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In this paper we study the value distribution of meromorphic functions conceming shared-values. Moreover. some
criteria for normality of families of meromorphic functions are obtained, which extend a result established by
Pang and Zalcman.
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1. INTRODUCTION AND MAIN RESULTS

Let D be a domain in the plane C, f be a meromorphic function on D and a be finite complex
number. Set

E@f=f"" ({ah ND = {ze D:f()=a}.

We say two meromorphic functions f and g share value a on D if E(a,f)=E (a, g).

In 1959, W. K. Haymz:m1 proved that if f (z) is a transcendental meromorphic (entire) function
and n is a positive integer satisfying n>4 (n=3), then (f")’ assumes every finite non-zero value
infinitely often. He conjectured in [1] that it remains true for n = 2 and n = 3. This conjecture
was completely solved by W. Bergweiler and A. Eremenko [2], H. H. Chen and M. L. Fang [3],
and L. Zalcman [4] independently in 1995. In fact, they proved the following :

Theorem A (see [3]) — Let f (z) be transcendental meromorphic function and n be a positive
integer greater than 1, then (f"'Y assumes every finite non-zero value infinitely often.

Remark : The condition that n is a positive integer greater than 1 can not be omitted. For
example, f(z) =e*+z, but ' (z)# 1.

In 1998, Y. Wang and M. Fang [5] generalized Theorem A by allowing f to have only
multiple zero points and pole points. In fact, Y. Wang and M. Fang proved the following.

Theorem B (see (S]) — Let f(z) be a transcendental meromorphic function. If f has only
zeros of order at least 2 and poles of order at least 2, then f’ assumes every finite non-zero value
infinitely often.

In view of the shared-value theory, we prove the following :
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- Theorem 1 — Let f (z) be a transcendental meromorphic function in C and a be a finite
value. If f and f’ share a in C, then f’(z) assumes every finite value infinitely often except posszbly

one value b, where b e {0 1 } k is a positive integer.

According to Nevanlinna’s famous five-point theorem and Montel’s theorem, many authors
proved normality criteria for families of meromorphic functions concerning shared-values. A first
attempt to these was made by W. Schwick [6] in the form of the following :

Theorem C — Let F be a family of meromorphic functions in a domain D and ai, a2, a3
distinct ﬁmte complex numbers. If f and f’ share a1, a2,a3 on D for every fe F, then F is normal
on D.

Recently, X. Pang and L. Zalcman [7] obtained :

Theorem D — Let F be a family of meromorphic functions on the unit disc A, and let
a1 and az be distinct complex numbers If f and f’ share a1 and a2 on A for every fe F, then F
is normal on A.

In this paper we prove the following.
Theorem 2 — Let F be a family of meromorphic functions on the unit disc A. If there exist

finite complex numbers a and b (b#O,% is not any positivev integer) such that for any fe F, f and

f’ share a on A and \f(z)—al2€ holds if f'(z)=b, where € is a positive number, then F is
“normal on A.

Remark : 1t is easily seen that Theorem D is a consequence of Theorem 2, if we assume
a=al,b=az,e=lb—-al and lajl<lazl.

From Theorem 2, we immediately have the following result :
Theorem 3 — Let F be a family of meromorphic functions on the unit disc A. If there exist
finite complex numbers a and b (b #0, 2 is not any positive integer) such that for any fe F, f and

b
f’ share a on A and f'(z)=b. then F is normal on A

2. SOME LEMMAS

For the proof of our theorems, we need the following definition and lemmas

Definition 1 (see [7]) — A meromorphic function f on C is called a normal function if there
exists a positive number M such that

f @M,

where, as usual, f (2Q)=1f" @) VA +1f(2) I2) denotes the spherical derivative.
From Definition 1, we obtain :
Lemma 1 — A normal meromorphic function has order at most 2.

Lemma 2° — Let g(z) be a transcendental meromorphic function with finite order. If g(z)
has only finitely many critical values, then g(z) has only finitely many asymptotic values.

Lemma 3 '° — Let 8(z) be a transcendental meromorphic function. Suppose that
g (0) # = and the set of finite critical and asymptotic values of g(z) is bounded. Then there exists
R > 0 such that
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holds for any z€ C — {0} which is not a pole of g(2).

Lemma 4 — Let f be a nonconstant meromorphic function with finite order, and let a and
b be distinct non-zero numbers. If E (£, 0)=E (f’; a),f’ (z) # b, then

f@=b@-0+—2—

(z—0)
and a=(k+1) b, where A and ¢ are complex numbers and k is a positive integer.

