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In this study a discontinuous regular Sturm-Liouville problems with eigenvalue parameter at the one of boundary
conditions and with transmission conditions at the point of discontinuity are investigated.

We suggest an own approach for finding asymptotic approximation formulas for eigenvalues and eigenfunc-
tions of such discontinuous problems.

In the special case, when our problem is continuous (i.e. when & = 1 in below) the obtained resuits are
coincided with the corresponding results in [2].
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1. STATEMENT OF THE PROBLEM

We consider the differential equation

‘L'u:=—u"+q(x)u=/1u .. (L.
on [-10) U (0, 1], with boundary conditions

Lw=aqu-)+ou(-1)=0 .. (1.2)
and Ly ()= (B) A+ B u(l)— (B, A+ B w (1)=0 . (13)
and transmission conditions

Ly()=u(-0)-6u(+0)=0 .. (1.4)

Ly(u): 4 (-0)— &/ (+0)=0, .. (1.5)
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where A is complex eigenparameter; the realvalued functin q(x) continuous in [~ 1, 0) and (0, 1]

and has a finite limit ¢ (£0):= lim gq(x); 6, o, B, [3:- (i = 1, 2) are real numbers; | a; |+ a,l
x>0

#0, 620. As a following to [8], everywhere we assume that p = ﬁl B, - ﬁ'z B, >0.

There are many papers and books, where the spectral properties of the boundary-value
problems with eigenparameter depended boundary conditions are investigated (see, for example [1-3,
5 & 6, 8-11] and corresponding bibliography). Also various physical applications of such problems
can be found in [2].

Boundary-value problems with transmission conditions arise, as a rule, in the theory of heat
and mass transfer and in a varied assortment of physical transfer problems.

2. AN OPERATOR FORMULATION IN THE ADEQUATE HILBERT SPACE

We introduce the special inner product in the Hilbert space L,(-1,1)® ¢ and a symmetric linear

operator A defined on this Hilbert Space such that (1.1)-(1.5) can be considered as the eigenvalue
problem of this operator.

Namely, in the Hilbert Space H 5p= L,(-1,1)® € we define an inner product by

0 1 )
(6= | foFmds+& [ f0F@a+Ss5,
0

-1

(f@) . [ e®
for F.—( £ ],G.—[ g ]e Ha’p.

Following [2] for convenience we shall use the Following notations

R] (W) = B] u(l)- Bz w (1)
and Ry () =B, u (1) - By (1).

For functions flx), which defined on [~1,0)\J(0,1] and has finite limits fE0) =
lim f(x), by f(l) (x) and f(z) (x) we denote the functions

x—>+0

fx),xe[-1,0) f+0), x=0
Fy@=y’ » foy ) =
f(=0),x=0 f&), xe(0,1]

which are defined on .Q] =[-1,0] and .(22 =[0, 1] respectively.
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In the Hilbert space Hj o consider the operator A which is defined by the equalities

D@A) :={[ ij (Zf)) J f(i) x), f;,.) (x) are absolutely continuous in
1
QG=12)1fe L,[-1, 1}, L, f=Lf=L,f=0},
A f@) ) Tf
RO | R0 |

Now we can rewrite the considered problem (1.1)-(1.5) in the operator form as

AU=AU,
) u(x)
where U= R’l ) e D).

The eigenvalues and eigenfunctions of the problem (1.1)-(1.5) are defined as the eigenvalues
and the first components of the corresponding eigenelements of the operator A respectively.

3. SOME BASICS PROPERTIES OF EIGENVALUES AND EIGENFUNCTIONS

Theorem 3.1 — The operator A is symmetric.
PROOF : Let F, Ge D (A). By two partial integration we obtain

(AF,G)=(F,AG)+ W(.E:=0) - W B~ )+ EWEE 1) -

_ £ . ,
—52W(f,g;+0)+;(R1 DR, @-R, (R, @) - 3.0
where, as usual, by W(f, g; x) we denote the Wronskian of the functions f and g:

W, gx)=f(x)g @)~f (x)g ).
Since f and g are satisfied the boundary condition (1.2), it follows that

