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Some relationships of the shape operator with the sectional curvature and the k-Ricci curvature for slant
sumbanifolds in generalized complex space forms are established.
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1. INTRODUCTION

Nash’s immersion theorem guarantees for every n-dimensional Reimannian manifold to admit an
nn+ 1)3Bn+11)

isometric immersion into Euclidean space IE 2 . Thus, one is able to consider any
Riemannian manifold as a submanifold of Euclidean space; and this provides a natural motivation
for the study of submanifolds of Riemannian manifolds. To find simple relationships between the
main intrinsic invariants and the main extrinsic invariants of a submanifold is one of the basic
interests of study in the submanifold theory. Gauss-Bonnet Theorem, Isoperimetric inequality and
Chern-Lashof Theorem provide relations between extrinsic and extrinsic invariants for a submanifold
in a Euclidean space.

n“, Chen establishes a relationship between sectional curvature and the shape operator for
submanifolds in a real space form. He also establishes sharp relationship between the k-Ricci

curvature and the shape oprator for a submanifold in a real space form®.

On the other hand, Gray introduced the notion of constant type for a nearly Kahler manifolds,
which led to definitions of RK-manifolds i/ (c, o) of constant holomorphic sectional curvature ¢ and

constant type « [10] and generalized complex space forms M (f;,f;) [7]. We have the inclusion
relation M(c) c M(c, @) < M (f}, f»), where M(c) is the complex space form of constant holomorphic

sectional curvature c.
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Thus it is worthwhile to study relationships between intrinsic and extrinsic invariants of
submanifolds in a generalized space form. In this paper, we establish several such relationships for
slant, totally real and invariant submanifolds in generalized complex space forms, complex space
forms and RK-manifolds. The paper is organized as follows. Section 2 is preliminary in nature. It
contains necessary details about generalized complex space form and its submanifolds. In Section 3,
we establish a relation of the shape operator with the sectional curvature for slant sumbanifolds in
generalized complex space form. As an application, we list particular results for different kind of
submanifolds in a table. In the last section, a relation between the shape operator and the k-Ricci
curvature for slant submanifolds in generalized complex space form is established.

2. PRELIMINARIES
Let M be an almost Hermitian manifold with an almost Hermitian structure (J,¢,)). An almost

Hermitian manifold becomes a nearly Kihler manifold’ if VXJ 1X=0, and becomes a Kihler
manifold if ¥ J = O for all X € TM, where ¥ is the Levi-Civita connection of the Riemannian metric

(,). An almost Hermitian manifold with J-invariant Riemannian curvatufe tensor R, that is,

RUX,JY,JZ,IJW)=R(X,Y,Z, W), X, Y,Z We TM,

is called an RK-manifold'®. All nearly Kihler manifolds belong to the class of RK-manifolds.

The notion of constant type was first introduced by Gray for a nearly Kihler manifold®. An
almost Hermitian manifold A7 is said to have (point-wise) constant type if for each p e # and for
all X,Y,Ze T, M such that

XN=XD=X.M=XJZ)=0,{Y,N=1=(Z,2)
we have
RX. VX, )-RX,Y,JX,J)=R(X,Z X,Z)-R (X, Z. JX, JZ).
An RK-manifld M has (pointwise) constant type if and onlyif there is a differentiable function
o on M satisfying [10].
RXY.X.N-R(X Y,JXJY) = (X, X (Y, V) (X, V)’ = (X.J0) }

for all X, Y e TM. Furthermore, M has global constant type if & is constant. The function « is called
the constant type of /. An RK-manifold of constant holomorphic sectional curvature ¢ and constant
type « is denoted by M (c, @). For M (c, @) it is known that'®

4R (X, NZ=(c+30) {(Y,2)X-(X,2)Y)
+ (c—a) {{X,JZ)-JY=(Y,JZ)JX +2 (X, JY) JZ)

for all X,Y,Ze TM. If ¢ = a then M (c, @) is a space of constant curvature. A complex space form
M (c¢) (a Kihler manifold of constant holomorphic sectional curvature ¢) belongs to the class of
almost Hermitian manifolds M (c, @) (with the constant type zero).

