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The sun topology. one of the fine topologies, was proved by Pyrih in 1999 to be strictly finer than 2-fine
topology from the logarithmic potential theory in the plane. In this paper two new fine topologies in the plane
named the a-sun topology with o€ (1,2) and the L-sun topology respectively are introduced, and it is proved
that (1) the a-sun topology is strictly finer than the o-fine topology from Riesz potential theory; (2) the o-sun
topology is strictly finer than the o’-sun topology for any a, a’e (1,2) satisfying that @< /. (3) the L-sun
topology 1s strictly finer than the 2-fine topology and strictly coarser than the o-sun topology. And so the

following strictly conclusion relation formulas are valid :

(/) The sun topology D the a-sun topology D the a’-sun topology o the «’-fine topology O the 2-fine
topology o the Euclidean topology, and

(i1) The o-sun topology O the L-sun topology O the 2-fine topology.

Some separation properties of the o-sun topology and the L-sun topology are also studied.
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1. INTRODUCTION

It is known that there is a close connection between Riwsz capacities and Hausdorff measures which
promotes the develog:»ments of not only the potential theory but also the fractal geometry in the
recent 30 years]’ 3,811

In this paper we investigate fine topologies by means of capacities and Hausdorff measures.

TS knowns' 10. 11

that the 2-fine topology in RY (N=2) (ie. the fine topology from the logarithmic
potential theory when N = 2 und the Newton potential theory when N 2 3) is strictly finer than the
Euclidean topology, and the a-fine topology from Riesz potential theory (0< a<2)) strictly finer
than the 2-fine topology; for O0< o/ < <2, we have the o’-fine topology strictly finer than the

o-fine topology.

In 1999, Pyrih9 proved the sun topology is strictly finer than the 2-fine topology. The sun
topology is introduced by G. Horbaczewska® and from now on we call it P-sun topology for the

convenience of the comparison with the other topologies.

Definition 1 — A subset A of the complex plane C is called an open set of the P-sun

topology or P-sun open set, if every point x in A satisfies the following condition: there is a Borel
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set F=F, c[0,2 n] with linear Lebesgue measure zero such that for each Be [0,2 n]\ F there exist

a real number 75>0 satifying

{ze C:z=x+t(cosﬁ+isinﬂ),Itl<tﬁ}gA. . (1)

In other words, if A contains x, then A contains a segment on almost every line through x.

Remark : Definition 1 is essentially the definition of "sun topology" in’, but here we omit
the restriction that A is Lebesgue measurable, and add the hypothesis that F is Borel set in order
to compare with the other fine topologies.

After having proved in'? the P-sun topology is strictly finer than the a-fine topologies, we
are faced with the problem: is there another topology which is coarser than the P-sun topology and
finer than the o-fine topologies or the 2-fine topology?

By introducing the a-sun topology in section 2 and the L-sun topology in section 4, we
solve this problem, furthermore and obtain the comparison relations for different topologies concerned
below :

(1) The o-sun topologies are strictly finer than the a-fine topology (1 <@ <2) and strictly
coarser than the P-sun topology;

(2) for 1 < < @<?2, the a’-sun topology is strictly finer than the o ’-sun topology;

(3) the L-sun topology is strictly finer than the 2-fine topology and strictly coarser than the
a-sun topology.

i.e. we have the following strict conclusion relations:

The P-sun topology O the a’-sun topology O the a-sun topology O the o-fine topology
O the 2-fine topology;

The P-sun topology O the a-sun topology O the L-sun topology o the 2-fine topology.

In section 5 some properties such as separation and separable properties for -the o-sun
topology and the P-sun topology are also discussed.

At first, let us recall some basic notions and conclusions about Hausdorff measure and
dimension.

Definition 2 — Suppose B is a subset of R" and {Uj} is a sequence of subsets of

-]

R”lUj& is the diameter of U;. If for §>0 we have \U U;2B and | U;I<é for all je N:= {1, 2,
.=l
...}, then {Uj} is said to be a &cover of B. For a real number s > 0, set

HsB)= inf Y 1UF,
j=1

where the infimum is taken over all 8-covers of B, and set

H®(B)= lim H3(B),
6

-0

then H?(B) is called the s-dimension Hausdorff measure of B.
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It is easy to see” that () if 0 <5 <tand H (B)=0, then H' (B)=0;

(if) Hausdorff measure is an outer measure, each Souslin set (including Borel set) is Hausdorff
measurable.