W(, g -1)=0. - (32
From the transmission condition (1.4) and (1.5) we get

Wz -0)=8 W( g +0) .. (3.3)
Further, it is easy to verify that

RiOR, ®-R DR ®=-pW(f,g1). . (3.4)

Finally, substituting (3.2)-(3.4) in (3.1) then we have
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(AF,G)=(F,AG) (F, G e D (A)) .. (3.5

so A is symmetric. [ |
Corollary 3.1 — All eigenvalues of the problem (1.1)-(1.5) are real.
We can now assume that all eigenfunctions of the problem (1.1)-(1.5) are real valued.
Corollary 3.2 — Let A, and A, be two different eigenvalues of the problem (1.1)-(1.5). Then
the corresponding eigenfunctions u; and u, of this problem satisfy the following equality

0 1
[ o0 m@dc+ [ w0 u (x)d.x=—§R'1 () R, (). . (3.6)
-1 0

PROOF : The formula (3.6) follows immediately from the orthogonality of corresponding
eigenelements

uy (v) ) u, (x)

Ul = Y and U2‘= ’
R, (u)) R, (uy)

in the Hilbert space H 50 |

For next consideration, we need the following Lemma, which can be proved by the same
technique as in the proof of Theorem 1.5 in [7].

Lemma 3.1 — Let the real valued function g(x) be continuous in [a, b] and f(A), g (A) are
given entire functions. Then fot any Ae € the equation

-u'+qx)u=Au,x€ [a,b]
has a unique solution u=u (x, A) satisfying the initial conditions
u(@=f(A),u @=g(A) (or u®d) = f(A),w (b)=g ).

For each fixed x € [a, b], u (x, A) is an entire function of A.
Let ¢, , (x) =9, (x, A) be the solution of eq. (1.1) of [-1, 0], satisfying the initial conditions

u=D=a, ¥ (-1)=—a,. - 3.7

After defining above solution we shall define the solution ¢, , (x) := ¢, (x, 4) of eq. (1.1) on
[0, 1] by means of the solution ¢, (x, A) by the initial conditions

u©=5"¢,0 4,1 ©0)=5"¢ 2. . (38)

Consequently, the function ¢, (x) = ¢ (x, 4) defined on [-1,0)\_J (0, 1] by the equality

¢] (x, A‘)? X € [_ la 0)
P& 4 A, xe 0,1]

is a such solution of the eq. (1.1) on [- 1, 0) \J (0, 1], which satisfies one of the boundary conditions
(namely (1.2)) and the both transmission conditions (1.4) and (1.5).
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Analogically first we define the solution y, ; (x) = x, (x, 4) on [0, 1] by initial conditions

u()=f, A+ B, u (1)= A+ B,. . (3.9)

After defining the above solution, we shall define the solution ¥, 1 =x A) of eq. (1.1)
on [0, 1] by means of the solution ¥, , (x) by the initial conditions

u(0)= &y, (0, ), w’ (0) = &y , (0, ). .. (3.10)

Consequently, the function %, (x) = x (x, A) defined on [-1,0) ) (0, 1] by the equality

X A, xel-1,0)

XED=1 0 @, xe© 1]

is a solution of the equality (1.1) on [-1,0) ) (0, 1], which satisfies the other boundary condition
(1.3) and the both transmission conditions (1.4) and (1.5).

It is obvious that the Wronskians

®; (A) =W, (¢, % %)

=hENLED-6 L@ D xeQ (=1,2)

are independent of x € £, and are entire functions.

Lemma 3.2 — For each A€ € o, (1)=& o, ().
PROOF : Because of (3.8) and (3.10) the short calculation gives

W, (01 11:0) =& Wy (85, 2, 0), s0 o (=5, (D). u
Now we may introduce to the consideration the characteristic function w(A) as
o) =0, (D=8 a, ).
" Theorem 3.2 — The eigenvalues of the problem (1.1)-(1.5) are coincided zeros of the function
@ (A).

