THE α -SUN TOPOLOGY AND L-SUN TOPOLOGY IN THE PLANE

WU JIONG QI

Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363 000, Fujian, China e-mail: wujiongqi@263.net

(Received 2 July 2002; accepted 28 November 2002)

The sun topology, one of the fine topologies, was proved by Pyrih in 1999 to be strictly finer than 2-fine topology from the logarithmic potential theory in the plane. In this paper two new fine topologies in the plane named the α -sun topology with $\alpha \in (1,2)$ and the L-sun topology respectively are introduced, and it is proved that (1) the α -sun topology is strictly finer than the α -fine topology from Riesz potential theory; (2) the α -sun topology is strictly finer than the α -sun topology for any $\alpha, \alpha' \in (1,2)$ satisfying that $\alpha < \alpha'$. (3) the L-sun topology is strictly finer than the 2-fine topology and strictly coarser than the α -sun topology. And so the following strictly conclusion relation formulas are valid:

- (i) The sun topology \supset the α -sun topology \supset the α' -sun topology \supset the α' -fine topology \supset the Euclidean topology, and
- (ii) The α -sun topology \supset the L-sun topology \supset the 2-fine topology.

Some separation properties of the α -sun topology and the L-sun topology are also studied.

Key Words: The Sun Topology; The Fine Topology; Riesz Potential Theory; Hausdorff Measure; Capacity

1. INTRODUCTION

It is known that there is a close connection between Riwsz capacities and Hausdorff measures which promotes the developments of not only the potential theory but also the fractal geometry in the recent 30 years^{1, 3, 8, 11}

In this paper we investigate fine topologies by means of capacities and Hausdorff measures. It is known^{5, 10, 11} that the 2-fine topology in \mathbb{R}^N ($N \ge 2$) (i.e. the fine topology from the logarithmic potential theory when N=2 and the Newton potential theory when $N \ge 3$) is strictly finer than the Euclidean topology, and the α -fine topology from Riesz potential theory ($0 < \alpha < 2$)) strictly finer than the 2-fine topology; for $0 < \alpha' < \alpha < 2$, we have the α' -fine topology strictly finer than the α -fine topology.

In 1999, Pyrih⁹ proved the sun topology is strictly finer than the 2-fine topology. The sun topology is introduced by G. Horbaczewska⁴ and from now on we call it *P*-sun topology for the convenience of the comparison with the other topologies.

Definition 1 — A subset A of the complex plane C is called an open set of the P-sun topology or P-sun open set, if every point x in A satisfies the following condition: there is a Borel

set $F = F_x \subset [0, 2\pi]$ with linear Lebesgue measure zero such that for each $\beta \in [0, 2\pi] \setminus F$ there exist a real number $t_\beta > 0$ satisfying

$$\left\{ z \in C : z = x + t \left(\cos \beta + i \sin \beta \right), |t| < t_{\beta} \right\} \subseteq A. \tag{1}$$

In other words, if A contains x, then A contains a segment on almost every line through x.

Remark: Definition 1 is essentially the definition of "sun topology" in 9 , but here we omit the restriction that A is Lebesgue measurable, and add the hypothesis that F is Borel set in order to compare with the other fine topologies.

After having proved in 12 the P-sun topology is strictly finer than the α -fine topologies, we are faced with the problem: is there another topology which is coarser than the P-sun topology and finer than the α -fine topologies or the 2-fine topology?

By introducing the α -sun topology in section 2 and the L-sun topology in section 4, we solve this problem, furthermore and obtain the comparison relations for different topologies concerned below:

- (1) The α -sun topologies are strictly finer than the α -fine topology (1 < α < 2) and strictly coarser than the *P*-sun topology;
 - (2) for $1 < \alpha' < \alpha < 2$, the α' -sun topology is strictly finer than the α' -sun topology;
- (3) the L-sun topology is strictly finer than the 2-fine topology and strictly coarser than the α -sun topology.

i.e. we have the following strict conclusion relations:

The P-sun topology \supset the α '-sun topology \supset the α -sun topology \supset the α -fine topology \supset the 2-fine topology;

The P-sun topology \supset the α -sun topology \supset the L-sun topology \supset the 2-fine topology.

