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By using Leray-Schauder degree theory, positive solutions are established for p-Laplacian singular second-order
boundary value problem, singularities at (i) ¥’ = O but not u = 0, (ij) u = 0, and &’ = O are 1 discussed,
respectively.
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1 INTRODUCTION AND PRELIMINARIES

Boundary value problems for ordinary diffferential with p-Laplacian arise in the search of radial
solutions of nonlinear partial differential equations. The types of nonlinear partial differential
equations we have in mind arise in a multitude of applied areas, such as the study of porous media,
elasticity theory, plasma problems, astrophysics and etc. we can see these in [1] and the references
therein. In addition, in the study of nonlinear phenomena, many mathematical models also give rise
to the singular boundary value problems. They have been studied by a number of authors. We can
erfer to Ravi P. Agarwal and O’Regan?%3, Wang Hongzhou et al4, Yang Zuodong> and their
references. However, almost all papers in the literature discussed the case that the system don’t
include p-laplacian. The aim of this paper is to extend the results in [2] [3] [4] and [5] to the
following p-Laplacian singular boundary value problem :

(8, @)Y +q @O ftu,u)=0, 0<t<l,
. (1)
u(=u(1)=0

where ¢p w=tubl “zu,p> 1, and our nonlinear term f may be singular at (i) ¥’ = O but not

u=0, (ii) u =0 and ¥’ = 0. Sufficient conditions are established.

Let C3l0,1] = {ue C[0,1]}, ¢p W)e CI0,1}, u(®=a,u' (1)=b with norm lul;} and
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define | u|; = max {Iul0,|¢P (') |y} where Iul0=te31(t)pl) lu(®)!. Then Cp[0, 1] is a normed linear

space.

In this section, we want to establish some important lemmas. First considering

@, @)Y +q@OF (t,u,u)=0 0<t<l

. (2
u®=a,u ()=>b
we have
Lemma 1 — Suppose
F:[0, 1}x ‘.7(_2 — R is continuous
and qge C(0,1) with g > 0 on (0, 1) and qeLl[O,l]
In addition, assume that there is a constant M independent of A such that
lul, <M
for any solution u € C![0, 1}, g, (wYe CH[0, 1] to
(¢p WY +Aq®F(tuu)=0 0<t<l,
- (3,

u() =« (1)=0

for each Ae (0, 1). Then (2) has a solution ue C! [0, 1], ¢p w)e C1{0,1].

PROOF : Solving (3), is equivalent to finding a ue C! [0, 1] with 9, (W)€ C' [0, 1] which
satisfies

t 1
utr=a+ [ 6, 6,®+2 [ @ Fruw. o () ds |ds, . (@)
0 s

1

where ¢;l w)y=lwip~! sgn(w) is the inverse function of ¢p ().
Define the operator N, : Cp[0,1]1 - C5 [0, 1] by setting
t . 1
Nyu(@=a+ { 6, 6,®+4 [ q@F0ue.uw ) dx |ds

N

Consequently, (3), is equivalent to the fixed point problem N,u=u in Cg [0, 1].
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Next we will prove N,:Cp[0,11-C g0, 1] is completely continuous. To see this, let
2cCpl0,1] be bounded, ie. there exists a constant M,>0, with ful, <M, for each ue €2, so

we have

) 1
INulslal+ | G(s)ds
0

here

G(s) = max

1 1
¢, (0, 1+M, [ qman |4, lo,®)1-M | quan ]|,

s
My = sup | F(t,x,y)| for (t,x,y) € [0, 1] [~ My M) x [~ Mg, M)

1 1
and 14, VuY O1=| 6,B)+A [ g FGu(eu D ds| <19, @) 1+M, | [ qds|.
: 0

So we obtain the boundedness of NA.Q. Next consider u€ 2 and s, € [0, 1], then since