PROOF : Define g (z)=f(z)— bz, then g’ (z)=f'(z)—b#0. We claim that g(z) is not a
transcendental meromorphic function, that is, g(z) is a rational function. Suppose that g(z) is a
transcendental meromorphic function, then f{z) is also a transcendental meromorphic function. Since
f’#b, by Hayman’s inequality (see [12, Theorem 4.5], we obtain that f{z) has infinitely many zeros,
2y, 2 .-, and lim gj=oce.

joee

.Noting that g’ (z) #0, by Lemma 2 we know that g(z) has only finitely. ‘many asymptotic

values. Without loss of generality, we assume that f(0) # oo, then by Lemma 3 we deduce that

lzgg(zg)lZiloglg(zg)|=_1_log|bzg|‘
lg@z)! 27 R 2n R

| zi @ (z3) | ) zi &' (zi (b — _
Particularly, M——)w as j—oo. On the other hand 58 (Z’)I:IZJ( a)l=|b al
lg(z)! g (z)] | bzj! Ibl

This is a contradiction. Hence we deduce that g(z) and f{z) are rational functions.

Suppose that g(z) is a polynomial. Tt follows from g’ (z)#0 that f(z)=g (z) +bz=Bz+c,
where B (#b,0) and ¢ are complex numbers, which contradicts E (f. 0) =E (f’, a). Therefore, g(z) is
not a polynomial. Let |

B

=a+5,
g @ Y

where o, and y are polynomials, B and ¥ are coprime, and‘deg B<degy.
It follows from g’ (z) #0 that @ =0. Thus « is a constant, and

g (z)=—[y;—y[—3. , o (D

Since g’ (z) #0, we deduce from (1) that the zeros of 8’7~ ¥’ B are the zeros of Y. We
denote the zeros of B’ y—7y' B by @i, @y, ..., W, and the related orders by [1, 2, ..., ln. Since B
and y are coprime, we see from (1) that @; is the zero of ¥ with order Li+1( = 1, 2, ..., m).
Hence we have

m

deg y+ deg B - 1= deg (B'y-Y P = Z (li+1)-m<degy—m,

i=1

which impliés'that_m = 1 and deg B = 0. Therefore
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fioy=b(z-c)+ +d, e (2)

z-c)f

where A (#0), ¢ and d are complex numbers, k is a positive int_éger.

As E(f,0)=E(f', a), it follows from (2) that a = (k + 1) b and d = 0. Thus the proof of
the lemma is complete. ‘ ,

Remark . Pang and Zalcman gave a lemma in [6, Lemma 5] in which the same result as
Lemma 4. is obtained under an additional condition that f has poles of order at least 2 and
f7(2)# 0. As shown above, the method used in our praof is very simple and completely different
from that in [6). | |

Lemma 5% — Let S be a transcendental meromorphic function with finite order. If f has only
.zeros of order at least 2. then f’ (z) assumes every finite non-zero value infinitely often.

Lemma 6 — Let f be a transcendental meromorphi'c function with finite order, and let a be
a finite complex numbers. If E (£, 0)=E (f’, a), then f’ (z) assumes any finite non-zero value infinitely
often.

PROOF : In fact, in the case a#0, we can derive a contradiction that f is a rational function
if f*(z) — b has only finitely many zeros in the same way as in the proof of Lemma 4. And in the

case a = 0, we may find that the zeros of f (z) are of multiplicity >2. Therefore, we conclude
Lemma 6 and Lemma 5. '

As an immediate consequence of Lemma 4 and Lemma 6, we have the following result.

Lemma 7 — Let fiz) be a nonconstant meromorphic function of finite order, and let a be
a finite complex number. If E (f, 0)=E (f’, a), then every finite value in C can be taken by f’(2)

at most except one value which is 0 or

a . R
PRL where k is a positive integer.

Lemma 8% — Let F be a family of meromorphic functions on the unit disc 4, all of whose

zeros have multiplicity at least k, and suppose there exists A > 1 such that |f * (z) I £ A whenever f
(z) = 0, fe F. Then if F is not normal, for each &, 0< <k, there exist

a) anumber r, 0 < r < 1; ‘

b) points zp, tzpl<r;

¢) functions f, € F: and

d) positive numbers on—0;
such that

ze&n_;w:gn(gHaa

locally uniformly with respect to the spherical metric, where g is a meromorphic function on C such
that g* (&) <g® O)=rA + 1.