In section 5 some properties such as separation and separable properties for the α -sun topology and the P-sun topology are also discussed.

At first, let us recall some basic notions and conclusions about Hausdorff measure and dimension.

Definition 2 — Suppose B is a subset of \mathbb{R}^n and $\{U_j\}$ is a sequence of subsets of

 $R^n \mid U_j \mid$ is the diameter of U_j . If for $\delta > 0$ we have $\bigcup_{j=1}^n U_j \supseteq B$ and $|U_j| < \delta$ for all $j \in N := \{1, 2, \dots, j=1\}$

...}, then $\{U_i\}$ is said to be a δ -cover of B. For a real number s > 0, set

$$H_{\delta}^{s}(B) = \inf \sum_{j=1}^{\infty} |U_{j}|^{s},$$

where the infimum is taken over all δ -covers of B, and set

$$H^{s}(B) = \lim_{\delta \to 0} H^{s}_{\delta}(B),$$

then $H^{s}(B)$ is called the s-dimension Hausdorff measure of B.

It is easy to see³ that (i) if 0 < s < t and $H^s(B) = 0$, then $H^t(B) = 0$;

- (ii) Hausdorff measure is an outer measure, each Souslin set (including Borel set) is Hausdorff measurable.
 - (iii) $H^n(B)$ is the *n* dimension Lebesgue outer measure of B when $n \ge 1$ is an integer.

Definition 3^3 — Set $\dim_H B$: = inf $\{s: H^s(B) = 0\}$ = sup $\{s: H^s(B) = \infty\}$ and call it the Hausdorff dimension of B.

Then we have $H^{s}(B) = \infty$ when $s < \dim_{H} B$ and $H^{s}(B) = 0$ when $s > \dim_{H} B$.

Definition 4^3 — Suppose E is a subset of \mathbb{R}^N . A mapping $f: E \to \mathbb{R}^N$ is said to be bi-Lipschitz mapping if there exist constants η and ρ with $0 < \eta \le \rho < \infty$ such that

$$\eta \mid x - y \mid \le \mid f(x) - f(y) \mid \le \rho \mid x - y \mid, \ \forall x, y \in E$$
 ... (2)

Lemma 1^3 — For a bi-Lipschitz mapping f we have

$$\eta^{s} H^{s}(E) \leq H^{s}(f(E)) \leq \rho^{s} H^{s}(E),$$

which means f(E) and E have the same Hausdorff dimension. In particular, for a similar mapping $f: C \to C: f(x) = rx, r \ge 0$, we have $H^s(f(E)) = r^s H^s(E)$, $0 < s < \infty$.

It is not difficult to verify that there exists a bi-Lipschitz mapping f from the segment $[0, 2\pi]$ to the unit circle $S = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$, therefore definition 1 is equivalent to the following Definition 1'.

Definition 1' — A subset A of the complex plane C is called an open set of the P-sun topology or P-sun open set, if every point x in A satisfies the following condition: there is a Borel set $F = F_x$ having 1 dimension Hausdorff measure zero (i.e. $H^1(F) = 0$) such that for each $\xi \in S_x \setminus F$, there exists a real number $t_{\xi} > 0$ satisfying

$$\left\{ z = x + t \; \xi \in \mathbf{C} : 0 \le t < t_{\xi} \right\} \subseteq A. \tag{1a}$$

where

$$S_x := \{ y \in \mathbb{C} : |y - x| = 1 \}.$$

Lemma 2 — For any s: 0 < s < 1, we can construct a generalized Cantor E which is a subset of segment I: = [0, 1] or a segment arc J such that

- (i) $dim_H E = s$ and $0 < H^s(E) < \infty$;
- (ii) E is a complete set with card $(E) = \mathcal{N}$ (the cardinal of continuum).