PROOF : Let @ (4y)=0. Then W, (¢, x,;%)=0 and therefore the functions ¢, (x, A) and
0
X (x, A) linearly depended, i.e.,

X] (x’ ;‘()) =k] ¢] (xv AO),XE [_ 1’ O]

for some kl #0. Consequently, the function ¥ (x, lo) also satisfied the boundary condition (1.3), so
x{(x, /10) is an eigenfunction of the problem (1.1)-(1.5) corresponding to the eigenvalue 10.
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Now let u,(x) be any eigenfunction corresponding to eigenvalue A, but @(Ay)#0. Then
the functions ¢, ; and ¢,, x, would be linearly independent on [- 1, O] and [0, 1] respectively.
Therefore, uj (x) may be represented as in the form

| e o, (x, /10)+(:2x1 (x, %),xe -1,0)
M OV=1 . g, (6 Ag) +cy 2p (6 A x€ (O, 1]

where at least one of the constants €p> € €4, €4 is not zero.

Considering the true equations
L, (uy(x))=0,v=1,4 .. (3.11)
-as the homogenous system of linear equations of the variables €}> €5 €3, €4, and taking into account
(3.8) and (3.10), it follows that the determinant of this syste,

0 @y (Ag) 0 0
¢ A, ® x A, 0 -6¢, A, 0 - 512 A, ()
2, ©@ 212 -84, O -51,; 0
0 0 o, (A 0
¢ 2 0 -dx 2, 0)
= W (lo) a, (l()) ) ,
& A, (V)] -6 x> Ay ©
59, A, © -éx %, (0)
= 0 (Ap) &, (4g) , ,
59, A, (V) - 512 A, (0)
= - & o, (%) @) (hy) #O.
Therefore, the system (3.11) has the only trivial solution ¢ =¢y=¢3=c,=0. Thus we “get
contradiction, which completes the proof. |

Lemma 33 — If A=J, is an eigenvalue, then ¢ (x, Ay and x (x, A) are linearly dependent.
PROOF : By virtue of Theorem 3.2

W (9; (x, Ag), Z; (x, A)) = @, (Ag) = 0

and therefore

XA =k ¢, (x,Ap) (i =1, 2) . (3.12)
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for some kl #0 and k2¢0. We must show that k,=k,. Suppose if possible that k1 #k, Taking into
account the definitions of the solution ¢i (x, A) and x; (x, A) from the equalities (3.12) we have

Ly () =23, -0 =8, -0=113, O =82 O=k; 913, 0= 8ky 07, ©

=k 6 ¢, A 0) -k, 69, Ay 0)=6(k; —ky) ¢2}¥0 ).

Since L; (x; ) =0 and &(k; -~ k,) #0 it follows that
0

¢, %, (0)=0. - (3.13)
By the same procedure from the equality L, (x; )=0 we can derive that
0
82, ©=0. - (3.14)

From the fact that ¢, ; (x) is a solution of the differential eq. (1.1) on [0, 1] and satisfied
0

the initial conditions (3.13) and (3.14) it follows that ¢, , (x) =0 identically on [0, 1], because of
the well-known existence and uniqueness theorem for the initial-value problems of the ordinary linear
differential equations.

By using (3.8), (3.13) and (3.14) we may also find

¢11 (O)=¢1}, (0)=0.
0 0
From latter discussion for ¢, , (x), it follows that ¢, ; (x)=0 identically on [- 1, 0]. Hence,
0 0

¢ (x, AO)=0 identically on [-1,0)\J (0, 1]. But this is contradict with (3.7), which completes the
proof. n

Corollary 3.3 — If A=, is an eigenvalue, then both ¢(x,A,) and x(x, A would be
eigenfunctions corresponding to this eigenvalue.

Lemma3.4 — All eigenvalues A are simple zeros of @(A).
PROOF : Using the well-known Lagrange’s formula [cf. 4, pp. 6-7] it can be shown that
0

1
A-2| [ 606 0a+& [ 4,000, 0dr [=EWGLH:D . GBI
-1 0 .

for any A. Since

Xa, x)=ky ¢ Ay (). xe -1,0) U O 1]
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for some k0¢0, the direct calculations gives that

W(y, 8 D)= W(¢A, 6, 1)= (/1,, R, (¢ +R,(8)

A

1
k n

(@A)~ A-A) R, (8i=A-A) [Mbk](m].