(iiiy H" (B) is the n dimension Lebesgue outer measure of B when n2>1 is an integer.
Definition 3 — Set dimy B

=inf {s:H*(B)=0} = sup {s:H®(B)=o0} and call it the
Hausdorff dimension of B.

Then we have H® (B)=oc when s < dimy B and H’(B)=0 when s > dimy B.

Definition 43— Suppose E is a subset of RN A mapping f: E — RY is said to be bi-Lipschitz
mapping if there exist constants 1 and p with 0 < n< p<eo such that

nlx-—ylSIf(x)-—f(y)ISplx—yI, Vx,ye E

.. (2)
Lemma 1> — For a bi-Lipschitz mapping f we have
n*H(Ey<H’ (f(E)<p’ H’ (E),

which means f(E) and E have the same Hausdorff dimension. In particular, for a similar mapping
f:CoC:f(x)=rx,r20, we have H’ (f(E))=r' H® (E), 0 <5< .

It is not difficult to verify that there exists a bi-Lipschitz mapping f from the segment

[0, 27] to the unit circle S = | ¢%.0<0<2 n}, therefore definition 1 is equivalent to the following
Definition 1.

Definition 1’ — A subset A of the complex plane C is called an open set of the P-sun
topology or P-sun open set, if every point x in A satisfies the following condition

: there is a Borel
set F=F, having 1 dimension Hausdorff measure zero (ie. H' (F)=0) such that for each

Ee S, \F, there exists a real number 1£>0 satisfying

where

{z=x+t§e C:OSt<t§}gA. .. (la)
SX

:={ye C:ly—xl=11
Lemma 2 — For any s:0<s<1, we can construct a generalized Cantor E which is a subset
of segment / : = [0, 1] or a segment arc J such that

(i) dimy E=s and 0<H® (E)<os;

(i) E is a complete set with card (E) = N (the cardinal of continuum).

PROOF : By Lemma 1 we need only consider the case that I : [0, 1]. Fix an s:0<s<]1

1/s
and put a = [%) . Then 0 < a < 1/2, 2a°=1. Let Sy (x)=ax, S, (x)=1-a (1 —x), then both §,

and S, are the contraction mapping on /, and so there exists a compact invariant set E by Theorem
9.1 of® such that
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E=S,(E)US, B).

E is a self-similar generalized Cantor set and can be constructed as the classical Cantor
et : At first one divides / into 3 intervals: I,/ and I3, and let left interval /; and right interval
13 both has a length a, and the mid interval I, with the length (1 - 2a). Put E;:=1;\/,; and

let /; and I, take the place of I respectively and the same procedure produces a set E, which is
the union of 4 intervals, each of them is a subset of /; or /, and has a length a4 by repeating the

procedure we get E, which is the union of 2" intervals (each of them has a length " and the same

property), n € N. Then the set E:= (™ E, is desired. Indeed, the Hausdorff dimension of E dimy

n=1
E=5 and 0< H® (E) <o by Theorem 9.3 of [3], and one can verify E is a complete set by using

the same method as that for the classical Cantor set.

2. DEFINITION OF THE a-SUN TOPOLOGY AND SOME LEMMAS FOR THE
a—CAPACITY

Definition 5 — Suppose L is a Radon measure on C,0< a<2, the integral

U#(\)—J‘ ——i&)—, yeC
-yl

is called the a-potential of measure u and

L= oydum =k, J—ﬂ_’—‘L"M

|2a

is said to be the a -energy of measure u. For a compact subset F of C, set

W, (F):= inf {I,(u) : supp (4) cF and total mass of y is 1}.

And Cy (F) =Wy (1"))"1 is called the a-capacity of F if W, (F) <o, and F is called a set
with a-capacity zero and denoted with C, (F)=0 if W, (F)=c. The a-capacity of an open set G

is defined as C, (G) = sup {C;a (F): F is a subset of G}; The a-outer capacity of a general set E

is (‘:‘, (E) = inf {C,(G):G is open and GDE}; A set E is said to be capacitable if

C(E) = sup {C,(F):F is a compact subset of E}.
For a capacitable set E, The a-capacity of E is defined to be its a-outer capacity, i.e
Cy (E) = C ().

It is known? that any analytic set, including Borel set is capacitable.
By means of the set o-capacity zero we introduce the concept the o-sun topology:
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Definition 6 — Suppose 1 <a<2. A subset G of the plane C is called an open set of the
o -sun topology or a-sun open set, if every point x in G satisfies the following condition : there

is a Borel set F=F, with o-capacity zero (i.e. C,(F)=0) such that for each £e S, \ F, there exists

a real number 7£>0 satisfying

{z=x+t§e C:OSt<t€}gG. ... (1b)

where S, :={yeC:ily-xI=1}
It is easy to verify that the all o~sun open sets construct a topology in C, and we call it
the a-sun topology.