PROOF: By Lemma 1 we need only consider the case that I:[0, 1]. Fix an s:0 < s < 1 and put $a = \left(\frac{1}{2}\right)^{1/s}$. Then 0 < a < 1/2, $2a^s = 1$. Let $S_1(x) = ax$, $S_2(x) = 1 - a(1-x)$, then both S_1 and S_2 are the contraction mapping on I, and so there exists a compact invariant set E by Theorem 9.1 of S_1 such that

$$E = S_1(E) \cup S_2(E).$$

E is a self-similar generalized Cantor set and can be constructed as the classical Cantor set: At first one divides I into 3 intervals: I_1 , I_2 and I_3 , and let left interval I_1 and right interval I_3 both has a length a, and the mid interval I_2 with the length (1 - 2a). Put $E_1 := I_1 \cup I_2$; and let I_1 and I_2 take the place of I respectively and the same procedure produces a set E_2 which is the union of 4 intervals, each of them is a subset of I_1 or I_2 and has a length a^2 ; by repeating the procedure we get E_n which is the union of 2^n intervals (each of them has a length a^n and the same

property), $n \in \mathbb{N}$. Then the set $E := \bigcap_{n=1}^{\infty} E_n$ is desired. Indeed, the Hausdorff dimension of E dim $_H$

E = s and $0 < H^s(E) < \infty$ by Theorem 9.3 of [3], and one can verify E is a complete set by using the same method as that for the classical Cantor set.

2. Definition of the α -Sun Topology and some Lemmas for the α -Capacity

Definition 5 — Suppose μ is a Radon measure on C, $0 < \alpha < 2$, the integral

$$U_{\alpha}^{\mu}(y) = \int \frac{d\mu(x)}{|x-y|^{2-\alpha}}, \quad y \in C$$

is called the α -potential of measure μ and

$$I_{\alpha}(\mu) = \int U_{\alpha}^{\mu}(y) d\mu(y) = K_{\alpha} \int \frac{d\mu(x) d\mu(y)}{|x-y|^{2-\alpha}}$$

is said to be the α -energy of measure μ . For a compact subset F of C, set

$$W_{\alpha}(F) := \inf \{ I_{\alpha}(\mu) : \text{supp } (\mu) \subset F \text{ and total mass of } \mu \text{ is } 1 \}.$$

And $C_{\alpha}(F) := (W_{\alpha}(F))^{-1}$ is called the α -capacity of F if $W_{\alpha}(F) < \infty$, and F is called a set with α -capacity zero and denoted with $C_{\alpha}(F) = 0$ if $W_{\alpha}(F) = \infty$. The α -capacity of an open set G is defined as $C_{\alpha}(G) = \sup \{\dot{C}_{\alpha}(F) : F \text{ is a subset of } G\}$; The α -outer capacity of a general set E is $C_{\alpha}^{*}(E) = \inf \{C_{\alpha}(G) : G \text{ is open and } G \supset E\}$; A set E is said to be capacitable if

$$C_{\alpha}^{*}(E) = \sup \{C_{\alpha}(F) : F \text{ is a compact subset of } E\}.$$

For a capacitable set E, The α -capacity of E is defined to be its α -outer capacity, i.e. $C_{\alpha}(E) := C_{\alpha}^{*}(E)$.

It is known² that any analytic set, including Borel set is capacitable.

By means of the set α -capacity zero we introduce the concept the α -sun topology:

Definition 6 — Suppose $1 < \alpha < 2$. A subset G of the plane C is called an open set of the α -sun topology or α -sun open set, if every point x in G satisfies the following condition: there is a Borel set $F = F_x$ with α -capacity zero (i.e. $C_{\alpha}(F) = 0$) such that for each $\xi \in S_x \setminus F$, there exists a real number $t_{\xi} > 0$ satisfying

$$\left\{ z = x + t \, \xi \in \mathbf{C} : 0 \le t < t_{\xi} \right\} \subseteq G. \tag{1b}$$

where

$$S_x := \{ y \in \mathbb{C} : |y - x| = 1 \}.$$

It is easy to verify that the all α -sun open sets construct a topology in C, and we call it the α -sun topology.