1
IN e -Nyus || Gaydu

s

t t
and 19, Ny 0= 9,y u OIS | [ g Fou@w de| <M | [ q@ax

s s
the equicontinuity of N, {2 follows from the above inequalities. Consequently, the Arzela-Ascoli
theorem implies that N : Cpl0, 11> Cp [0, 1] is completely continuous. Let
Us={ue Cgl0,1]):1ul,<2M+M, +2)

so for ue dU, we have (1 _NA) (#) #0. then by using Leray-Schauder degree theory [6] [7], we °
obtain

deg {I-N;,U,0} = deg {I-N,, U, 0}

where Ny=a+bt=06() (let lal,l1bl<M+1), we have INqul<2M+2, so Nyu=6(t)e U, then

we get
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deg {I-N;,U,0} = deg {I,U,0(®)} = 1£0

and we deduce that N] u=u has a fixed point in U, ie. (2) has a solution ue C}[0, 1] with
¢p W) e Ct[o, 1].

Lemma 2 — Suppose u € Cl [0, 1] with ¢p w)eC 1[0, 1] and satisfies

{ -4, @ @)>0 O0<i<l )

u©0)=0,u’1)=a20

Then we have™ u(®)2m(1)=t sup lu(®)l
te [0,1]

PROOF : Since —[¢ (' (1))’ >0, we have (¢p W) <0, it implies that ¢p («) is decreasing
on (0, 1) and hence v’ () is decreasing. Because of ' (1)=a 20,4 (0)=0, we have u’ (1)20 and

u ()20 for te [0, 1], also from (5) and u is concave, then we get u()2m(l)= ¢t sup lu()l
te [0,1]
‘2. SINGULARITY AT « = 0 BUT NOT AT u = 0

In this section we discuss (1). Our nonlinearity f may be singular at ¥’ = O but not at u = 0.
Throughout this section, we always assume that

(H) g€ C(0,1) with ¢ > 0 on (0, 1) and ge L' [0, 1]
(Hy) f:10, 11X [0, +0) X (0, + ) — [0, + )

is continuous with f (¢, x, y) > 0, lim f(z,x,y) = 9o, for (£, x,y) € [0, 1] % (0, + o) X (0, + o)
y—= 0% '

(H3) f(t,x,)<h (x) [ 0) +7 ()] on [0, 1] X (0, + ) X (0, + )

with g > 0 continuous and nonincreasing on (0, +ee), and 1 20, =20 continuous and nondecreasing
on (0, +o0), '

C

(Hy) sup ] =1
cE (0, + °°) -1 1
6, | rine [ qwas
0
[ d
where 1(z)= I "

0 80, W)+r (@, @)

for z > 0, [ (c0) =00,
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(Hg) for constants H > 0, L > O, there exists a function ¥y ; continuous on [0, 1] and

positive on (0, 1), and a constant %, 0<y<1,f(t,x,y) 2 'PH, L® x¥ on [0, 1] % [0, H] x (0, L].

1 1
He [ a0ekys, | | 5" ¥y )q(s)ds) | dr<es, for any constant ky>0.
0 t

We have

Theorem 1 — Suppose (H|) ~ (Hg) hold. Then (1) has a solution u e c! [0, 1], ¢p W) e.
C' [0, 1] with u > 0 on (0, 1].

PROOF : Choose M > 0 with

M

>1

1
¢ |17 han [ g)as)
0

Next choose €>0 and €< M with

M

>1. .. (6)

1
&, 17 mon | @ ds+109, )
0

Take nye {1, 2, ...} such that ;1—<e and let Ny = {ng,ny+1, ...}. We first show that
()

@, ) +q (O f (t,u,u)=0 0<it<1
oy L . (D"
u(0)=0,u (1)=—';

has a solution for each m e NO; here

r

f(taX,)’), XZO, yZ

(1
= >
ft,x,m} x20, y<

1
m
1
ey =] ;"
f(@0,y), x<0 yz—'-n—

f/toi x<0 <i
L ’ ’m > ] y m

and from (H,), we have f* (z,x,y) 2 0.
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To show (7)™ has a solution, we consider the family of problems