An almost Hermitian manifold M is called a generalized complex space form M (. 5) (M
if its Riemannian curvature tensor R satisfies
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RXNZ=f ((.D)X-(X.2)Y)
+ fo (X, JZYJY = (Y, JZ) JX + AX. JY) JZ) v (D)

for all X, Y,Ze TM, where f; and f, are smooth functions on A1.

The Riemannian invariants are the intrinsic characteristics of a Riemannian manifold. Here,
) . . . . ) e 14l . .
we recall a number of Riemannian invariants in a Riemanninan manifold”. Let M be a Riemannian

manifold and L be a k-plane section of T,M. For a unit vector U, L, we choose an orthonormal
basis {ey,...e;} of L such that e)=U. Let K;; mean the sectional curvature of the plane section

spanned by e; and e; at p e M. Then the Ricci curvature Ric; of L at U is given by

Ric,(U) =K, + K3+ ... + K. o))

Ric; (V) is called a k-Ricci curvature. The scalar curvature T of the k-plane section L is given by

L= K;. . . 3)

1<i<j<k

Given an orthonormal basis {ey, ..., e,} for T,M,1; ; will denote the scalar curvature of
the k-plane section spanned by e, ..., ¢;. For each integer k,2 <k<n, the Riemannian invariant 6,

on an n-dimensional Riemannian manifold M is defined by

ek(p>=(-,;—17} inf Ric, (0, pe M @

where L runs over all k-plane sections in TpM and X runs over all unit vectors in L.

Let M be an n-dimensional submanifold in a manifold M equipped with a Riemannian metric

(,). The Gauss and Weingarten formulae are given respectively by VyY=VyY+0(X,Y) and

VxN=—ANX+ VXJ“ N for all X,Ye TM and Ne T+ M, where ¥, V and V* are respectively the
Riemannian, induced Riemannian and induced normal connections in M, M and the normal bundle
TY M of M respectively, and o is the second fundamental form related to the shape operator Ay
in the direction of N by (o(X,Y),N)=(Ax X, Y). The mean curvature vector H is expressed by

nH =trace 6. The submanifold M is totally geodesic in M if o = 0. The relative null space of M
at a point pe M is defined by

9\4) = {Xe Tleo(X,Y) =0 for all Ye TpM}.

In a submanifold M of an almost Hermitian manifold, for a vector 0+ X, € T,M, the angle

O(Xp) between JXP and the tangent space T,M is called the Wirtinger angle of X,. If the Wirtinger
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angle is independent of pe M and Xp € TPM, then M is called a slant submanifold!. We put
JX=PX+ FX for X e TM, where PX (resp. FX) is the projection of JX on TM (resp. TJ‘M). Slant
submanifolds of almost Hermitian manifolds are characterized by the condition P?+ 2% = 0 for some

real number A€ [0, 1]. Invariant and anti-invariant submanifolds are slant submanifolds with 8 = 0

(F = 0) and 6=n/2 (P = 0) respectively. For more details about slant submanifolds we refer to
[1].

3. SHAPE OPERATOR AND SECTIONAL CURVATURE
Let M be an n-dimensional 6-slant submanifold of a 2m-dimensional generalized complex space form
M (f;»fo).- Let pe M and a number of fp >fi+3f, cos” @ such that the sectional curvature K > fp at

p. We choose an orthonormal basis {e),...e, e -+ €y} at p such that e, ;| is parallel to the

n+1°
mean curvature vector H, and e, ..., e, diagonalize the shape operator A, , ;. Then we have
a, 0 0
0 % 0
An+] = ' . R ’ (5)
0 0 a,
n
r r .
trace A= 2 0, =0, Ar=(0'ij)l,}= 1,..n, r=n+2,..,2m. ... (6)
i=1

For i#j, we put

u;=ag; | . (D

Moreover, Gauss equation is given by’
R(X. Y ZW)=£,{(Y, Z) (X, W) - (X. Z) (Y. W)}
+ f, (X, PZ)(PY, W) (Y, PZ) (PX, W) + %X, PY) (PZ, W)}
+ (0 (X, W), alY, 2) - (o (X. Z), oY, W)) | . 8

for all X,Y,Z We TM, where R is the curvature tensors of M. In view of eq. (8), for
X=Z=ei,Y=W=ej, we have

2m
ug2f,~fi - ¥yle, Pyt - Y ( o; cj',-—(o;)zj. C)
r=n+2
Now, we prove the following Lemma.