Definition 7^5 — The coarsest topology on C in which all the α -potentials are continuous is called the α -fine topology $(0 < \alpha < 2)$.

Lemma 3^2 — A subset G of the place \mathbb{C} is an α -fine open set, i.e. the open set of the α -fine topology when and only when $E := \mathbb{C} \setminus G$ is α -thin at every point in G, i.e. for any $x_0 \in G$ and any $q \in (0, 1)$ we have

$$\sum_{k=1}^{\infty} \frac{C_{\alpha}^{*}(E_{k})}{q^{k(2-\alpha)}} < \infty,$$

where $C_{\alpha}^{*}(F)$ is the outer capacity of F, $E_{k} := E \cap \left\{z \in \mathbb{C} : q^{k} \le |z - x_{0}| < q^{k-1}\right\}, k \in \mathbb{N}$.

Lemma 4^5 — For any $z \in \mathbb{C}$, there is a neighborhood base **B** of the α -fine topology $(0 < \alpha < 2)$ such that each member in **B** is compact in the Euclidean topology.

Lemma $5^{5,6}$ — The α -capacity satisfies that

- (i) monotonicity;
- (ii) sub-additivity;
- (iii) invariance under translation and rotation;
- (iv) contraction principle: Suppose E is a subset of $C, f: E \to C$ is a contraction mapping: i.e. for any $x, y \in E$ we have: $|f(x) f(y)| \le k |x y|$, where $0 < k \le 1$ is a constant, then $C_{\alpha}(f(E)) \le C_{\alpha}(E)$.
 - (v) If $0 < \alpha' < \alpha < 2$ and $C_{\alpha}(E) = 0$, then $C_{\alpha'}(E) = 0$.

Lemma 6 — Suppose $1 < \alpha < 2$, E is a subset of $C, f: E \rightarrow C$ is bi-Lipschitz mapping, i.e. (2) is valid, then

$$\eta^{2-\alpha} C_{\alpha}(E) \le C_{\alpha}(f(E)) \le \rho^{2-\alpha} C_{\alpha}(E) \qquad \dots (4)$$

PROOF: By the definition of the α -capacity, we need only verify (4) is valid for any compact set E. At first, we verify that for the similar mapping $g: \mathbb{C} \to \mathbb{C}: g(x) = \rho x$, $\rho \ge 0$, we have

$$C_{\alpha}(g(E)) = \rho^{2-\alpha} C_{\alpha}(E). \tag{5}$$

Set x' = g(x), E' = g(E), then for any unit positive measure μ on E there is a unit positive measure μ' on E' such that $\mu'(F') = \mu(g^{-1}(F'))$, $\forall F' \subseteq E'$; conversely, for any unit positive measure μ' on E', by setting $\mu(F) := \mu'(g(F))$, $\forall F \subseteq E$, we get a unit positive measure μ on E. Thus there is a correspondence between the set of unit positive measures μ on E and the set of unit positive measures μ' on E', hence

$$\begin{split} I_{\alpha}(\mu') &= \int\limits_{E' \times E'} |x - y|^{\alpha - 2} \, d\, \mu'(x') \, d\, \mu'(y') = \int\limits_{E \times E} |g(x) - g(y)|^{\alpha - 2} \, d\, \mu(x) \, d\, \mu(y) \\ &= \rho^{\alpha - 2} \int\limits_{E \times E} |x - y|^{\alpha - 2} \, d\, \mu(x) \, d\, \mu(y) \\ &= \rho^{\alpha - 2} \, I_{\alpha}(\mu), \end{split}$$

which implies

$$W_{\alpha}(E') = \rho^{\alpha - 2} W_{\alpha}(E), C_{\alpha}(E') = \rho^{2 - \alpha} C_{\alpha}(E).$$

Now suppose $f: E \to \mathbb{C}$ is a bi-Lipschitz mapping such (2) is valid. Since f is one-to-one, it follows from (2),

$$|f(x) - f(y)| \le |g(x) - g(y)|, \ \forall x, y \in E$$

hence $|f \circ g^{-1}(x') - f \circ g^{-1}(y')| \le |x' - y'|, \ \forall x', y' \in E'$

which means that the composed mappings $f \circ g^{-1}$ is a contraction mapping from E' to f(E), by Lemma 5 we have

$$C_{\alpha}(f(E)) \leq C_{\alpha}(E') = \rho^{2-\alpha} C_{\alpha}(E).$$

Replacing f by f^{-1} , we can obtain the left inequality in (4) and the proof is complete.