Substituting this formula in (3.15) and letting A — 4, we get

0
[ @, e+ & I @, 0 dx——af(ﬂt) R L (@)- - (3.16)
-1 4]

Now putting

’ 1 ’
R @y )= R )=
n

n

in (3.16) it yields o (ln);tO. B

4. ASYMPTOTIC APPROXIMATE FORMULAS FOR @ (A)

We begin by proving two Lemmas.

Lemma 4.1 — Let ¢(x, A) be the solutions of eq. (1.1) defined in section3 and let A= s,
Then the following integral equations hold for k = 0 and £k = 1 :

fk—d)”_(x):azz—}—cos [s(x+1)]—al%§sin [s(x+1)]

% I ﬁsm[s(x—y)]qo’) 9,200 dy

—

ik-k- 9y, )= % 9 2 (0) & 7 COs (sx) + ¢1 Pl (0) & sm (sx)

+ 1
s

O S, ¢

f,;sm [s (=14 0) 9, , 0) dy . (42)

PROOF : For proving it is enough substitute 52 6.0+ ¢'1' 20) and s? .00+ ¢2 2 () instead
of 9() 9, ,y and g (y) ¢, ; () in the integral terms of the (4.1) and (4.2) respectively and integrate
by parts twice. |
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Lemma 42 — Let A=s%Tms = t. For | Al -, the functions ¢; , (x) have the following
asymptotic representations which hold uniformly for x e 'Qi (for i = 1, 2), for :

g—ktpll(x):azf%cos [s+ 1] +0 (st Tt . (43)
:{ﬂ“(x):%azﬁcos s+ D]+0 (st 1 HE+1Dy . (4.4
if a, #0, ﬁcpll(x):—%ﬁsin[s(x+1)]+0(Is|k_2e'”(x+l)) . (4.5)
fzd)zl(x):——;-%ﬁ-sin [s(x+ D] +0 (s~ 2H1G+D) .. (46)

while if a2=0.
PROOF : First we must note that all formulas for the solution ¢, ; (x) are totally analogical

to the corresponding formulas in [7] for ¢, (x). But the similar formulas for ¢, ; (x) needed individual

consideration, since the last solutions are defined by the initial conditions having special forms in
terms of @, ; (x). Therefore, we shall prove only the formula (4.4) (since (4.6) may be proved

analogically to (4.4).
Let o, #0. It follows from (4.3) that

¢1,1(0)=a2coss+0(ﬂ . (4.7)

and 920 =—sa,sins+0(1). . (4.8)
Putting (4.7) and (4.8) in (4.2) (for k = 0) we have

Jelx

j sin[S(x—y)]q(y)¢2,1(y)dy+0[%;~) . (49)
0

© |

¢2A(x)=%2-cos [s(x+ D]+

Now it will be convenient to use the function
Fy=e'"*Dy (), - (4.10)
which by virtue of (4.5) satisfied the integral equation

"‘Ze—m(x+1)

le(x)=—6— cos[s(x+1)]+-:j
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x —1tl
_[ sin [s(x—y)]q()’)e_m(hy)Fz?L(y)dy"'o(eIsI ]
0

Defining M (A)= max |F,, (x)l, from the last integral equation we have
0<x<1

1
o | M
M(l)s—(%z—+”|!—s(}l'l [1qody+=2,
0

Is|

where MO>0 some constant, from which it follows that

M) =01),1 1] > c.

Comparing with (4.10) we get the asymptotic representation
¢21(x)=0(e|tl(x+l))'

Substituting in the integral on the right of (4.9) we have

Il (x+1)
¢2;.(x)=%008 [S(x+1)]+0[eT],

so the formula (4.6) follows for k = 0. Analogically, putting (4.7) and (4.8) in (4.2) for k = 0 and

following the same technique we can verify that the formula (4.6) is true also for k = 1.