@, @) +Aqf t,xy)=0 0<r<1

1 - @)
u(0)=0,u’(1)=;1- me N

for 0<A<1. Let u’ € C1[0, 1], ¢p (W) e C'[0, 1] be any solution of (8)’)':.
The differential equation and (H,)(H,) immediately imply that (¢p @)Y <0 on (0, 1),

u (t)Z-'l;, on [0, 1], and u(t)Z;% on [0, 1], also from (f;) we have

~ (@, @)Y =24 () f" (t.u, ) =Aq (O f (&, u, W)
<Aq @) h @ (g ) +rw)]
<q () h (1) [g @) +r@)]

for te (0,1), and we have

= (¢, W)Y

T SO

for te (0, 1). Integration from 7 to 1 yields
9, @) 0
T =T
%H 89, (N+rg, @)

m

1
<h@®) | q@ds
0

1
ie., 1(¢,,(u'(t)»—l(¢,,($DSh(u(l)) [ awas
0
. 1
and so d0sg T hE®) [ ¢ ds+1, @)
0

Now integrate from O to 1 to obtain
u(l)
| 1 =1 @
g, |17 hw) [ gords+1, (e»)]
0

now (6) together with (9) implies

luly=u(1)# M. .. (10)
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Notice any solution u of (8) that satisfies 0S u () <M for te [0, 1], also satisfies
A

1
Lsw @<, |17 G { 9 () ds+1(4, (&) [+1=M,

for te [0, 1]. Let M0 = max {M, ¢p (M])} in lemma 1, and from (10) and (11) that
tuly =max {1uly, 19, (&) o} < My

thus lemma 1 implies (7)™ has a solution u,. In fact
0<u, (<M, -;—Su;”(t)<M1

for te [0, 1], and u, satisfies

@, W) +a 0 f @ uu)=0 0<t<1
0.0 (=1
u(O)—O,u(l)—m

193

. (11)

.. (12)

. (13)

The condition (HS) guarantees the existence of a function ‘I’M IRU. continuous on [0, 1] and positive
>

on (0, 1) and a constant ¥ 0<y<1, with

£ttty @), 1y @) 2 ¥ gy O [, O

for (& u,, (), 1, (D) € [0, 1] % [0, M] x (0, M,], we claim

1 _1..7

1
2| [ [ a0 #, m, ) s7ds |ar
0 t

1
6| [ 40 ¥y u ©ds
t

from (Hs) we have

= 8, @)Y =4 OF G iy 1,) 24 1) ¥y g O [ty OF

. (14)
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Integration from ¢ to 1 yields

1

9, G, (:))z¢p( )+ [ 4© #ig,00, 0 0, O s
t

g |~

1
> [ 46) ¥y ur, ©) Ty 617 ds

!

and from lemma 2, we get

t

"1
by (> 8, [I 9() ¥y, ) 1, ()17 s ]

!

1
>, [j' 709 Fyy 4y, ul (1)s7ds]

Now integrate from O to 7 to obtain

¢

1 1
u, ()> j ¢;1 [J q(s) tPM, M, (s) u;’;l (1) s7ds }dt
' 0

t 1
and so u, (> | ¢;’[j 96) ¥, (s)u;(l)sydstt
0

t

1 1
=6 W] a6 ¥y @ 5ad
0 t

—r L1
= G P 1] | [ 40 ¥y 4y ) 7ds |a
0

¢

0 t

-1
1 1 -1~y
and so u,, (1) >[j ¢,1, {j q() ¥y M, (5) 57 ds ]dt:r =a,

from (15) we have

1
oy > 6, G (D) 6, { J a6 ¥y p @57as ]

t

.. (15)



1
> 6, @6, | [ 46 By ©57ds

t

Y A i 1
= ag'l ¢; J q(s) ¥y M, (s) s7 ds

t

so (14) is true.