Lemma 7^3 — Suppose E is a Souslin set, $1 < \alpha < 2$.

- (i) If $C_{\alpha}(E) = 0$, then $H^{s}(E) = 0$ for any $s > 2 \alpha$, in particular, $H^{1}(E) = 0$.
- (ii) If $H^s(E) < \infty$ for some $s \in (0, 1)$, then $C_{2-s}(E) = 0$.

Lemma 8^{12} — Suppose $1 < \alpha < 2$, E is a line segment or segmental arc with length l, then there exists a constant k > 0 depending only on α such that $C_{\alpha}(E) \ge k l^{2-\alpha}$.

3. Main Results on the α -Sun Topology

Theorem 1 — Suppose $1 < \alpha < 2$, then the α -sun topology is strictly finer than the α -fine topology. PROOF: At first, we verify that the α -sun topology is finer than α -fine topology.

Let G be an α -fine open set, $x \in G$. Without loss of the generality, we may suppose x is the origin, i.e. x = 0 since the α -capacity is invariant under translation and rotation by Lemma 5.

By Lemma 4, there exists an α -fine neighborhood K which is compact in Euclidean topology such that $K \subset G$. By Definition 6, we have to prove that there exists a Borel set F satisfying $F \subseteq S := \{z \in \mathbb{C} : |z| = 1\}$, and $C_{\alpha}(F) = 0$, and that for any $\xi \in S \setminus F$ there is $t_{\xi} > 0$ such that

$$\left\{ z = t \, \xi \in \mathbb{C} : 0 \le t < t_{\xi} \right\} \subseteq K. \tag{1c}$$

To do this, put
$$E_n := T_n \setminus K = T_n \cap (\mathbb{C} \setminus K)$$
, where $T_n := \left\{ z \in \mathbb{C} : \frac{1}{2^n} \le |z| < \frac{1}{2^{n-1}} \right\}$;

$$L_n := \left\{ z \in \mathbb{C} : |z| = \frac{1}{2^n} \right\}; \ B_n := \left\{ z \in L_n : \text{ there is some } r > 0 \text{ such that } rz \in E_n \right\}, \text{ for all } n \in \mathbb{N}.$$

Then E_n and B_n are Borel sets, and B_n is the imagine of E_n under the radial projection which is a contraction mapping. By Lemma 5 we have

$$C_{\alpha}(B_n) \le C_{\alpha}(E_n), \quad n \in \mathbb{N}.$$
 ... (6)

On the other hand, we have by Lemma 3

$$\sum_{n=1}^{\infty} \frac{C_{\alpha}(E_n)}{2^{-n(2-\alpha)}} < \infty. \tag{7}$$

Now the similar mapping $g: \mathbb{C} \to \mathbb{C}: g(x) = 2^n x$, maps $B_n \subset L_n$ into the unit circle S, it follows from Lemma 6

$$C_{\alpha}(g(B_n)) = 2^{n(2-\alpha)} C_{\alpha}(B_n).$$
 ... (8)

And (6), (7) and (8) imply

$$\sum_{k=1}^{\infty} C_{\alpha}(g(B_n)) < \infty. \tag{9}$$

By the definitions of E_n , B_n and $g(B_n)$, it is easy to see that

$$\left(\left\{e^{i\theta}\mid e^{i\theta}\in S\setminus g\left(B_{n}\right),\,r>0\right\}\bigcap T_{n}\right)\subset K,$$
... (10)

Put
$$A_m := \bigcup_{n=m}^{\infty} g(B_n), \quad F := \bigcap_{m=1}^{\infty} A_m$$
,