Lemma 3.1 — For u; we have the following properties:

(1) For any fixed ie (I, ..., n}, we have
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2
Y u; 2 (n=1) (f, — f, = 3f, cos” 6).
i#j
(2) For distinct i,j, ke {1, .., n} it follows that a =u ”zk/“;k

(3) For a fixed k, 1 Sks[%:’ and for each Be SkE {Bc {1, .., n} : | Bl=k}, we have

2 X wzkn-k(f, ~hi- 3f, cos” ).

jeBteB

where B is the complement of B in {1, ..., n}.

(4) For distinct i,je {1, ..., n}, it follows that “ij>0'

PROOF : (1) From (6), (7) and (9), we obtain

' 2m
> = (-1~ - et ) - Y, [af,.( v a;,.]~ v (ofj)zJ

i#j r=n+2 J#i J#Ii

2m

= (n—l(fp“f1'3f2°0529)‘2 ACLAREDY (0’3)2
r=n+2 J#i
2m n
= (n-l)(fp"fx‘3fzcoszg) + X ) (O{J')2
r=n+2 j=1

z(n—1)(;;,—f1—3f2cos2'e)>o.

2
(2) We have w; uy/up =aaaa/a0,=a;.

(3) Let B = {1, .., k} and B = {k + 1, .., n}. Then

Y 3 w2 kn-R(,-fi- o8 0

jeB 1€ B

]

k(n = k) (f, ~ f, - 3, cos” 0)

2m k n k

,

+ 2| X X PINCA
r=n+2| j=11=k+1 j=1

2 k(n = K) (f, - f; ~ 3, cos” 6).
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(4) For i#j, if Uy = 0 then a; = 0 or a; = 0. The statement q; = 0 implies that uy=aa;
= 0 for all /e (I, .., n}, [#i. Then, we get

Z Uy = 0,
j#i

which is a contradiction with (1). Thus, for i#j, it follows that uij;tO. We assume that u n<0.

From (2), for 1 < i < n, we get u;u, < 0. Without loss of generality, we may assume

ulz, “ery u”, u(1+ ])n, ceny u(n__ ])n > 0

Uy 4 1y o Ui Yo = Y < 0, ... (10)
for some l:n+1 }SlSn— Lifl=n-1, then uj, +u, +... +u(n_1)n<0, which contradicts to (1).
Thus / < n - 1. From (2), we get:
u, u
@ =-21 5, . (1)
u.

it
where 2<i</,l+1<t<n-1. By (10) and (11), we obtain “it<0 which implies that

1 n I} n—1 l n
)Y w= 2 Y i + D Ut D uy, <0,
i=1t=1+1 i=2 1=1+1 i=1 t=10+1
which is a contradiction to (3). Thus (4) is proved. Od

Chen established a sharp relationship between the shape operator and the sectional curvature
for submanifolds in real space forms®. A similar inequality for a slant submanifold in a complex
space form is proved in®. As a natural generalization to the above two kinds of results, we establish
a similar inequality between the shape operator and the sectional curvature for slant submanifolds
in a generalized complex space form in the following theorem.

Theorem 3.2 — Let i : M — M (f}.f,) be an isometric immersion of an n-dimensional 6-slant

submanifold into a 2m-dimensional generalized complex space form M (fi.f;). If at a point pe M

there exists a number Hh>h+ 35 cos® 8 such that the sectional curvature K 2f, at p, then the shape

operator Ay at the mean curvature vector satisfies

n

-1
— (f,~f, =2y c05> O)1,, atp, . (12)
where [ is the identity map.

