Indian J. pure appl. Marh., 34(9) : 1351-1357. September 2003
© Printed 1n India.

ON SOME NEW SEQUENCE SPACES OF FUZZY NUMBERS

MURSALEEN AND METIN BASARIR™

*Departmem‘ of Mathematics, Aligarh Muslim University, Aligarh 202 002, India
e-mail: mursaleen@postmark.net
Department of Mathematics, Sakarya University, Sakarya 54100, Turkey
e-mail:basarir @sakarya.edu.tr

(Received 13 December 2002, accepted 11 May 2003)

In this paper, we introduce and study some new sequence spaces of fuzzy numbers generated by non-negative
regular matrix A =(a,,) (n. k = 1. 2).
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1. INTRODUCTION AND PRELIMINARIES

Let D be the set of all bounded intervals A =[A, A] on the real line IR. For A, Be D. define

IA

A<B if and only if A<B and A <B,

&l

d(A,By=max A-B,A -

Then it can be easily see than d defines a metric on D (cf [1]) and (D, d) is a complete metric
space.

A fuzzy number is a fuzzy subset of the real line IR which is bounded. convex and normal.

Let L (IR) denote the set of all fuzzy numbers which are upper semicontinuous and have compact
support, ie. if Xe L (IR) then for any ae [0, 1], X% is compact where

X% t:X(nz2a if 0<a<l,
1 1 X0>0 ifa=0,

For each 0<a<1, the o-level set X% is a nonempty compact subset of IR. The linear
structure of L (IR) includes addition X + Y and scalar multiplication AX, (A a scalar) in terms of

o-level sets, by

X+ Y%=[X]%+[N% and [AX]%=2[X]%
for each 0< a<1.

Define a map d:L(IR) XL (IR) » IR by

dX.H= sup dX% Y%

Osasl
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For X, Ye L(IR) define X<VY if and only if X*<Y* for any ae [0, 1]. It is known that
L (IR),d) is a complete metric space (cf [2]).

We will need the following definitions (cf [2]).

Definition 1.1 — A sequence X =(X;) of fuzzy numbers is a function X from the set IN of
natural numbers into L (IR) . The fuzzy number X, denotes the value of the function at n€IN and
is called the nth term of the sequence. We denote by w(F) the set of all sequences X =(X;) of

fuzzy numbers.

Definition 1.2 — A sequence X = (X;) of fuzzy numbers is said to be convergent to a fuzzy

number X, written as limy X, = X, if for every €>0 there exists a positive integer N, such that

d (X, Xy) < € for k>N,

Let ¢(F) denote the set of all convergent sequences of fuzzy numbers.

Definition 1.3 — A sequence X = (X;) of fuzzy numbers is said to be bounded if the set
Xy ke N i of fuzzy numbers is bounded. We denote by [ (F) the set of all bounded sequences
of fuzzy numbers.

It is straightforward to see that
c(FHcl (Hcw(F).

In [5], it was shown that ¢(F) and /_ (F) are complete metric spaces. In [4], we have shown

that L (IR) and w(F) are Frechet spaces and c(F) and [_(F) are Banach spaces.

For further studies we refer [7], [8] and [9].

In this paper we define some new sequence spaces of fuzzy numbers by using regular
matrices A = (a,,), (n, k = 1, 2, ...). By the regularity of A we mean that the matrix which transform

convergent sequence into a convergent sequence leaving the limit invariant (cf. Maddox?). We prove
that these spaces are complete paranormed spaces.

By a paranorm we mean a function g: £ — [R (where E is a linear space) which satisfies
the following conditions :

(p.1) g (0) =0,

(p-2) g(x)20 for all xe E,

(p3) g(=x)=g(x) for all xe E,

(p4) gx+y)Sgx)+g () for all x,ye E,

(p.5) If (4,) is a sequence of scalars with 4, — A (n—> <) and (x,) is a
sequence of the elements of E with g (x, —x) = 0 (n — ), then
gA x —Ax)—>0(n— o).

n-n
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The space E is called the paranormed space with the paranorm g
2. SOME NEW SEQUENCE SPACES

Recently Nuray and Savas® have defined the following space of sequences of fuzzy numbers
l(p)={X=(xk>: ) [a(xk,on"«w},
k

where (p,) is a bounded sequence of strictly positive real numbers. If p =p for all & then

l(p)=lp, the space due to Nanda®.

In this paper we define the following :
n 1
> (dx, 0)]”A—->O(n—~>oo)}
\

Fy(p) = X=(Xk):n
k=1

n )
X=Xp:n 'Y [dX. XYk =0 (n— ) 's
|

Fp)=

w’

|
J

F_(p)={X=(X,):sup, n z [d(X,, 0)) k< o0

and call them respectively the spaces of sequences of fuzzy numbers which are strongly convergent

to zero, strongly convergent to X, and strongly bounded
...} be a non-negative

We further generalize these spaces as follows. Let A=(a,,) (n, k = 1, 2,

regular matrix. We define

FO[A,p]={X=(Xk): Z a, [H(Xk,O)]”k—aO(nﬁoo)},

k

F(A,p1={x=<xk>: )y ak[a<xk,xo>1"k~>o<n—»w)},
k

3 ank[a(xk,O)]"k]oOJl,

F_[A,p] ={X= X, : supn(
k

and call them respectively the spaces of strongly A-convergent to zero, strongly A-convergent to
X, and strongly A-bounded sequences of fuzzy numbers X = (X,). We can specialize these spaces as

follows.
1, 1<k<n
. , 1< -
@ If a, { 0. k>n then F_ [A, p]l =1 (p), the space due to Nuray and Savas
(i) If A = I, the unit matrix, then we get another set of new sequence spaces for fuzzy
numbers, i.e.