Next we show that {um} N and {¢p (u;n)} are bounded, equicontinuous families on
me me N,

0 €Ny

[05 1]'
We need only check equicontinuity since (13) holds. Of course for e (0, 1), we have

0S— (@, (4, () <h (M) [g (4, () +r M] g ()

L
<h)| g a1, [ Tq() ¥y py s [+r M) @
r

now equicontinuity comes immediately from the above (H6) and (13).

The Arzela-Ascoli theorem guarantees the existence of a subsequence N of N, and a function

1 ’ 1 . . . ’ ,
ue C [0,1], ¢p () e C [0,1] with u, converging uniformly on [0, 1] to u and ¢p (u,) to ¢p W)

as m — oo through N; Also «(0) = 0 = «’ (1). In addition, since

1
8 G 23 [ 706 ¥y py ) s
H

for te [0, 1]. We have

1

8,0 )2y [ 196) ¥y py s
t

for te [0,1], and so u'>0 on [0, 1) and u > 0 on (0, 1]. Now u.,me N satisfies

1
’ 4 1
4 @)= | g (s)f(s, tyy (5) 1y () )ds 4

t

for te [0, 1]. Fix t€ [0, 1], let m — o through N in the above equality to obtain

1

8, D)= | q()F(s,u(s)u () ds

t
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for te [0, 1], and we deduce immediately that u e C1 (0, 1], ¢p w)e C [0, 1],

and (9, @) =-qOf @ u u)

for te (0, 1).

Remark : In theorem 1, if we let p = 2, then the result is the same result as [1].

Example 1 — Consider the boundary value problem

(9, @ +p @) “[P+11=0 0<i<1

.. (16)
u@=u'1)=0
with 0<a< 1,20 and u>0. If
] a+p~1
u<—L—l— sup < . (17D
a+p=1{ .o (P+1)

then (16) has a solution u € C! [0, 1], ¢p (w)e C1[0,1] with u > 0 on (0, 1].

To see that (16) has a solution, we will apply theorem 3 with ¢ = 1, g @)=u" % r=0, and

h(w)=pWP+1). Clearly, (H)) (H,) (Hy) (Hs) (with ¥y, ;=L % and y = 0) and (Hg) (since 0 <

a+p-1

a< 1) are satisfied.Next notice that / (z)=—E—_—1—z -1 Also
a+p-1

C

sup = sup
c€ (0,0) _

C
1 ] c€ (0 a+p-1 a+]lJ—1
¢, | I o) [ aas [—le—y(cB+1)
. - ‘

so (17) guarantees that (H 4) holds. Theorem 3 now establishes the resuit.

3. SINGULARITY AT ' = 0 AND u« = 0

In this section our nonlinearity f may be singular at ¥’ = 0 and 4 = 0. Throughout this section we
will assume that the following conditions hold ;

(G,) g€ C[0,1] with g > 0 on (0, 1);
(G,) fe C([0,1]x (0, + ) x (0, + ), (0, +=0)); and

(Gy) fE.x, )[R () +w ()] [g 0)+7r )] on [0, 1] X (0, +22) X (0, + )
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with w > 0, g> 0 continuous and nonincreasing on (0,+ ), and h20,r>20 continuous and
nondecreasing on [0 + o).

C

(G sup ~> 1
ce O+ _1| _, ‘
I gk @ +1q)y [ wde
0
: o' () du
where 1(z)= _f —= T
0 86, W)+r @, @)
a
for 2>0,1glg= sup 1g@®hI(=)=wo. [ w@) dr<os, for any a > 0,
te [0, 1) 0

(Gs) for constants H>0,L >0, there exists a function lPH, £(#) continuous on [0, 1] and

positive on (0, 1), such that fi, x,y) 2 TH, 1(® on [0, 1] x (0, H] x (0, L]; and

1 1 1
G [ty wikgdr <=, [ a0 g(0,"| | ¥y 1) qlo)ds) |d <o
0 0

t

for any constant k0 > 0.

