ON SOME NEW SEQUENCE SPACES OF FUZZY NUMBERS

MURSALEEN* AND METIN BASARIR**

*Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India e-mail: mursaleen@postmark.net **Department of Mathematics, Sakarya University, Sakarya 54100, Turkey e-mail:basarir@sakarya.edu.tr

(Received 13 December 2002; accepted 11 May 2003)

In this paper, we introduce and study some new sequence spaces of fuzzy numbers generated by non-negative regular matrix $A = (a_{nk})$ (n, k = 1, 2).

Key Words: Fuzzy Numbers; Sequence Spaces; Paranorm; Infinite Matrix

1. INTRODUCTION AND PRELIMINARIES

Let D be the set of all bounded intervals $A = [A, \overline{A}]$ on the real line IR. For $A, B \in D$, define

$$A \leq B$$
 if and only if $A \leq B$ and $\overline{A} \leq \overline{B}$,

$$d(A, B) = \max \{\underline{A} - \underline{B}, \overline{A} - \overline{B}\}.$$

Then it can be easily see than d defines a metric on D (cf [1]) and (D, d) is a complete metric space.

A fuzzy number is a fuzzy subset of the real line IR which is bounded, convex and normal. Let $L(\mathbb{R})$ denote the set of all fuzzy numbers which are upper semicontinuous and have compact support, i.e. if $X \in L(\mathbb{R})$ then for any $\alpha \in [0, 1], X^{\alpha}$ is compact where

$$X^{\alpha} = \begin{cases} t: X(t) \ge \alpha & \text{if } 0 < \alpha \le 1, \\ t: X(t) > 0 & \text{if } \alpha = 0, \end{cases}$$

For each $0 < \alpha \le 1$, the α -level set X^{α} is a nonempty compact subset of IR. The linear structure of L(IR) includes addition X + Y and scalar multiplication λX , (λ a scalar) in terms of α -level sets, by

$$[X + Y]^{\alpha} = [X]^{\alpha} + [Y]^{\alpha}$$
 and $[\lambda X]^{\alpha} = \lambda [X]^{\alpha}$,

for each $0 \le \alpha \le 1$.

Define a map $\overline{d}:L(\mathbb{R})\times L(\mathbb{R})\to \mathbb{R}$ by

$$\overline{d}(X, Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha}, Y^{\alpha}).$$

For $X, Y \in L(\mathbb{R})$ define $X \le Y$ if and only if $X^{\alpha} \le Y^{\alpha}$ for any $\alpha \in [0, 1]$. It is known that $L(\mathbb{R}), \overline{d}$ is a complete metric space (cf [2]).

We will need the following definitions (cf [2]).

Definition 1.1 — A sequence $X = (X_k)$ of fuzzy numbers is a function X from the set IN of natural numbers into $L(\mathbb{R})$. The fuzzy number X_k denotes the value of the function at $n \in \mathbb{N}$ and is called the nth term of the sequence. We denote by w(F) the set of all sequences $X = (X_k)$ of fuzzy numbers.

Definition 1.2 — A sequence $X = (X_k)$ of fuzzy numbers is said to be convergent to a fuzzy number X_0 , written as $\lim_k X_k = X_0$, if for every $\varepsilon > 0$ there exists a positive integer N_0 such that

$$\overline{d}(X_k, X_0) < \varepsilon \text{ for } k > N_0.$$

Let c(F) denote the set of all convergent sequences of fuzzy numbers.

Definition 1.3 — A sequence $X = (X_k)$ of fuzzy numbers is said to be bounded if the set $\{X_k : k \in \mathbb{N}\}$ of fuzzy numbers is bounded. We denote by $l_{\infty}(F)$ the set of all bounded sequences of fuzzy numbers.

It is straightforward to see that

$$c(F) \subset l_{\infty}(F) \subset w(F)$$
.

In [5], it was shown that c(F) and $l_{\infty}(F)$ are complete metric spaces. In [4], we have shown that $L(\mathbb{IR})$ and w(F) are Frechet spaces and c(F) and $l_{\infty}(F)$ are Banach spaces.

For further studies we refer [7], [8] and [9].

In this paper we define some new sequence spaces of fuzzy numbers by using regular matrices $A = (a_{nk})$, (n, k = 1, 2, ...). By the regularity of A we mean that the matrix which transform convergent sequence into a convergent sequence leaving the limit invariant (cf. Maddox²). We prove that these spaces are complete paranormed spaces.