AH>

PROOF :Let pe M and a number fp >fi+3f, cos® @ such that the sectional curvature K > fo
at p. Choose an orthonormal basis {e}s .nep €y 1y €2} at p such that e, ; is parallel to the
mean curvature vector H, and e, ..., e, diagonalize the shape operator A, , . Now, from Lemma 3.1

it follows that ay, ..., a, have the same sign. We assume that aj>0 for all je {1, .., n}.
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Then

2
Y wi=a(a+...+a)—a; 2 (n=1)(f,~f, - ¥, cos’ 6).
VE)

From (5) and the above relation, we have

2
anll HIl 2 (n=1) (f, - f, - 3f, cos’ ) +a;

>(n-— 1)(}“[7—]‘1 —3f20032 6),
which implies that

n—

1
n (fpk"fl 3f, cos” 6),

a; VIl >

and consequently we get (12). J
As an application, from the above theorem we are able to state the following corollary

Corollary 3.3 — We have the following table:

Manifold Submanifold K2 j;, Inequality

M. 1) totally real  f >f nAy>(n=1)(,~ )1,

M. 1) invariant 5>fi+3 nAy>(n=1) (f,~f, = 3f) I,

M o @-slant f,>3asin?0 + (1+3cos’@c  nAy>(=-1) {f,~3asin®6 — (1+3cos? O)c)l,
Mic, o) totally real fp>c+3a nAy>(n=1)(f,-c-30)1,

Mic, a) invariant fp>4c A nAg>@n-1) (f,—40)l,

I‘W(4C‘) 6-slant j;Sc(1+3cos26) nAy>(n-1) (fp—c-—3ccosze)ln

M (4c) totally real j;,>c nAg>(n-1) (f;—c)l"

M (4c) invariant f,> 4 nAy>@n-1) (f,-401,

4. SHAPE OPERATOR AND k-RICCI CURVATURE

Chen established a relationship between the shape operator and the k-Ricci curvature for a
submanifold with arbitrary codimension’. A corresponding inequality for a slant submanifold of a
complex space form is established in%. In this section, we prove a relationship between the shape
operator and the k-Ricci curvature for an n-dimensional slant submanifold M of a 2m-dimensional
generalized complex space form M (f;, fz).

First we recall the Theorem 5.2 of [9] in the following Lemma.

Lemma 4.1 — Let M be an n-dimensional submanifold of a generalized complex space form
M (f,.f,). Then, we have
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) 3, I P I
> e f s
WH I (p) 2 6,(p) - f PP TS . (13)
Now, we prove the theorem.
Theorem 4.1 — Let M be an n-dimensional 6-slant submanifold isometrically immersed in

a 2m-dimensional generalized complex space form M (f;»f2)- Then, for any integer k,2<k<n, and
any point p € M, we have

3f, cos® 6

(D) If 6(p) =1 +—-n—_:—1-——, then the shape operator at the mean curvature satisfies

I, atp. .. (14)

n

2
n—1 3f, cos” 6
AH>——-—-n (Gk(p)—f]——-——n__1

3f2 C032 6
n

) If (p)=f1 + 1 then Ay 20 atp.

(3) For a unit vector X € TpM it follows that

_ 1 3f, cos’ @
Ay= 9k(p) -5 T T X. . (15)
3f, cos® @
if and only if 6,(p)=f, + —n—_—l——- and X € 5\4
31 cos? 6 )
6P -fi—- 1 I, atp if and only if p is a totally geodesic point,

that is, the second fundamental Jorm vanishes identically at p.

 PROOF : In view of Lemma 4.1, it follows that H(p) vanishes only when 6(p)<f

3f cos? 6
y 2=

P Consequently if H(p) = 0, the statements (1) and (2) are correct. Now, we assume

that H(p) # 0. From the equation (5) we obtain

2m

Ki=fi=3e,Je))~ 3 (":i";j'w;‘)z)‘ - (16)

r=n+2

which implies that

al(ai2+....+aik)=RicL“2 (e)-Gk-DA -3, 2 Cepn e, )
j=2
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- Z 2 (011 (01,)2). . (17)

r=n+2 j=2

From the above equation we get

1 .
a](a2+...-i~an)=cn~2 Z RxcLl (ey) = (n—- 1)
k=2 2<i)<..<iSn 2.0,
- 3, Z (ep Je;)+ Z Z (01" .. (18)
r=n+2 j=1

From (4) and (18) we obtain

a,(a; +a,+ ..ta)2a(a,+ .. +a,)

3f, cos? 0]
. .. (19

2(n-1) (%(P)—fﬁ—n_‘l—'

Since nllHll=a; +... +a,, the above equation implies

n
Ay

1 3, cos 6
e

The equality does not hold because in our case H(p)#0.
The statement (2) is obvious.

