VALUE DISTRIBUTION OF MEROMORPHIC FUNCTION CONCERNING SHARED-VALUES*

WEI-CHUAN LIN** AND HONG-XUN YI

Department of Mathematics, Fujian Normal University, Fuzhon, Fujian 350007, Peoples Republic of China

**Department of Mathematics, Institute of Mathematics and System Science, Shandong University, Jinan, Shandong 250100, People's Republic of China

(Received 1 June 2001; after final revision 17 April 2002; accepted 6 May 2002)

In this paper we study the value distribution of meromorphic functions concerning shared-values. Moreover, some criteria for normality of families of meromorphic functions are obtained, which extend a result established by Pang and Zalcman.

Key Words: Shared-Value; Normal Family; Meromorphic Function

1. INTRODUCTION AND MAIN RESULTS

Let D be a domain in the plane C, f be a meromorphic function on D and a be finite complex number. Set

$$\overline{E}(a,f)=f^{-1}(\{a\}) \cap D = \{z \in D : f(z)=a\}.$$

We say two meromorphic functions f and g share value a on D if $\overline{E}(a, f) = \overline{E}(a, g)$.

In 1959, W. K. Hayman¹ proved that if f(z) is a transcendental meromorphic (entire) function and n is a positive integer satisfying $n \ge 4$ $(n \ge 3)$, then $(f^n)'$ assumes every finite non-zero value infinitely often. He conjectured in [1] that it remains true for n = 2 and n = 3. This conjecture was completely solved by W. Bergweiler and A. Eremenko [2], H. H. Chen and M. L. Fang [3], and L. Zalcman [4] independently in 1995. In fact, they proved the following:

Theorem A (see [3]) — Let f(z) be transcendental meromorphic function and n be a positive integer greater than l, then $(f^n)'$ assumes every finite non-zero value infinitely often.

Remark: The condition that n is a positive integer greater than 1 can not be omitted. For example, $f(z) = e^z + z$, but $f'(z) \neq 1$.

In 1998, Y. Wang and M. Fang [5] generalized Theorem A by allowing f to have only multiple zero points and pole points. In fact, Y. Wang and M. Fang proved the following.

Theorem B (see [5]) — Let f(z) be a transcendental meromorphic function. If f has only zeros of order at least 2 and poles of order at least 2, then f' assumes every finite non-zero value infinitely often.

In view of the shared-value theory, we prove the following:

^{*}Project supported by the NSFC and the RFDP.

Theorem 1 — Let f(z) be a transcendental meromorphic function in C and a be a finite value. If f and f' share a in C, then f'(z) assumes every finite value infinitely often except possibly one value b, where $b \in \left\{0, \frac{a}{k+1}\right\}$, k is a positive integer.

According to Nevanlinna's famous five-point theorem and Montel's theorem, many authors proved normality criteria for families of meromorphic functions concerning shared-values. A first attempt to these was made by W. Schwick [6] in the form of the following:

Theorem C — Let F be a family of meromorphic functions in a domain D and a_1, a_2, a_3 distinct finite complex numbers. If f and f' share a_1, a_2, a_3 on D for every $f \in F$, then F is normal on D.

Recently, X. Pang and L. Zalcman [7] obtained:

Theorem D — Let F be a family of meromorphic functions on the unit disc Δ , and let a_1 and a_2 be distinct complex numbers. If f and f' share a_1 and a_2 on Δ for every $f \in F$, then F is normal on Δ .

In this paper we prove the following.

Theorem 2 — Let F be a family of meromorphic functions on the unit disc Δ . If there exist finite complex numbers a and b ($b \neq 0$, $\frac{a}{b}$ is not any positive integer) such that for any $f \in F$, f and f' share a on Δ , and $|f(z)-a| \geq \varepsilon$ holds if f'(z) = b, where ε is a positive number, then F is normal on Δ .

Remark: It is easily seen that Theorem D is a consequence of Theorem 2, if we assume $a = a_1, b = a_2, \varepsilon = |b - a|$ and $|a_1| \le |a_2|$.

From Theorem 2, we immediately have the following result:

Theorem 3 — Let F be a family of meromorphic functions on the unit disc Δ . If there exist finite complex numbers a and b ($b \neq 0$, $\frac{a}{b}$ is not any positive integer) such that for any $f \in F$, f and f' share a on Δ and $f'(z) \neq b$, then F is normal on Δ .

2. SOME LEMMAS

For the proof of our theorems, we need the following definition and lemmas

Definition 1 (see [7]) — A meromorphic function f on C is called a normal function if there exists a positive number M such that

$$f(z) \leq M$$

where, as usual, $f(z) = |f'(z)|/(1+|f(z)|^2)$ denotes the spherical derivative.