Theorem 4.1 — Let A=s% t = Ims. Then the characteristic Sfunction @ (A) has the following

asymptotic representations :
Case 1 — If

B, #0, a, %0, then @ (1) = a, f, 65> sin (25) + O (s 2 2"
Case 2 — If

By #0, 0,20, then @(A)=f, &, 5% cos (25) + O (I s1 €'y
Case 3 — If

By #0, 0y %0, then @ (A)=ff; o, 657 cos (25) + O (s 12'tY
Case 4 — If

.BI2¢0,a2¢O, then a)(}y)=_ﬁ'1 o, 8ssin (2s)+o(e2'”),

. (4.11)

. (4.12)

.. (4.13)

. (4.14)

PROOF : The proof is completed immediately by substituting (4.6) in the next representation

of characteristic function @ () :

(W)= 19y, ()25 (1) =y 3 (1) 2, 5 (D]
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= FIAB, +B) 0,5, (1)~ AB,+ By ¢, , (D]

= A8 B 6y, ()= By by, N+ By 8y, (V=B (9, (). . 415 M

Corollary 4.1 — The eigenvalues of the problem (1.1)-(1.5) is bounded below.

PROOF : Putting s = it (¢ > 0) in the above formulas it folows that @ (- t2) — oo as
t — 0. Hence, @ (A)#0 for A negative and sufficiently large in moduli.

5. ASYMPTOTIC FORMULAE FOR EIGENVALUES

We are now ready to find the asymptotic approximation formulas for the eigenvalues of the
considered problem (1.1)-(1.5).

Since the eigenvalues are coincided with the zeros of the entire function w(A), it follows
that they have no finite limit. Moreover, all eigenvalues are real and bounded below by the
Corollaries 3.1 and 4.1. Therefore, we may renumber them as ZOSAI SAZ < ..., which counted

according to their multiplicitly. Below we shall denote /ln=s,21 for sufficiently large n.

Theorem 5.1 — For the eigenvalues /ln, n =20 1, 2, .. of the problem (1.1)-(1.5) take
place the following asymptotic representation for n— e :

Case 1 — If ﬁ;¢o,%¢o, then

sn=£f'—"—29-’—’+0(ﬂ 5.0

Case 2 — If f,#0, &, =0, then

s =127 51 . (52)
n 2 n
Case 3 — If §,=0, o, #0, then
;== 12/22 ﬂ+0(%) . (53)
Case 4 — If ,=0, &, =0, then
n 1
sn=7+0[;j. .. (5.4)

PROOF : We shall consider Case 1 only.

Denoting by @, (s) and @, (s) the first and the O-term of the right of (4.11) respectively

we shall apply the well-known Rouche theorem which assert that if f{s) and g(s) analytic inside and

on a closed contous C, and | g (s)I<If(s)| on C, then fis) and f{s) + g(s) have the same number

zeros inside C, provided that each zeros are counted according to their multiplicity.
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It is readily shown that 1@, (s)1>1 @, (s) | on the contours

cn:{secrls|=i”—i—12/—211}

for sufficiently large n.

Let 4,<4, <... are zeros of @ (A) and ln=si.
Since inside the contour C, the function @, (s) has zeros at points s = 0 (with multiplicity

4) and s=-n'2—k,k=i 1,£2,.., £ n (with multiplicity 1), and so the number 2n + 4, it follows that

s, =i"—_2M+ 8, - (55)

r

4 for sufficiently large n.

where § =0 (1), more previsely I6nl<

By putting this in (4.11) we derive that §, = 0(%) which completes the proof for the case

1. The other cases may be considered analogically. B

6. NEXT APPROXIMATION FOR THE EIGENVALUES

The next approximation for the eigenvalues may be obtained by following Tichmarsh’s procedure as
in the continuous case [cf. 7 p. 19]. For this we shall suppose that g(y) is of bounded variation in
(- 1. 1]

Again we consider Case 1 only. Putting x = 0 in (4.1) and then substituting in (4.2) we
derive that

¢’21 = -—0;3 s sin (25) —%cos (25)

0

1
+15 J cos[s(1-M1q () ¢ ;0 dy+ I cos [s (1 -] q () ¢, 3 O) dy.
-1 0

We can find the asymptotic expression of ¢'2 4 (1) to within O(I's -1 ez“'), by putting (4.3)
and (4.4) in the last integral e¢quality :

¢'“(1)=—%‘ssin(2s)—%cos (2s)+%
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[ coss (1 =y cos[s (1 +3)1 g ) dy
-1 .

cos [s (1 ~y)] cos [5(1+y)]q(y)dy+0(|s|'1 e2|t|)'

+
RIR
O o, —

On the other hand from (4.4) it follows that
) -1 21t
¢21(1)=—6—cos(2s)+0(lsl e ).

