0 = \max\{M, \phi_p(M_1)\}\$ in Lemma 1, notice from (24) and (25) that

$$|u|_1 = \max\{|u|_0, |\phi_p(u')|_0\} < M_0.$$
 ... (26)

So Lemma 1 implies (19)m has a solution u_m with

$$\frac{1}{m} \le u_m(t) < M \quad \frac{1}{m} \le u_m'(t) < M_1 \qquad \dots \tag{27}$$

and u_m satisfies

$$\begin{cases} (\phi_p(u_m'))' + q(t)f(t, u, u') = 0, & 0 < t < 1 \\ u(0) = u'(1) = \frac{1}{m} \end{cases} \dots (28)$$

Next notice (G_5) guarantees the existence of a function $\Psi_{M,M_1}(t) \in C[0,1]$ and positive on (0, 1), such that $f(t, u_m(t), u_m'(t)) \geq \Psi_{M,M_1}(t)$ for $(t, u_m(t), u_m'(t)) \in [0, 1] \times (0, M] \times (0, M_1]$. We have

$$-\left(\phi_{p}\left(u_{m}^{'}\right)\right)'\geq q(t)\ \varPsi_{M,M_{1}}(t)$$

Integrate from t to 1 to obtain

$$\phi_p(u_m'(t)) \ge \phi_p(u_m'(1)) + \int_t^1 q(s) \Psi_{M,M_1}(s) ds$$

$$\geq \int_{t}^{1} q(s) \, \Psi_{M,M_{1}}(s) ds$$

and so

$$u'_{m}(t) \ge \phi_{p}^{-1}(\int_{\cdot}^{1} q(s) \Psi_{M,M_{1}}(s)ds), \quad t \in [0, 1]$$
 ... (29)

Integrate from 0 to t, we have

$$u_{m}(t) \geq u_{m}(0) + \int_{0}^{t} \phi_{p}^{-1} \left(\int_{x}^{1} q(s) \Psi_{M,M_{1}}(s) ds \right) dx$$

$$\geq \int_{0}^{t} \phi_{p}^{-1} \left(\int_{x}^{1} q(s) \Psi_{M,M_{1}}(s) ds \right) dx \qquad ... (30)$$

$$:= t \Omega_{M,M_{1}}(t)$$

here

$$\Omega_{M, M_1}(t) = \frac{1}{t} \int_0^t \phi_p^{-1} \left(\int_x^1 \phi(s) \Psi_{M, M_1}(s) ds \right) dx. \text{ Now since}$$

$$\lim_{t \to 0+} \Omega_{M, M_1}(t) = \lim_{t \to 0^+} \frac{\int\limits_0^t \phi_p^{-1} \left(\int\limits_x^1 q(s) \Psi_{M, M_1}(s) ds\right) dx}{t}$$
$$= \phi_p^{-1} \left(\int\limits_0^1 q(s) \Psi_{M, M_1}(s) ds\right).$$

Let $\Omega_{M,M_1}(t)$ extend to a continuous function on [0, 1]. Consequently, there exists a $k_0 > 0$ with $\Omega_{M,M_1}(t) \ge k_0 > 0$ for $t \in [0, 1]$. This together with (30) implies

$$u_m(t) \ge k_0 t, \quad t \in [0, 1]$$
 ... (31)

also from (29) and (30) we have that

$$0 \le -\left(\phi_{p}(u_{m}^{'}(t))\right)' \le [h(M) + w(u_{m}(t))] [g(u_{m}^{'}(t)) + r(M_{1})]q(t)$$

$$\le [h(M) + w(k_{0}t)]$$

$$\left[q(\phi^{-1}) \left(\int_{0}^{1} q(s) \Psi_{m}(s) ds\right) + r(M_{1})\right]q(t)$$

$$\left[\begin{array}{c}g(\phi_p^{-1}\left(\int\limits_t^1\ q(s)\ \Psi_{M,M_1}(s)ds\right)+r(M_1)\end{array}\right]q(t)$$

for $t \in (0, 1)$. From (G_6) we get:

$$\{u_m\}_{m \in N_0}$$
, $\{\phi_p(u_m')\}_{m \in N_0}$ is a bound, equicontinuous family on [0, 1].