3. PROOF OF THE THEOREMS

PROOF OF THEOREM 1

We define the family F = {f(z+2z')—a,z€ C}ye ¢ and consider two cases.
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Case 1 — F is normal in the plane. Using Marty’s normality criterion, we deduce that
f — a is a normal function on C. Therefore, by Lemma 1, fiz) has order at most 2. The conclusion
of Theorem 3 follows from Lemma 6. ‘ ‘
Case 2 — F is not normal at a point 0. Without loss of generality, we may assume
70 = 0. By Lemma 8, we can find that there exists one sequence of positive numbers p, — 0, two

sequences of complex numbers zx and zn, zn — 20 (20 € A), such that

go(§ =Lt tond)

o —g (&)

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function

on C and satisfies g# (é)Sg# (0)'=‘(lal+ D+1=lal+2. By Lemma 1. the order of g is at most
2.

We claim that

E(g0)=E(g,a), lim zn=oo,

n—>o0

In fact, suppose g (&p)=0. Since g is not constant, there -exist éﬁ, &n — &o, such' that (for
sufficiently large n)

___f(Zn+Z;t+Pn€n)—a=
Pn

gn (En) 0.

Thus f(zn+zn+pnén)=a. It follows from E (f,a)=E(f’,a) that f' (zn+zn+pnén) =a,

hence g’ (60)= lim gn (&)= lm f’(zn+2n+pn &) =a. We have established E (g, 0) < E ('> ).
n— oo n—eo

Suppose that wo is a point such that g’ (wg)=a. We claim that g’ (§)# a. In fact, if

g (&)=a, then g# (&) <lal, which contradicts g# @ =lal+2. Since g’ (wo)=a and g’'(£) # a, there
exist wp, wy — wo, such that, for sufficiently large n,

gn (wn) =f"(zn+n+ Pnwn) =a.

fa,+2,+p,w)~a
Hence g, w,)= - "p = =0.
n

Letting n — oo, we obtain g (wo) =0. It follows that E (¢’,a) C E (g, 0). Thus E (g, 0)=E (¢g’, a). This
implies that g” (&) 2 0.

Finally, suppose that lim zn=zj. Since g” (§)# 0, we may choose a point & such that
. n - o0

g (&o) # o0, g (60) % 0.

. . intin+ -
Since: g (&p) = lim fGnt 2zt pn §0) a, we have lim f(za+zn+pné0)=a, so that
n-—>oa Pn n—yoeo
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f(z1+z0)=a. On the other hand, g”(£o)= lim pnf” (zn+zn+ pn &), therefore, we have

n-—» oo

lim f" (zn+zn+ pn Eo) =0, thus f” (z1+ zﬁ) =oo, which is a contradiction. Thus, lim z;=oo.
n— oo n— o

_a_
k+1
from Lemma 7, there exists & such that g’ (§o)=5. As g” (£)# 0, by Hurwitz’s theorem, there
exist a sequence &p — §o such that

For a given finite value b (possibly b#0 or b# where k is a positive integer), then

gn (&) =f" (zn +2n +pn En) =b.

Notihg that lim (zn+z;.+ Pn &n) =, we deduce that f’ (z) assumes b infinitely often. This
n— oo ’

completes the proof of Theorem 1.

PROOF OF THEOREM 2

Suppose that F is not normal on A. Define Fi = {f—a:fe F}, then F1 is not normal on A. By
Lemma 8, we can find that there exist a sequence of complex numbers zs, a sequence of positive
numbers pn, pn — 0, and a sequence of functions fn € F such that

Jo(zn+pn &) -
Pn

lécally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function
on C such that g* (&) <g* @) =(al+1)+1=lal+2.

NG

gn (&)=

In the same Way as in the proof of Theorem 1, we may also obtain that
E0)=E(g,a),g”" (§)# 0 and g is of order at most 2.

We now claim that g’ (£) #b. In fact, suppose there exists & such that g’ (£0) =b. Since
g” # 0, there exist & — &p, such that

gn (En) = 2n+ pn &) =b.

Noting that | f, (zn + pn &) —al =€ when f;, (zn + pn &n) = b, we have
g(o)= Lim gn(&n)=oo,

n— oo

which contradicts g’ (£o) =b. Thus g’ (§) #b.
By Lemma 4, we get ‘

‘ A
g)=b(-o+ \
&-of

and a=(k+ 1) b, where k is a positive integer. This gives a contradiction to the condition that % is

not any positive -integer. Therefore, F) is normal on 4, that is, F is normal on A. This completes
the proof of Theorem 2.
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