Then $\{A_m\}$ is a decreasing sequence of Borel sets and F is a Borel set, and by (9) and Lemma 5 (i-ii) we obtain

$$C_{\alpha}(F) \le \lim_{m \to \infty} C_{\alpha}(A_m) \le \lim_{m \to \infty} \sum_{n=m}^{\infty} C_{\alpha}(g(B_n)) = 0.$$

which implies $C_{\alpha}(F) = 0$. Obviously, for any $\xi \in S \setminus F$, there exists $m = m_{\xi} \in \mathbb{N}$ such that $\xi \notin A_m$,

i.e. $\xi \notin g(B_n)$ for all $n \ge m$ which implies $\{z = t \zeta \in \mathbb{C} : t \ge 0\} \cap T_n = k$ for all $n \ge m$ since (10) is valid, hence we have

$$z = t \ \xi \in \mathbb{C} : t \ge 0$$
 $\cap \left\{ z \in Q : |z| < \frac{1}{2^{m+1}} \right\} \subseteq K.$

Therefore, if we take $t_{\xi} := \frac{1}{2^{m-1}}$, $m = m_{\xi}$, then (1c) is valid.

Secondly, we have an example to show there exists an α -sun open set which is not an α -fine open set. In fact, put

$$D := \{ z = t e^{i \theta} : 0 \le t < 1 \} \setminus E$$
, where $E := \{ z = t; 0 < t < 1 \}$.

Then it is easy to verify that D is an α -sun open set. Set

$$E_n := \left\{ z = t \in E, \frac{1}{2^n} \le t < \frac{1}{2^{n-1}} \right\},\,$$

then the segment E_n has a length 2^{-n} , by Lemma 8, there is a constant k > 0 depending on only α such that $C_{\alpha}(E_n) \ge k (2^{-n})^{2-\alpha}$. hence we have

$$\sum_{n=1}^{\infty} \frac{C_{\alpha}(E_n)}{2^{-n(2-\alpha)}} \ge k \sum_{n=1}^{\infty} \frac{(2^{-n})^{2-\alpha}}{2^{-n(2-\alpha)}} = \infty.$$

which means by Lemma 3 that D is not an α -fine open set. Thus the proof is complete.

Theorem 2 — If $1 < \alpha < \alpha < 2$, then the α -sun topology is strictly finer than the α -sun topology.

PROOF: Since $1 < \alpha' < \alpha < 2$, $C_{\alpha}(F) = 0$ implies $C_{\alpha'}(F) = 0$ by Lemma $5(\nu)$, hence an α -sun open set is an α' -fine open set by Definition 6, i.e. the α' -sun topology is finer than the α -sun topology.

On the other hand, for any fixed real number $s: 2 < -\alpha < s < 1 - \alpha'$, there exists a compact set F such that $F \subset S := \{z \in \mathbb{C} : |z| = 1\}$, $\dim_H F = s$ and $0 < H^s(F) < \infty$ by Lemma 2; then $H^{2-\alpha'}(F) = 0$, but $H^{2-\alpha}(F) = \infty$, which imply $C_{\alpha'}(F) = 0$ and $C_{\alpha}(F) > 0$ by Lemma 7. Put

$$G := \{z = t e^{i\beta} \in \mathbb{C} : t \ge 0, e^{i\beta} \in S \setminus F \},$$

Then G is an α -sun open set, but not an α -sun open set. Therefore the α -sun topology is strictly finer than the α -sun topology.

Theorem 3 — The P-sun topology strictly finer than the α -sun topology (1 < α < 2).

PROOF: Suppose $F \subset S$, F is a Borel set and $C_{\alpha}(F) = 0$, then $H^{1}(F) = 0$ by Lemma 7. Hence an α -sun open set is an P-sun open set by Definition 6 and Definition 1', i.e. the P-sun topology is finer than the α -sun topology.