From Definition 1, we obtain:

Lemma 1 — A normal meromorphic function has order at most 2.

Lemma 2^2 — Let g(z) be a transcendental meromorphic function with finite order. If g(z) has only finitely many critical values, then g(z) has only finitely many asymptotic values.

Lemma $3^{9, 10}$ — Let g(z) be a transcendental meromorphic function. Suppose that $g(0) \neq \infty$ and the set of finite critical and asymptotic values of g(z) is bounded. Then there exists R > 0 such that

$$|g'(z)| \ge \frac{|g(z)|}{2\pi|z|} \log \frac{|g(z)|}{R}$$

holds for any $z \in C - \{0\}$ which is not a pole of g(z).

Lemma 4 — Let f be a nonconstant meromorphic function with finite order, and let a and b be distinct non-zero numbers. If $\overline{E}(f, 0) = \overline{E}(f', a), f'(z) \neq b$, then

$$f(z) = b(z-c) + \frac{A}{(z-c)^k}$$

and a = (k+1) b, where A and c are complex numbers and k is a positive integer.

PROOF: Define g(z) = f(z) - bz, then $g'(z) = f'(z) - b \neq 0$. We claim that g(z) is not a transcendental meromorphic function, that is, g(z) is a rational function. Suppose that g(z) is a transcendental meromorphic function, then f(z) is also a transcendental meromorphic function. Since $f' \neq b$, by Hayman's inequality (see [12, Theorem 4.5], we obtain that f(z) has infinitely many zeros, $z_1, z_2, \ldots, z_j = \infty$.

Noting that $g'(z) \neq 0$, by Lemma 2 we know that g(z) has only finitely many asymptotic values. Without loss of generality, we assume that $f(0) \neq \infty$, then by Lemma 3 we deduce that

$$\frac{|z_j g'(z_j)|}{|g(z_j)|} \ge \frac{1}{2\pi} \log \frac{|g(z_j)|}{R} = \frac{1}{2\pi} \log \frac{|bz_j|}{R}.$$

Particularly, $\frac{|z_j g'(z_j)|}{|g(z_j)|} \to \infty$ as $j \to \infty$. On the other hand $\frac{|z_j g'(z_j)|}{|g(z_j)|} = \frac{|z_j (b-a)|}{|bz_j|} = \frac{|b-a|}{|b|}$.

This is a contradiction. Hence we deduce that g(z) and f(z) are rational functions.

Suppose that g(z) is a polynomial. It follows from $g'(z) \neq 0$ that f(z) = g(z) + bz = Bz + c, where $B(\neq b, 0)$ and c are complex numbers, which contradicts $\overline{E}(f, 0) = \overline{E}(f', a)$. Therefore, g(z) is not a polynomial. Let

$$g(z) = \alpha + \frac{\beta}{\gamma},$$

where α , β and γ are polynomials, β and γ are coprime, and deg $\beta < deg \gamma$.

It follows from $g'(z) \neq 0$ that $\alpha' \equiv 0$. Thus α is a constant, and

$$g'(z) = \frac{\beta' \gamma - \gamma' \beta}{\gamma^2}.$$
 ... (1)

Since $g'(z) \neq 0$, we deduce from (1) that the zeros of $\beta' \gamma - \gamma' \beta$ are the zeros of γ^2 . We denote the zeros of $\beta' \gamma - \gamma' \beta$ by $\omega_1, \omega_2, ..., \omega_m$, and the related orders by $l_1, l_2, ..., l_m$. Since β and γ are coprime, we see from (1) that ω_i is the zero of γ with order $l_i + 1$ (i = 1, 2, ..., m). Hence we have

$$\operatorname{deg} \ \gamma + \operatorname{deg} \ \beta - 1 = \operatorname{deg} \ (\beta' \ \gamma - \gamma' \ \beta) = \sum_{i=1}^{m} (l_i + 1) - m \leq \operatorname{deg} \ \gamma - m,$$

which implies that m = 1 and deg $\beta = 0$. Therefore

$$f(z) = b(z - c) + \frac{A}{(z - c)^k} + d,$$
 ... (2)

where $A \neq 0$, c and d are complex numbers, k is a positive integer.

As $\overline{E}(f, 0) = \overline{E}(f', a)$, it follows from (2) that a = (k + 1) b and d = 0. Thus the proof of the lemma is complete.

Remark: Pang and Zalcman gave a lemma in [6, Lemma 5] in which the same result as Lemma 4. is obtained under an additional condition that f has poles of order at least 2 and $f''(z) \neq 0$. As shown above, the method used in our proof is very simple and completely different from that in [6].