Definition 7° — The coarsest topology on C in which all the o-potentials are continuous is
called the o-fine topology (0 < a<?2).

Lemma 3* — A subset G of the place C is an o-fine open set, i.e. the open set of the
o-fine topology when and only when E:=C\G is o-thin at every point in G, i.e. for any xge G

and any g e (0, 1) we have

oo

C,, (E)

S ot e
k(2-a) ’
k=19

where C’;(F) is the outer capacity of F, EkzzEm{ze C:qkslz—xol<qk‘] },ke N.
Lemma 4° — For any ze C, there is a neighborhood base B of the o-fine topology
(0 < < 2) such that each member in B is compact in the Euclidean topology.

Lemma 5> — The o-capacity satisfies that
(i) monotonicity;
(i) sub-additivity;
(iii) invariance under translation and rotation;

(iv) contraction principle : Suppose E is a subset of C,f: E— C is a contraction mapping:

ie. for any x,ye E we have: [filx)-fy)I<kix—-yl, where 0<k<1 is a constant, then
CARE)) S CHE). '
(v) If 0<a/<a<2 and C,(E) = O, then C (E) = 0.

Lemma 6 — Suppose 1 < & < 2, E is a subset of C,f: E— C is bi-Lipschitz mapping, i.e.
(2) is valid, then

M Cu(BISC(F(E) <P~ % Co(B) @

PROOF : By the definition of the o-capacity, we need only verify (4) is valid for any compact
set E. At first, we verify that for the similar mapping g: C—>C:g(x)=px, p20, we have

Coa @ (B)=p""%Cy(B). . (5)
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Set x’ =g (x), E’=g (E), then for any unit positive measure x4 on E there is a unit positive

measure 4 on E’ such that y' (F ')=/,l(g"1 (F"), YF’cE’, conversely, for any unit positive

measure 4’ on E’, by setting u (F):=u (g (F)), VFCE, we get a unit positive measure [ on E.
Thus there is a correspondence between the set of unit positive measures i on E and the set of

unit positive measures 4’ on E’, hence

= | 1xy2dp@ydp )= | 180-gMI* tdp@dpe)
E'XE’ ExXE

=p% 2 [ x—y® lduwdu o
ExXE

p* 21, (),

which implies
, a-2 ’ 2 -
W, (E)=p W, (E),C (E)=p C,(E).

Now supbosé f:E—C is a bi-Lipschitz mapping such (2) is valid. Since f is one-to-one,
it follows from (2),

IfW-fO)ISlg®-gO)l VxyeE
hence |f°g_](x')—ng_](y')ISIx'——y’l, vx,yeE’
1

which means that the composed mappings f°g = is a contraction mapping from E’ to AE), by

Lemma 5 we have
Co AN S Co(E)=p*~ % Cyy (B).
Replacing f by f~ ' we can obtain the left inequality in (4) and the proof is complete.
Lemma ;73 — Suppose E is a Souslin set, 1 <ax<2.

() If C,(E)=0, then H° (E)=0 for any s>2 - @, in particular, H! (E)=0.
o

@ If Hs (E) < oo for some se€ (0,1), then C, _ (E)=0.

Lemma 8'% — Suppose 1< <2, E is a line segment or segmental arc with length [/, then

there exists a constant k¥ > O depending only on a such that C, (E)Zklz_a.

3. MAIN RESULTS ON THE o-SUN TOPOLOGY

Theorem 1 — Suppose 1< <2, then the o-sun topology is strictly finer than the a-fine topology.
PROOF : At first, we verify that the o-sun topology is finer than o-fine topology.

Let G be an a-fine open set, x € G. Without loss of the generality, we may suppose x is
the origin, i.e. x = 0 since the a-capacity is invariant under translation and rotation by Lemma 5.
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By Lemma 4, there exists an « -fine neighborhood K which is compact in Euclidean topology

such  that K G. By Definition 6, we have to prove that there exists a Borel set F satisfying

F_c;S':={ze C:lzl=1} and Cy(F)=0, and that for any £ € S\ F there is 1£>0 such that

{z=t£e C:Os:<t§};K. (o

To do this, put E,:=T,\K=T, "\ (C\K), where T,,:={zeC:inS|z|< ”1_]};
2 2

anz{ze C:Izl=~];}; B,:= {ze L, : there is some r > O such that rze E,}, for all ne N.