On the other hand, for any fixed real number $s: 2-\alpha < s < 1$, there exists a compact set F such that $F \subset S\left(S:=\left\{e^{i\theta}: 0 \le \theta \le 2\pi\right\}\right)$, $\dim_H F=s$ and $0 < H^s(F) < \infty$ by Lemma 2; then $H^1(F)=0$ and $C_{\alpha}(F)>0$ by Lemma 7. Now we can verify that the set

$$G := \left\{ z = t e^{i\beta} \in \mathbb{C} : t \ge 0, e^{i\beta} \in S \setminus F \right\},\,$$

is a P-sun open set, but not an α -sun open set. Therefore the P-sun topology is strictly finer than the α -sun topology.

From the above 3 Theorems and some well-known facts we obtain

Corollary — The P-sun topology \supset the α -sun topology \supset the α -sun topology \supset the α -fine topology \supset the 2-fine topology \supset the Euclidean topology for $0 < \alpha < \alpha < 2$, where " \supset " means strictly inclusion.

4. L-SUN TOPOLOGY

Definition 8 — Suppose μ is a Radon measure on C, the integration

$$U_2^{\mu}(y) := \int \log \frac{d\mu}{|x-y|}, y \in \mathbb{C}$$

is called the logarithmic potential of μ and

$$I_2(\mu) := \int U_2^{\mu}(y) d\mu(y) = \int \int \log \frac{1}{|x-y|} d\mu(x) d\mu(y),$$
 ... (10)

is said to be the energy of μ . For a compact subset F of C, set

$$W_{\alpha}(F)$$
: = inf $\{I_2(\mu) : \text{Supp } (\mu) \subset F \text{ and total mass of } \mu \text{ is } 1\}.$

And $C_{\alpha}(F) = (W_2(F))^{-1}$ is called the Wiener capacity of F if $W_2(F) < \infty$, and F is called a set with Wiener capacity zero if $W_{\alpha}(F) = \infty$. Furthermore, $C_l(F) = \exp(-W_2(F))^{-1}$ is called the logarithmic capacity of E. The logarithmic capacity of an open set G is defined as $C_l(G) = \sup\{C_l(F): F \text{ is a subset of } G\}$; The logarithmic outer capacity of a general set E is $C_l^*(E) = \inf\{C_l(G): G \text{ is open and } G \supset E\}$; A set E is said to be capacitiable if

$$C_I(E) = \sup \{C_I(F) : F \text{ is a compact subset of } E\}.$$

By replacing the α -capacity with the logarithmic capacity we get

Definition 9 — A subset G of the plane C is called an open set of L-sun topology or L-sun open set, if every point x in G satisfies the following condition: there is a Borel set $F = F_x$ having logarithmic capacity zero such that for each $\xi \in S_x \setminus F$, there exists a real number $t_{\xi} > 0$ satisfying

$$\left\{ z = x + t \, \xi \in \mathbb{C} : 0 \le t < t_{\xi} \right\} \subseteq G. \tag{1d}$$

Definition 10⁵ — The coarsest topology on C in which all logarithmic potentials are continuous is called 2-fine topology. The open set of 2-fine topology is called 2-fine open set.

Lemma 9^2 — A subset E of \mathbb{C} is a 2-fine open set when and only when $E := \mathbb{C} \setminus G$ is thin at each point $x_0 \in G$, i.e. for any $q \in (0, 1)$ we have

$$\sum_{k=1}^{\infty} \frac{-k}{\log C_l^*(E_k)} < \infty,$$

where $C_{I}^{*}(F)$ is the outer logarithmic capacity of F,

$$E_k := E \bigcap \left\{ \, z \in \, \mathbf{C} : q^k \leq |\, z - x_0\,| < q^{k-1} \, \right\}, \ k \in \, \mathbf{N}.$$

Lemma 10^6 — For any $z \in \mathbb{C}$, there is a neighborhood base **B** of the 2-fine topology such that each member in **B** is compact in the Euclidean topology.

Lemma 11⁶ — Suppose E is a Borel subset of C and $C_l(E) = 0$, then $C_{\alpha}(E) = 0$.

Theorem 4 — L-sun topology is strictly coarser than the α -sun topology $(1 < \alpha < 2)$.