Lemma 5^2 — Let f be a transcendental meromorphic function with finite order. If f has only zeros of order at least 2, then f'(z) assumes every finite non-zero value infinitely often.

Lemma 6 — Let f be a transcendental meromorphic function with finite order, and let a be a finite complex numbers. If $\overline{E}(f,0) = \overline{E}(f',a)$, then f'(z) assumes any finite non-zero value infinitely often.

PROOF: In fact, in the case $a \neq 0$, we can derive a contradiction that f is a rational function if f'(z) - b has only finitely many zeros in the same way as in the proof of Lemma 4. And in the case a = 0, we may find that the zeros of f(z) are of multiplicity ≥ 2 . Therefore, we conclude Lemma 6 and Lemma 5.

As an immediate consequence of Lemma 4 and Lemma 6, we have the following result.

Lemma 7 — Let f(z) be a nonconstant meromorphic function of finite order, and let a be a finite complex number. If $\overline{E}(f,0) = \overline{E}(f',a)$, then every finite value in C can be taken by f'(z) at most except one value which is 0 or $\frac{a}{k+1}$, where k is a positive integer.

Lemma 8^8 — Let F be a family of meromorphic functions on the unit disc Δ , all of whose zeros have multiplicity at least k, and suppose there exists $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever f(z) = 0, $f \in F$. Then if F is not normal, for each α , $0 \le \alpha \le k$, there exist

- a) a number r, 0 < r < 1;
- b) points $z_n, |z_n| < r$;
- c) functions $f_n \in F$; and
- d) positive numbers $\rho_n \to 0$;

such that

$$\frac{f_n(z_n + \rho_n \xi)}{\rho_n^{\alpha}} = g_n(\xi) \to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a meromorphic function on C such that $g^{\#}(\xi) \leq g^{\#}(0) = kA + 1$.

3. PROOF OF THE THEOREMS

PROOF OF THEOREM 1

We define the family $F = \{f(z+z') - a, z \in C\}_{z' \in C}$ and consider two cases.

Case 1 - F is normal in the plane. Using Marty's normality criterion, we deduce that f - a is a normal function on C. Therefore, by Lemma 1, f(z) has order at most 2. The conclusion of Theorem 3 follows from Lemma 6.

Case 2 — F is not normal at a point z_0 . Without loss of generality, we may assume $z_0 = 0$. By Lemma 8, we can find that there exists one sequence of positive numbers $\rho_n \to 0$, two sequences of complex numbers z_n' and $z_n, z_n \to z_0^*$ ($z_0^* \in \Delta$), such that

$$g_n(\xi) = \frac{f(z_n + z_n' + \rho_n \xi) - a}{\rho_n} \rightarrow g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C and satisfies $g^{\#}(\xi) \le g^{\#}(0) = (|a|+1)+1=|a|+2$. By Lemma 1, the order of g is at most 2.

We claim that

$$\overline{E}(g, 0) = \overline{E}(g', a), \lim_{n \to \infty} z'_n = \infty.$$

In fact, suppose $g(\xi_0) = 0$. Since g is not constant, there exist $\xi_n, \xi_n \to \xi_0$, such that (for sufficiently large n)

$$g_n(\xi_n) = \frac{f(z_n + z_n + \rho_n \xi_n) - a}{\rho_n} = 0.$$

Thus $f(z_n + z_n + \rho_n \, \xi_n) = a$. It follows from $\overline{E}(f, a) = \overline{E}(f', a)$ that $f'(z_n + z_n + \rho_n \, \xi_n) = a$, hence $g'(\xi_0) = \lim_{n \to \infty} g'_n(\xi_n) = \lim_{n \to \infty} f'(z_n + z'_n + \rho_n \, \xi_n) = a$. We have established $\overline{E}(g, 0) \subseteq \overline{E}(g', a)$.

$$g_n(w_n) = f'(z_n + z_n + \rho_n w_n) = a.$$

Hence

$$g_n(w_n) = \frac{f(z_n + z_n' + \rho_n w_n) - a}{\rho_n} = 0.$$

Letting $n \to \infty$, we obtain $g(w_0) = 0$. It follows that $\overline{E}(g', a) \subseteq \overline{E}(g, 0)$. Thus $\overline{E}(g, 0) = \overline{E}(g', a)$. This implies that $g''(\xi) \not\equiv 0$.

Finally, suppose that $\lim_{n\to\infty} z_n = z_1$. Since $g''(\xi) \not\equiv 0$, we may choose a point ξ_0 such that $g(\xi_0) \neq \infty$, $g''(\xi_0) \neq 0$.