By a paranorm we mean a function $g: E \to IR$ (where E is a linear space) which satisfies the following conditions:

$$(p.1) g(0) = 0,$$

(p.2) $g(x) \ge 0$ for all $x \in E$,

(p.3)
$$g(-x) = g(x)$$
 for all $x \in E$,

(p.4)
$$g(x+y) \le g(x) + g(y)$$
 for all $x, y \in E$,

(p.5) If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ $(n \to \infty)$ and (x_n) is a sequence of the elements of E with $g(x_n - x) \to 0$ $(n \to \infty)$, then $g(\lambda_n, x_n - \lambda x) \to 0$ $(n \to \infty)$.

The space E is called the paranormed space with the paranorm g.

2. SOME NEW SEQUENCE SPACES

Recently Nuray and Savas⁶ have defined the following space of sequences of fuzzy numbers.

$$l\left(p\right) = \left\{ X = \left(X_{k}\right): \sum_{k} \left[\overline{d}\left(X_{k},0\right)\right]^{p_{k}} < \infty \right\},\,$$

where (p_k) is a bounded sequence of strictly positive real numbers. If $p_k = p$ for all k, then $l(p) = l_p$, the space due to Nanda⁵.

In this paper we define the following:

$$F_{0}(p) = \left\{ X = (X_{k}) : n^{-1} \sum_{k=1}^{n} \left(\overline{d}(X_{k}, 0) \right)^{p_{k}} \to 0 \ (n \to \infty) \right\},$$

$$F(p) = \left\{ X = (X_{k}) : n^{-1} \sum_{k=1}^{n} \left[\overline{d}(X_{k}, X_{0}) \right]^{p_{k}} \to 0 \ (n \to \infty) \right\},$$

$$F_{\infty}(p) = \left\{ X = (X_{k}) : \sup_{n} n^{-1} \sum_{k=1}^{n} \left[\overline{d}(X_{k}, 0) \right]^{p_{k}} \to 0 \right\},$$

and call them respectively the spaces of sequences of fuzzy numbers which are strongly convergent to zero, strongly convergent to X_0 and strongly bounded.

We further generalize these spaces as follows. Let $A=(a_{nk})$ (n, k=1, 2, ...) be a non-negative regular matrix. We define

$$F_{0}[A, p] = \left\{ X = (X_{k}) : \sum_{k} a_{nk} \left[\overline{d} (X_{k}, 0) \right]^{p_{k}} \to 0 \ (n \to \infty) \right\},$$

$$F(A, p) = \left\{ X = (X_{k}) : \sum_{k} a_{nk} \left[\overline{d} (X_{k}, X_{0}) \right]^{p_{k}} \to 0 \ (n \to \infty) \right\},$$

$$F_{\infty}[A, p] = \left\{ X = (X_{k}) : \sup_{n} \left(\sum_{k} a_{nk} \left[\overline{d} (X_{k}, 0) \right]^{p_{k}} \right) < \infty \right\},$$

and call them respectively the spaces of strongly A-convergent to zero, strongly A-convergent to X_0 and strongly A-bounded sequences of fuzzy numbers $X = (X_k)$. We can specialize these spaces as follows.

(i) If
$$a_{nk} = \begin{cases} 1, & 1 \le k \le n \\ 0, & k > n \end{cases}$$
 then $F_{\infty}[A, p] = l(p)$, the space due to Nuray and Savas⁶

(ii) If A = I, the unit matrix, then we get another set of new sequence spaces for fuzzy numbers, i.e.

$$F_0\left[A,p\right] = c_0\left(F,p\right) = \left\{ X = (X_k) : \left[\ \overline{d} \left(X_k,0\right) \right]^{p_k} \to 0 \ (k \to \infty) \right\},$$

F[A, p] = c(F, p) and $F_{\infty}[A, p] = l_{\infty}(F, p)$; which on further taking $p_k = p$ for all k, are reduced to $c_0(F)$, c(F) and $l_{\infty}(F)$ respectively (cf. [4])

(iii) If $A = (a_{nk})$ is a Cesàro matrix of order 1, i.e.

$$a_{nk} = \begin{cases} 1/n, & k \le n \\ 0, & k > n \end{cases}$$

then $F_0[A, p] = F_0(p)$, F[A, p] = F(p), $F_{\infty}[A, p] = F_{\infty}(p)$ and further on taking $p_k = p$ for all k, these are reduced to the following new sequence spaces:

$$F_0^p = \left\{ X = (X_k) : n^{-1} \sum_{k=1}^n \left[\overline{d}(X_k, 0) \right]^p \to 0 \ (n \to \infty) \right\},$$

$$F^p = \left\{ X = (X_k) : n^{-1} \sum_{k=1}^n \left[\overline{d}(X_k, X_0) \right]^p \to 0 \ (n \to \infty) \right\},$$

$$F_\infty^p = \left\{ X = (X_k) : \sup_n \left(n^{-1} \sum_{k=1}^n \left[\overline{d}(X_k, 0) \right]^p \right) < \infty \right\},$$

A metric \overline{d} on $L(\mathbb{R})$ is said to be a translation invariant if $\overline{d}(X+Z,Y+Z)=\overline{d}(X,Y)$ for $X,Y,Z\in L(\mathbb{R})$.