PROOF: Suppose F is a Borel subset of S and $C_l(F) = 0$, then $C_{\alpha}(F) = 0$ by Lemma 11. Hence by Definition 6 and 9, any L-sun open set is an α -sun open set, which means the α -sun topology is finer than the L-sun topology.

For any $1 < \alpha < 2$, there is an α' such that $0 < \alpha < \alpha' < 2$. By Lemma 2, one can construct a Borel subset F of S such that

$$C_{\alpha}(F) = 0$$
 and $C_{\alpha'}(F) > 0$.

Then we have $C_l(F) > 0$ by Lemma 11. Then one can construct an α -sun open set which is not an L-sun open set as we do in the proof of Theorem 2. Therefore the L-sun topology is strictly coarser than the α -sun topology.

Lemma 12 — Suppose E is a Borel subset of C, a mapping $f: E \to C$ is bi-Lipschitz, i.e. (2) is valid then

$$\eta \; C_l(E) \leq C_l(f(E)) \leq \rho \; C_l(E)$$

especially for a similar mapping $g: C \to C: g(x) = \rho x$, $\rho \ge 0$, we have

$$C_{l}(g(E)) = \rho C_{l}(E).$$

The proof is similar to Lemma 6 and omitted.

By Lemmas 9 and 12 we can prove the following theorem similarly to Theorem 1.

Theorem 5 — The L-sun topology is strictly finer than the 2-fine topology.

5. SOME PROPERTIES OF THE α -SUN TOPOLOGY AND L-SUN TOPOLOGY Definition 11^6 — A topology T on C is said to satisfy the essential radius condition if for any x on C and any neighbourhood U of x, there exists an essential radius $r(x, U_x) > 0$ such that $|x-y| \le \min \{r(x, U_x), r(y, U_y)\} \Rightarrow U_x \cap U_y \ne \emptyset$,

for every neighbourhood U_x , U_y of x and y in C, where |x-y| is the Euclidean distance between x and y.

Theorem 6 — The α -sun topology and L-sun topology both have the following properties:

- (1) Satisfy the essential radius conditon;
- (2) Have the Euclidean G_{δ} insertion property: i.e. for any α -(or L-) sun open set G and α -(or L-) sun closed set F with $G \subseteq F$, there exists a set D of type Euclidian G_{δ} such that $G \subseteq D \subseteq F$;
 - (3) Both the α -sun topology and L-sun topology are not separable;
 - (4) Both the α -sun topology and L-sun topology are locally connected.

The proof is similar to that in [9] and omitted. We can also conclude the following results.

Theorem 7 — The α -sun topology is not normal, where $\alpha \in (1,2)$.

PROOF: By Lemma 2, Lemma 7, Theorem 6 and Theorem 2.2 of [10, p 347], a method similar to [9] leads to the conclusion.

REFERENCES

- 1. H. Aikawa and M. Essen, Potential theory-selected topics, Springer, Berlin, 1996
- 2. J. Bliedtner and W. Hanser, Potential theory an approach of analysis and probability, Springer, Berlin, 1986.
- 3. K. Faliconer, Fractal Geometry-mathematical foundations and applications, Wiley and Sons, New York, 1990.
- 4. G. Horbaczewska, Real Anal. Exchange, 20(2) (1994/95), 416-17.
- 5. N. S. Landkof, Foundations of modern potential theory, Springer, Berlin, 1970.
- 6. Li. Yong, Journal of Xiamen University, 25(4) (1986), 400-7.
- 7. J. Lukes, J. Maly, J. Zajicek, Fine Topology methods in real analysis and potential theory, Berlin: Springer, 1986.
- 8. Manfred Denken and Hiroshi Sato. Potential Analysis, 14 (2001), 211-32
- 9. P. Pyrih, Glusnik Mathematics, 34(54) (1999), 91-96.
- 10. P. Pyrih, Real Anal. Exchange, 21(1) (1995/96), 345-48.
- 11. Wu Jiongqi, Introduction to modern potential theory. Xiamen University Publishing House, Xiamen, 1998.
- 12. Wu Jiongqi, Journal of Zhangzhou Teachers College, 4(3) (2001), 1-5.