Putting in (4.15) we get
TEN 2 / 2 %
o(Q)=0,p, 65 sin2s+s°| &, 5B, cos2s+B, 6 Tcosz.s'
, 1
-85 [ cosls(1-y)cos s 1 +»1q o) dy [+0 (51207

-1

]|

S o By 8sin 2+ 5 5[ (0 B + 0y B) cos 2s
1
._0'2[?’2 j cos{s (1 -y)lcos[s(1+y)q(y)dy +0(Iste'h

-1
i

s3azﬂlzésinZs+s25[(a2,B’l+a]ﬁ/z)cos2s—- %azﬁ;cos2s I q (y) dy
-1

1
—%azﬁ’z J cos (2sy) q (y) dy +0(Is|e2'”).
-1

Putting (5.1) in the last equality we find that

1 1

1 1

[ awrar+55 | cos(2sny)q(y)dyj|+0[—2-] . (6.1)
-1 -1 n

Recalling that g(y) is of bounded variation in [- 1, 1] and applying the well-known

Riemann-Lebesque Lemma [cf. 12, p. 48, Theorem 4.12] to the second integral on the right side of



514 O. SH. MUKHTAROV, MAHIR KADAKAL AND NIHAT ALTINISIK

(6.1) it seems that this term is 0[%) Consequently, from (6.1) it follows that

/ 1
I S O TR 1
6”_(n—1)7t —B;—al+25_flq@)dy +0(n2j.

Substituting in (5.5) we have

s Ee=D, 1 —Ell——ﬁ+——1—j‘ ydy |[+o[ L
"2 Ta-na| g e 280 109 3|

Similar formulae in the other cases are as follows :

In case 2 —

4 1
(n-1/2)n 1 B 1 1
=LA -3 j] 90)dy |+0|

n-12x [32
In case 3 —
n-1/2n 1 B % 1
5= +— 7w 2s ) a0d|+0 5|
2 n-12) = B, 26 e n
In case 4 —
1 1 1
Tn 2
o] By aoolof )
h n

7. ASYMPTOTIC APPROXIMATION FORMULAE FOR THE EIGENFUNCTIONS

Let ¢(x,A) be defined as in section 3 and let ﬁ'z #0,a,#0 (case 1). We already know that
¢ (x, A,) is an eigenfunction corresponding to the eigenvalue ln for any n = 0, 1, 2, ... (see Corollary
3.3).

By putting (5.1) in the (4.3) and (4.4) we derive that

_ r(n—-1)(x+1) 1
¢Mn(x)—012cos( 3 ]+O(n)

and %) (x)=% cos(i(i——lzuiil—l]+0(%).
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Hence, the eigenfunctions ¢ (x, 4,) has the following asympttic representation:

o, cos(’r n—12) x+ 1) )+0 % forxe [-1,0)
ox, A,)=
laazcos[w—lzl(itﬁj-ko ;11- forx € (0, 1]
Similar formulae in the other cases are as follows :
In case 2 —
20
1 s mn-1/2)(x+1)
- fi -[-1,
n(n_1/2)sm( ) +O or x—| 0)
9 (x. A,) =

1.2 (m(n-1/2) (x+ 1)
TS nn-1/2) Sm( 2

] +0 — forxe (0, 1]

In case 3¢~—

o cos[n’(n—l/22)(x+1) ]+0 1 torxe [-1.0)
s A) =
¢ (x 4) %%Co (n(n—1/22)(x+1)) 1 forxe 0.1]
In case 4 —
_27:21 Sm(””(’z‘*‘) J+O;11-forxe = 1,0)
o A,)=

12 . (mnx+]) 1
S 7n sm(——2 J+0 . forx e (0, 1]

All this asymptotic approximations are hold uniformly for xe [- 1, 0) U (0, 1].
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