Proposition 2.1 — If \overline{d} is a translation invariant metric on $L(\mathbb{R})$ then

(i)
$$\vec{a}(X + Y, 0) \le \vec{a}(X, 0) + \vec{a}(Y, 0)$$
,

(ii) $\overline{d}(\lambda X, 0) \le |\lambda| \overline{d}(X, 0), |\lambda| > 1$.

PROOF: (i) By the triangle inequality

$$d(X = Y, 0) \le d(X + Y, Y) = d(Y, 0) = d(X + Y, Y + 0) + d(Y, 0) = d(X, 0) + d(Y, 0)$$

since \overline{d} is a translation invariant.

(ii) It follows easily by using (i) and induction.

If \overline{d} is a translation invariant, we have the following straightforward results.

Proposition 2.2 — Let (p_k) be a bounded sequence of strictly positive real numbers. Then $F_0[A, p]$, F[A, p] and $F_{\infty}[A, p]$ are linear spaces over the complex field \mathbb{C} .

Proposition 2.3 — $F_0[A, p]$, F[A, p] and $F_{\infty}[A, p]$ are absolutely convex subsets of the space w(F) of all sequences of fuzzy numbers, where $0 < p_k \le 1$.

3. MAIN RESULTS

Theorem 3.1 — $F_0[A, p]$ and F[A, p] are complete paranormed spaces with the paranorm g defined by

$$g(X) = \sup_{n} \left(\sum_{k} a_{nk} \left[\overline{d}(X_{k}, 0) \right]^{p_{k}} \right)^{1/M}$$

where $M = \max \{1, \sup_{k} p_k\}$, where \overline{d} is a translation invariant.

PROOF: Clearly $g(\theta) = 0$, g(-X) = g(X). it can also be seen easily that $g(X + Y) \le g(X) + g(Y)$ for $X = (X_k)$, $Y = (Y_k)$ in $F_0[A, p]$ since \overline{d} is a translation invariant.

Now for any scalar λ , we have $|\lambda|^{p_k} < \max\{1, |\lambda|^H\}$, where $H = \sup_k p_k < \infty$, so

$$g(\lambda X) < (\sup_{k} |\lambda|^{p_k})^{1/M} \cdot g(X) \text{ on } F_0[A, p].$$

Hence $\lambda \to 0, X \to \theta$ implies $\lambda X \to \theta$ and also $X \to \theta, \lambda$ fixed implies $\lambda X \to \theta$. Now let $\lambda \to 0, X$ fixed. For $|\lambda| < 1$ we have

$$\sum_{k} a_{nk} \left[\overline{d} (\lambda X_{k}, 0) \right]^{p_{k}} < \varepsilon \text{ for } n > N(\varepsilon).$$

Also, for $1 \le n \le N$, since $\sum_{k} a_{nk} [\overline{d}(X_k, 0)]^{p_k} < \infty$, there exists m such that

$$\sum_{k=m}^{\infty} a_{nk} \left[\overline{d} (\lambda X_k, 0) \right]^{p_k} < \varepsilon$$

Taking λ small enough we then have

$$\sum_{k} a_{nk} \left[\overline{d} (\lambda X_{k}, 0) \right]^{p_{k}} < 2 \varepsilon \text{ for all } n.$$

Hence $g(\lambda X) \to 0$ as $\lambda \to 0$. Therefore g is a paranorm on $F_0[A, p]$. Completeness can be proved on the same lines as in [6] for l(p).

The case F[A, p] has exactly the same proof.

Similarly we can prove the following

Theorem 3.3 — If $0 < \inf_k p_k \le \sup_k p_k < \infty$, then $F_{\infty}[A, p]$ is a paranormed space with the above paranorm.

Theorem 3.3 — Let $0 < p_k \le q_k$ and (q_k/p_k) be bounded. Then $F[A, q] \subseteq F[A, p]$.