Since
$$g(\xi_0) = \lim_{n \to \infty} \frac{f(z_n + z_n + \rho_n \xi_0) - a}{\rho_n}$$
, we have $\lim_{n \to \infty} f(z_n + z_n + \rho_n \xi_0) = a$, so that

 $f(z_1 + z_0^*) = a$. On the other hand, $g''(\xi_0) = \lim_{n \to \infty} \rho_n f''(z_n + z_n + \rho_n \xi_0)$, therefore, we have $\lim_{n \to \infty} f''(z_n + z_n' + \rho_n \xi_0) = \infty$, thus $f''(z_1 + z_0^*) = \infty$, which is a contradiction. Thus, $\lim_{n \to \infty} z_n' = \infty$.

For a given finite value b (possibly $b \neq 0$ or $b \neq \frac{a}{k+1}$, where k is a positive integer), then from Lemma 7, there exists ξ_0 such that $g'(\xi_0) = b$. As $g''(\xi) \not\equiv 0$, by Hurwitz's theorem, there exist a sequence $\xi_n \to \xi_0$ such that

$$g'_{n}(\xi_{n}) = f'(z_{n} + z'_{n} + \rho_{n} \xi_{n}) = b.$$

Noting that $\lim_{n\to\infty} (z_n + z_n' + \rho_n \, \xi_n) = \infty$, we deduce that f'(z) assumes b infinitely often. This completes the proof of Theorem 1.

PROOF OF THEOREM 2

Suppose that F is not normal on Δ . Define $F_1 = \{f - a : f \in F\}$, then F_1 is not normal on Δ . By Lemma 8, we can find that there exist a sequence of complex numbers z_n , a sequence of positive numbers ρ_n , $\rho_n \to 0$, and a sequence of functions $f_n \in F$ such that

$$g_n(\xi) = \frac{f_n(z_n + \rho_n \xi) - a}{\rho_n} \to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C such that $g^{\#}(\xi) \le g^{\#}(0) = (|a|+1)+1 = |a|+2$.

In the same way as in the proof of Theorem 1, we may also obtain that $\overline{E}(g,0) = \overline{E}(g',a), g''(\xi) \not\equiv 0$ and g is of order at most 2.

We now claim that $g'(\xi) \neq b$. In fact, suppose there exists ξ_0 such that $g'(\xi_0) = b$. Since $g'' \neq 0$, there exist $\xi_n \to \xi_0$, such that

$$g'_n(\xi_n) = f'_n(z_n + \rho_n \xi_n) = b.$$

Noting that $|f_n(z_n + \rho_n \xi_n) - a| \ge \varepsilon$ when $f'_n(z_n + \rho_n \xi_n) = b$, we have

$$g(\xi_0) = \lim_{n \to \infty} g_n(\xi_n) = \infty,$$

which contradicts $g'(\xi_0) = b$. Thus $g'(\xi) \neq b$.

By Lemma 4, we get

$$g(\xi) = b(\xi - c) + \frac{A}{(\xi - c)^k},$$

and a = (k+1)b, where k is a positive integer. This gives a contradiction to the condition that $\frac{a}{b}$ is not any positive integer. Therefore, F_1 is normal on Δ , that is, F is normal on Δ . This completes the proof of Theorem 2.

ACKNOWLEDGEMENT

The authors want to thank the referee for valuable suggestions.

REFERENCES

- 1. W. K. Hayman, Research Problems in Function Theory, Athlone Press University of London, 1967.
- 2. W. Bergweiler and A. Eremenko, Rev. Mat. Iberoam, 11 (1995), 355-73.
- 3. H. H. Chen and M. L. Fang, Science in China, 25 (1995), 121-27.
- 4. L. Zalcman, On some problems of Hayman, Preprint (Bar-Ilan University), 1995.
- 5. Y. F. Wang and M. L. Sang, Acta Math. Sinica, New Series, 41 (1998), 743-48.
- 6. W. Schwick, Arch. Math. (Basel), 59 (1992), 52-54.
- 7. X. Pang and L. Zalcman, Ark. Math., 38 (2000), 171-82.
- 8. X. Pang and L. Zalcman, Bull. London Math. Soc., 32 (2000), 325-31.
- 9. P. Rippon and G. Stallard, Proc. Amer. Math. Soc., 115 (1999), No.2, 355-62.
- 10. W. Bergweiler, Arch. Math. (Basel), 64 (1995), 199-202.
- 11. M. Fang, Analysis, 20 (2000), 45-49.
- 12. L. Yang, Value Distribution Theory, Springer-Verlag, Berlin-Heidelberg, 1993.