FylA, pl =<, (F,p)={X=(Xk) 1@ (X, 0k = O (k — o) }
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F [A, p] = ¢ (F, p) and F_[A,p]=1_(F, p); which on further taking p, =p for all k, are
reduced to ¢, (F).c (F) and [ (F) respectively (cf. [4])

(i) If A =(a,,) 1s a Cesaro matrix of order 1. ie.

_| Vn, k<n
k=) 0, k>n

then Fy[A, pl=Fq(p), F[A, pl=F (p), F_[A, pl=F,_ (p) and further on taking p, =p for all k. these

are reduced to the following new sequence spaces :

X=X :n 'Y (32X, 00 =0 (n—> ) }
k=1 |

(
Fo=1
{

( n
ﬁ’=4X=(Xk):rz“ Z [d(X,. X)) 50 (n—e) t.
| k=1
[ n
n |
F’w=ixz(xk):supn Y 1A(X, 0P <o
k=1

|
J

A metric d on L(IR) is said to be a translation invariant if d(X+Z, Y+2)=d (X.Y) for
X.Y.Ze L(R).

Proposition 2.1 — If d is a translation invariant metric on L (IR) then
() d(X+Y.0)<d(X,00+4d (Y, 0),
(i) d(AX,00<1A1d (X, 0),1 A1>1.

PROOF : (i) By the triangle inequality
dX=Y,00sd(X+Y,V)=d(Y.00=d(X+Y.Y+0)+d(Y.0)=d (X.0)+d (Y.0)

since d is a translation invariant.
(i) It follows easily by using (i) and induction.

If 4 is a translation invariant, we have the following straightforward results.
Proposition 2.2 — Let (p;) be a bounded sequence of strictly positive real numbers. Then

FolA,pl. F[A, p] and F_ [A, p] are linear spaces over the complex field C.

Proposition 2.3 —F, [A, pl, F[A, p] and F_ [A, p] are absolutely convex subsets of the space

w(F) of all sequences of fuzzy numbers, where O <p, <1.

3. MAIN RESULTS

Theorem 3.1 — F (A, p) and F[A, p] are complete paranormed spaces with the paranorm
g defined by
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/M
g(X)=sup,,( Y a,ldX, onf’k]
k

where M = max {1, sup, p,}, where d is a translation invariant.

PROOF : Clearly g (6)=0, g (- X)=g (X). it can also be seen easily that g (X+Y)<g(X)
+ g(Y) for X=(X)),Y=(Y)) in Fy[A, p] since d is a translation invariant.

Now for any scalar A, we havel A Pk < max | LA l. where H = sup, p, <o, so

g (AX) < (sup, | AP M. g (X) on Fy (A, pl.

Hence 4 —0,X — 6 implies AX — 6 and also X — 6, 4 fixed implies A X — 6. Now let
A—0.X fixed. For |A1<1 we have

Y a,[d(AX,0k<e for n>N(g).
k

Also, for 1 <n <N, since 2 ank[a'(Xk, 0))Pk < oo, there exists m such that
k

oo

z a, [d(AX,.0k<e

k=m

Taking A small enough we then have

Y a, [d(AX, 0 k<2e for all n.
k

Hence g (AX) —» 0 as A — 0. Therefore g is a paranorm on Fj [A, p]. Completeness can be
proved on the same lines as in [6] for I(p).

The case F[A, p] has exactly the same proof.

Similarly we can prove the following

Theorem 3.3 — If 0 <inf, p; <sup, p, <o, then F_[A,p] is a paranormed space with the

above paranorm.

Theorem 3.3 — Let 0<p,<gq, and (q,/p;) be bounded. Then F[A,qlC F[A, pl.

PROOF : Let X=(X) € F[A,q]. Put r,=[d (X}, X% and A, = q;/p;. Of course 0< A, <1.

s tk21
0, <1

0, thI

Take 0<A< A, Define uk={ and vk:{ b <1 Then we have 17, =u; +v; and

A, A . Ak Ak A
t?k=ukk+vkk and it follows that u; <u, <1, and vy <v;. Therefore
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Ak Ak Ak
2 auldX Xl = 3 ayte = X ay G +vk0)
k k k

A
Y a,n+ Y, a,v, 00— ).

k k
. . . . A
Since X € F[A.q], Z a,. t, is convergent, and since vy <1 and A is regular, 2 Ak Vi
k k
is alsc convergent. Hence X € F[A, p], ie. F[A, q]l C F[A, p].
Theorem 3.4 — Ler my and m, be constants such that 0<m;<p,<m,. Then X e c(F)

implies X € F[A, p] with
lim, X, = F[A, p] = lim X, =X, if and only if A= (a,,) transforms null sequence into null
sequence, le. A € (co(F), co(F)).

PROOF : Sufficiency. Since p, 2m >0, we have
[d(X, Xp)] > 0=>[d (X, XO)]”k -0

Hence A e (¢ (F), cq(F)) implies that 2 a, [d(X, X)l'k—0 (n—>e0), ie. Xec(F)
k
= Xe F [A, p] with the same limit XO.

Necessiry — Suppose [@ (X X9)] = 0= > ay [ (X X)I’k = 0 (n — ). Then (3.4.1)
k

[d (X X)) — 0 (k — 00) = z a, [ d Xy, Xp)] = 0. where g, =1/p,. Since g 21/m,>0. (3.4.2)
k
[d (X X)) = 0 (k = ) = [d (X, X)) = 0 (n — o).

Therefore by (3.4.1) and (3.4.2), we have

[@X, X)I >0k >)= Y a,[d(X,.X)] =0 (n— ).
k

Hence A € (cy (F), ¢y (F)).
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