PROOF: Let $X = (X_k) \in F[A, q]$. Put $t_k = [\overline{d}(X_k, X_0)]^{q_k}$ and $\lambda_k = q_k/p_k$. Of course $0 < \lambda_k \le 1$. Take $0 < \lambda < \lambda_k$. Define $u_k = \begin{cases} t_k, & t_k \ge 1 \\ 0, & t_k < 1 \end{cases}$ and $v_k = \begin{cases} 0, & t_k \ge 1 \\ t_k, & t_k < 1 \end{cases}$. Then we have $t_k = u_k + v_k$ and $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$ and it follows that $u_k^{\lambda_k} \le u_k \le t_k$ and $v_k^{\lambda_k} \le v_k^{\lambda_k}$. Therefore

$$\sum_{k} a_{nk} \left[\overline{d} (X_k, X_0) \right]^{p_k} = \sum_{k} a_{nk} t_k^{\lambda k} = \sum_{k} a_{nk} (u_k^{\lambda k} + vk^{\lambda k})$$

$$\sum_{k} a_{nk} t_k + \sum_{k} a_{nk} v_k^{\lambda} \to 0 \ (n \to \infty).$$

Since $X \in F[A, q]$, $\sum_{k} a_{nk} t_{k}$ is convergent, and since $v_{k} < 1$ and A is regular, $\sum_{k} a_{nk} v_{k}^{\lambda}$ is also convergent. Hence $X \in F[A, p]$, i.e. $F[A, q] \subseteq F[A, p]$.

Theorem 3.4 — Let m_1 and m_2 be constants such that $0 < m_1 \le p_k \le m_2$. Then $X \in c(F)$ implies $X \in F[A, p]$ with

 $\lim_k X_k = F[A, p] - \lim_k X_k = X_0$ if and only if $A = (a_{nk})$ transforms null sequence into null sequence, i.e. $A \in (c_0(F), c_0(F))$.

PROOF: Sufficiency. Since $p_k \ge m_1 > 0$, we have

$$[\overline{d}(X_k, X_0)] \to 0 \Longrightarrow [\overline{d}(X_k, X_0)]^{p_k} \to 0$$

Hence $A \in (c_0(F), c_0(F))$ implies that $\sum_k a_{nk} [\overline{d}(X_k, X_0)]^{p_k} \to 0 \ (n \to \infty)$, i.e. $X \in c(F)$ $\Rightarrow X \in F[A, p]$ with the same limit X_0 .

Necessity — Suppose $[\overline{d}(X_k, X_0)] \to 0 \Rightarrow \sum_k a_{nk} [\overline{d}(X_k, X_0)]^{p_k} \to 0 \ (n \to \infty)$. Then (3.4.1)

$$[\vec{d}(X_k, X_0)]^{q_k} \to 0 \ (k \to \infty) \Rightarrow \sum_k a_{nk} [\vec{d}(X_k, X_0)] \to 0, \text{ where } q_k = 1/p_K. \text{ Since } q_k \ge 1/m_2 > 0, (3.4.2)$$

$$[\ \overline{d}\ (X_k,X_0)] \to 0\ (k\to\infty) \Longrightarrow [\ \overline{d}\ (X_k,X_0)] \to 0\ (n\to\infty).$$

Therefore by (3.4.1) and (3.4.2), we have

$$[\overline{d}\,(X_k,X_0)]\to 0\;(k\to\infty) \Rightarrow \sum_k \ a_{nk}\,[\overline{d}\,(X_k,X_0)]\to 0\;(n\to\infty).$$

Hence $A \in (c_0(F), c_0(F)).$

ACKNOWLEDGEMENT

This paper was completed when the first author visited Sakarya University for 8 weeks (Sep. and Oct. 2001) under the U.N. Programme TOKTEN-UNISTAR. The author is very much thankful to TUBITAK and Sakarya University for financial support and hospitalities provided to him during the visit.

REFERENCES

- 1. P. Diamond and P. Kloeden, Fuzzy Sets and Systems, 35 (1990), 241-49.
- 2. M. Matloka, BUSEFAL, 28 (1986) 28-37.

- 3. I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
- 4. Mursaleen and M. Basarir, On some sequence spaces of fuzzy numbers (submitted).
- 5. S. Nanda, Fuzzy sets and Systems, 33 (1989), 123-26.
- 6. F. Nuray and E. Savas, Math. Slovaca, 45 (1995) 269-73.
- 7. F. Nuray, Fuzzy sets and Systems, 99 (1998) 353-55.
- 8. E. Savas, Inform. Sciences, 125 (2000), 181-86.
- 9. L. A. Zadeh, Inform. Control, 8 (1965), 338-53.