Now, we prove the statement (3). Let X e TPM be a unit vector satisfying (15). By (19) and

(18) we get a; = 0 and G;j =0 forallje {1, ..,n} and re {n + 2, ..., 2m}. Thus the above

3 cos® 0
n

] and X e 9\[,,. The converse is straightforward.

conditions imply that G (p) =f; +

The equality (15) is true for X TPM if and only if 9\[p= TPM, that is, p is a totally geodesic
point. This proves the statement (4). ' O
Now, we are able to state the following corollaries.

Corollary 43 — Ler M be an n-dimensional totally real submanifold isometrically immersed

in a 2m-dimensional generalized complex space from M (f},f;). Then, for any integer k,2<k<n,
and any point p € M, we have:

nIf Oé(p) #f}, then the shape operator at the mean curvature satisfies

n
AH>

)1, at p

where [ denotes the identity map of TpM.



1162 JEONG-SIK KIM, YEONG-MOO SONG AND MUKUT MANI TRIPATHI

(2) If 6(p)=1;, then Ap20 at p.
(3) A unit vector X € TPM satisfies

n-—

—L (60 -f) X

if and only if 8,(p)#f, and Xe N[,

n-1
n

(4) For pe M, Ay = (6 ()-f))1, at p if and only if p is a totally geodesic point.

Corollary 44. — Let M be an n-dimensional G-slant submanifold isometrically immersed in
a 2m-dimensional RK-manifold M (c, @). Then, for any integer k,2<k<n, and any point p e M, we

have:

A a 2
(1) If 6(p)#(c+3a)+ %ﬁ—e, then the shape operator at the mean curvature satisfies

AH>

n-1
n n

5
3c—a)cos” 6
(Gk(p)-—(c+3a)— — I, atp,
where I, denotes the identity map of TPM.
3(c — @) cos’ O
2) If §(p)=(c3a)+ — , then Ay 20 at p.

(3) A unit vector X € TPM satisfies

_ 2
AHx=";l(ek(p)-(c+3a)——§—L—3c e e]x

n-1

if and only if t9k(p):t(c+3az)+—3ic—":—a-‘l and X e 9\4,

n-1

_ _ 2
(4) For pe M, AH="n ! [ok(p)—(c+3a)—§ic—n°%j—°i—9)1,, at p

if and only if p is a totally geodesic point.
Corollary 4.5 — Let M be an n-dimensional totally real submanifold isometrically immersed
in a 2m-dimensional RK-manifold # (c, &). Then, for any integer k,2<k<n, and any point p € M,

we have:

(1) If 6,(p)#c+3a, then the shape operator at the mean curvature satisfies

n-—

1
— (O p)~c-3a)1,, atp,

Ay>

where [ denotes the identity map of TpM.

) If Gk(p)=c+3a, then AHZO at p.
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(3) A unit vector X € TPM satisfies

n
AyX=

() —c-3a) X

if and only if G (p)#c+3a and X € NP.

(4) For pe M, Ay =

@) —c-3m) 1 at p if and only if p is a totally geodesic point.

REFERENCES

B.Y. Chen, Geometry of slant submanifolds, Katholiecke Univ. Leuven, Leuve, 1990.
B.Y. Chen, Glasgow Math. J., 38 (1996), 87-97.
B.Y. Chen, Glasgow Math. J., 41 (1999), 33-41.

B.Y. Chen, Riemannian submanifolds, in Handbook of Differential Geometry, (eds. F. Dillen and L. Verstraelen),
North Holland, Amsterdam, 2000, 187-418.

A. Gray, J. Differential Geometry, 4 (1970), 283-309.

K. Matsumoto, I. Mihai and A. Oiaga, Bull. Yamagata Univ., 14 (2000), 169-77.
F. Tricerri and L. Vanhecke, Trans. Am. Math. Soc., 267 (1981), 365-98.

M.M. Tripathi, Pub. Math. Debrecen, 50 (1997), 373-92.

M.M. Tripathi and S.S. Shukla, Aligarh Bull. Math., 20 (2002) (to appear).

L. Vanhecke, Rend. Sem. Mat. Univ. e Politec. Torino, 34 (1975/76), 487-98.

. K. Yano, M. Kon, Anti-invariant submanifolds, Lecture notes in pure and applied mathematics, 21, Marcel. Dekker

Inc., New York, 1976.