The Arzela-Ascoli Theorem guarantees the existence of a subsequence N of N_0 , and a function $u \in C^1$ [0, 1], $\phi_p(u' \in C^1$ [0, 1],, with $u_m(t)$ and $\phi_p(u'_m(t))$ converging uniformly on [0, 1] to u(t) and $\phi_p(u'(t))$ as $m \to \infty$ through N, respectively. Also u(0) = 0 = u'(1) with $u(t) \ge k_0 t$ for $t \in [0, 1]$, and

$$\phi_p(u'(t)) \ge \int_{t}^{3} q(s) \Psi_{M,M_1}(s) ds, \ t \in [0, 1]$$

In addition $u_m(t), M \in N$ satisfies

$$\phi_{p}(u'_{m}(t)) = \int_{t}^{1} q(s) f(s, u_{m}(s), u'_{m}(s)) ds + \frac{1}{m}, \quad t \in [0, 1]$$

fix $t \in [0, 1]$ and let $m \to \infty$ through N to deduce that

$$\phi_p(u'(t)) = \int_{t}^{1} q(s) f(s, u, (s), u'(s)) ds$$

i.e.

$$(\phi_n(u'(t)))' = -\phi(t) f(t, u(t), u'(t))$$

That is to say that u(t) is a solution of (1).

Example 2: Consider the boundary value problem

$$\begin{cases} (\phi_p(u'(t))' + \mu(u')^{-\alpha} [u^{-\beta} + \eta_0 u^{\gamma} + \eta_1] = 0 & 1 < t < 1 \\ u(0) = u'(1) = 0 & \dots \end{cases}$$
 ... (32)

with $0 < \alpha < 1$, $0 < \beta < 1$, $\eta_0 \ge 0$, $\eta_1 \ge 0$, $\gamma \ge 0$, $\mu > 0$. If

$$\mu < \sup_{c \in (0, \infty)} \frac{c}{\left[c(\eta_0 c^{\gamma} + \eta_1) + \frac{c^{\beta+1}}{1+\beta}\right] [(p-1)(1+\alpha) + 1]}$$

Then (32) has a solution $u \in C^1[0, 1], \phi_p(u') \in C^1[0, 1]$ with u(t) > 0 on (0, 1].

PROOF: Let $q = \mu$, $g(u) = u^{-\alpha}$, r = 0, $h(u) = \eta_0 u^{\gamma} + \eta_1$, $w(u) = u^{-\beta}$. Clearly, (G_1) , (G_2) , (G_3) , (G_5) (with $\Psi_{H, L} = H^{-\beta} L^{-\alpha}$) and (G_6) (Since $0 < \alpha < 1$, $0 < \beta < 1$) are satisfied. Also

$$I(z) = \int_{0}^{z} \frac{\phi_{p}^{-1}(u)du}{(\phi_{p}^{-1}(u))^{-\alpha}} = \frac{z^{(p-1)(1+\alpha)+1}}{(p-1)(1+\alpha)+1},$$

$$I^{-1}(u) = \left\{ u(p-1)(1+\alpha) + 1 \right\}^{\frac{1}{(p-1)(1+\alpha)+1}}$$

$$\int_{0}^{c} w(u)du = \int_{0}^{c} u^{\beta} du = \frac{c^{\beta+1}}{1-\beta},$$

and

$$\sup_{c \in (0, \infty)} \frac{c}{\phi_p^{-1} \left\{ I^{-1} \left[|q|_0 ch(c) + |q|_0 \int_0^c w(x) dx \right] \right\}}$$

$$= \sup_{c \in (0, \infty)} \frac{c}{\phi_p^{-1} \left\{ \mu \left[c(\eta_0 c^{\gamma} + \eta_1) + \frac{c^{\beta + 1}}{1 - \beta} \right] [(p - 1)(1 + \alpha) + 1] \right\}^{\frac{1}{(p - 1)(1 + \alpha) + 1(p - 1)}}}$$

So (G_4) holds. Theorem 2 now establishes the result.

REFERENCES

- 1. R. Manasevich and K. Schmitt, In: Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations (Ed. F. Zanolin), Springer Wien, New York, 1996.
- 2. Ravi P. Agarwal and Donal O'Regan, J. math. Anal. Appl. 226 (1998) 414-430.
- 3. Ravi P. Agarwal and Donald O'Regan, J. Diff. Eq., 143 (1998) 60-95.
- 4. Wang Hongzhou, Deng Lihu and Ge Weigao, ACTA Mathematic SINICA, 43(3) (2000) 385-390, (In Chinese)
- 5. Yang Zuodong, Appl. math. Mech., 17(5) (1996) 445-454 (In Chinese).
- 6. K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985.
- 7. D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994.