We have
Theorem 2 — Suppose (G)){Gg) hold. Then (1) has a solution ue c! [0. 1],
9, () e C! [0, 1] with u(t) > 0 on (0, 1].

PROOF : Choose M > 0, and £>0 with £<%’- and with

M

> 1 .. (18)

M
¢, (e)+¢;l 17 (MR 1 91, +1 91, | w(x)dx+1(£)]]

0

Choose nye {1, 2, ..} with ¢p(;11;)<e and iet Ny = {ng, ny + 1, ...}

Consider the following system

(@, @) +aOf" (6w, u)=0 0<t<1

... (19
u(0)==u’(1)=-r1; (19)m

We first prove that (19)m has a solution for each m € N; here
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.

f@, x,v), 2’—1’- #

1 1 1

dk ;J *w " m
£ xv)=3 :
flt ) vz

I |-

m

11
it i ), u< , v<
Consider the family of problems

(@, @) + @) f" (t,u, ) =0 0<s<1

. (20)7
u(0)=u'(1)="1; me N, (2002

for 0 <A< 1. Let ue C! [0, 11, v () € c! {0, 1] be any solution of (20)';. Then according to
the definition of f* and (G,), we get: f *e ¢([0,1] x 9{2, R) and f* (¢, u,v) > 0, for (t, u, v) €

[0, 11 x %2 We have (¢p(u’))’ = A0 f" (t,u, W) <0, so ¢p(u’) nonincreasing, also since ¢p

: . ., , : . . , 1
increasing, we obtain ¥’ nonincreasing. It is immediate that u'(¢) 2u'(1)=; on te [0, 1], and

t

u(t) = ju’(t)dt+ u(O)Z—l-t lzl on te [0, 1]. That is
0 m m m
W 2L un =L te (0,1 @n
> ()2 ,

by the definition of f*, we have
= (@,0) = Aq()f” (t, u, w) = Aq(1) fit, u, ')

< q(Oh(u) + w(w)] [g() + rw)] 2D

—(¢,(u
and m < g(?) [h(u) + w(u)] . (23)

—u (9, )Y
and so m <lqly [h(u) + ww)lw’

Integration from ¢ to 1 yields
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—ud(¢ (u )) u(1)
h I dx.

Notice that

(0] -
} ~Wd(g, W) %IU ¢, (ds

IR Gy 16, @, )

= I($,((®)) - 9, (1))

we have

u(l)
B,0¢() < 17 UG, W) +1 gl hu(Due() +1 gy | wixdar]
u(t)

u(l)

<I7 e +1 gl hu (1) +1gly | widxl.
0

Now integrate from O to 1 to obtain
1. - "
u(l)S;+¢p I'1[1(.&')+Iqloh(u(l))l,t(l)+lhI0 I w(x)dx]
0
and so,

u(l) ) <1 ex)
¢;‘(e+ ¢;‘ {1“ ) +1qlghtu Du(1) +1 g1, | w(x)dx]}
0

Now (G,) together with (23) implies

luly=u(l) <M. . (24)

Next notice any solution u of (20)';{l that satisfies ;L—s u(t) <M for te [0, 1] also satisfies

M
-:; <u(f) < ¢;‘ l 17 g\ hMM +1 41, { w(x)dx + I(€)] } +1:=M, . (25)

Let M, = max{M, ¢p(M1)} in Lemma 1, notice from (24) and (25) that

luly = max{lulg, | 6,(u) I} < My, . (26)
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So Lemma 1 implies (19)m has a solution u, with
Lew <M L<u <M 27)
—Suy, ) < m_um() 1
and u_ satisfies
m

(@)Y + (O 1, ') =0, 0<1<1

.. (28)
u(0) = w(1) =T:{

Next notice (G5) guarantees the existence of a function ¥, M (r) € C[0, 1] and positive on
1

(0, 1), such that fiz, u, (9), u, () 2 o, () fOr (0,1, 0), ¥ (e l0,1] x (0, M] x (0, M;]. We

have
= (8, (4,)) 290) Fyypy O
Integrate from 7 to 1 to obtain
, 1
8,000, 1) 2 8,0, () + [ at5) ¥y (15
!
1
2 [ a(9) ¥y, s
!
. 1
and so 1, ® 2 6, ([ a6 ¥yypy 0, re0,1) . (29)
t
Integrate from O to 7, we have
t . 1
un® 2 10,0+ | 6| [ at6) ¥y (51 |
0 x
t , 1
2[ 6 | ] oo By s |ax ... (30)
0 x :
=10 MM, ®
1 t 1
here 2y Mn(t)z? I ¢;1 J‘ o(s) ‘I’M Ml(s)ds dx. Now since
0 x
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QO Commy ™

1
g, [ [ a0y, s ]dx
X

t
=0

lim Q (1) = lim
=0+ M. M,

1

= ¢;| jq(s) ¥y M, (s)ds |.
0

Let 2, m @ extend to a continuous function on [0, 1]. Consequently, there exists a ky > 0 with
1

2y M, (2ky > 0 for te [0,1). This together with (30) implies

u, (D2kyt, te[0,1) .. (31

also from (29) and (30) we have that
0 <= (9, (ty, () S [AM) +w(u,, ()] [8(u,(1)) + r(M,)1g()
< [h(M) + wiky)]

1
8@, | [ a6 ¥ypp 95 |+rMy) |0

!

for te (0, 1). From (G6) we get:

{u,) e Ny { ¢p(u:”)} me N, is a bound, equicontinuous family on [0, 1].
The Arzela-Ascoli Theorem guarantees the existence of a subsequence N of Ny and a

function ue C' [0, 1], 9, € C' [0, 1), with u, () and ¢p(u;n(t)) converging uniformly on [0, 1] to

u(t) and ¢p(u'(t)) as m— oo through N, respectively. Also u(0) = 0 = u’(1) with u(r) 2 kgt for
te [0, 1], and

1
W02 [ 90) ¥y, (s, 1€ 10,1)

!

In addition u,(t), M e N satisfies

I
Byt = [ G A5, (51, 1y(oDds + L, 1 0.1)

t

fix € [0,1] and let m — o through N to deduce that
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1
B,0:®) = | gs) s, . (). w(s))ds
t

ie. (B, (D)) =~ o) ft, u(®), W' ()

That is to say that u(¢) is a solution of (1).
Example 2: Consider the boundary value problem

@, @) +pa)y W P+l +m1=0 1<r<1
... (32)

u0)=u'(1)=0

with 0 < @< 1, 0 < f<1,1,20,7,20,720,u>0. If

c
B+1
[c(nocy+nl)+cl+ﬁ][(p—l)(1+a)+1

U< sup
c € (0, o0)

Then '(32) has a solution ue C! [0, 1], ¢, e C' [0, 1] with u(r) > 0 on (0, 1].

PROOF : Let ¢ = u, gw) = u ®r=0, h(u)=1]0u7+ M w(u)=u-p. Clearly, (G)),(G,),

(G5), (Gs) (with WH. L=H'/3 L™ % and (Gg) Since 0 << 1, 0< B < 1) are satisfied. Also

6, ()du =D+
@@~ E-DaA++T

Z
12)= I
0

1
" P-Hd+a)+1
IV @) = {up-1) (1 +a)+ 11}

c

c B+
j w(udu = _([ u‘Bdu=-1_—

5 B
and sup ¢ y
ce®e) [
&1 17 1qlych)+1qly [ wixy
0
c
= sup
c € (0, ) +1

1
6 o ctne+ n1)+jp_ﬁ][(p— D+ [fT*OHED

So (G, holds. Theorem 2 now establishes the result.
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