2

Then E, and B, are Borel sets, and B, is the imagine of E, under the radial projection
which is a contraction mapping. By Lemma 5 we have

CyB)SC,L(E), neN. ... (6)
On the other hand, we have by Lemma 3

oo

Cy(E,)
2 e (D

n=1

Now the similar mapping g:C — C:g(x)=2"x, maps B cL, into the unit circle S, it
follows from Lemma 6

C,(gB)=2"?"?C,(B,). . (®)

And (6), (7) and (8) imply

Y C,(gB,) <. BC)
k=1

By the definitions of E , B, and g(B,), it is easy to see that

({e"9|e“’e S\g(Bn),r>O}an)cK, . (10)
PuuAd, = gB) F:=NMN A,,
n=m m=1

Then {A,} is a decreasing sequence of Borel sets and F is a Borel set, and by (9) and
Lemma S (i-ii) we obtain

Cu(M< lim Cy(A,)S lim Y, C,(g(B,))=0.

m— oo moe o

which implies C, (F)=0. Obviously, for any e S\F, there exists m=mg€ N such that e A
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ie. £ g(B,) for all n2m which implies {z=1 {e C:t20} M1 _ A tor all n2m since (10) is

valid, hence we have

‘ 1
::téeC:rZO(\{ze Q:Iz|<2m+1}gK.

Therefore. if we take tg::__l._,
2

T m=me then (1¢) ic vahd.

Secondly, we have an example to show there exists an o-sun open set which is not an
« -fine open set. In fact, put
D=1z=1%:0<t<1\E, where E:='z=1.0<1<1".

Then it is easy to verify that D is an o~sun open set. Set

1 i
- R L
3/1 2/1—]J

™
1!
— A
1
I
~
m
ry

then the segment £, has a length 2° " by Lemma 8, there is a constant k > 0 depending on only

o such that C,, (E,1)2k(2'”)2*a. hence we have

oo

Z C,(E) - 2 (2‘11)2—05“00
2—11(2—0()_ 2-—11(2—0()_

n=1 n=1

which means by Lemma 3 that D is not an o~fine open set. Thus the proof is complcte.

Theorem 2 — [f 1<0o/ <0o<2, then the o/-sun topology is strictly finer than the Q-sun
ropology.

PROOF : Since 1 <o/ <a<2, Cy(F)=0 implies Cy (F)=0 by Lemma 5(v), hence an o-sun
open set is an o/-fine open set by Definition 6, i.e. the ¢/-sun topology is finer than the o-sun
topology.

On the other hand, for any fixed real number 5s:2<—-a<s<1- ¢, there exists a compact
set F such that FcS:={ze C:lzl=1}, dimy F = s and O<H’(F)<oo by Lemma 2: ticn

Hz‘d(ﬂzo, but H>~ % (F) = e, which imply Cy (F)=0 and C, (F)>0 by Lemma 7. Put

G=1:=16Pc C:r20ePe s\F|,
Then G is an o/-sun open set, but not an o-sun open set. Therefore the o/-sun topology is
strictly finer than the a@-sun topology.
Theorem 3 — The P-sun topology strictly finer than the o-sun topology (1 < a<?2).
PROOF : Suppose Fc S, F is a Borel set and C,(F)=0, then H (F)y=0 by Lemma 7.

Hence an o-sun open set is an P-sun open set by Definition 6 and Definition 1. i.e. the P-sun

topelogy is finer than the o-sun topology.
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On the other hand, for any fixed real number s:2 - a<s< 1, there exists a compact set F
such that FCS(S:z‘i eiG:OSGSZE}), dimy F = s and O<H’(F)<e by Lemma 2: then
H' (F)=0 and C,(F)>0 by Lemma 7. Now we can verify that the set

J

G=lz=t1ePecC:120,¢Pc S\F}7

is a P-sun open set, but not an a-sun open set. Therefore the P-sun topology is strictly finer than
the o-sun topology.

From the above 3 Theorems and some well-known facts we obtain

Corollary — The P-sun topology O the o/-sun topology O the o-sun topology o the o-fine

topology O the 2-fine topology o the Euclidean topology for 0 < ¢ < o< 2, where "D" means strictly

inclusion.
4. L-SUN TOPOLOGY
Definition 8 — Suppose u is a Radon measure on C, the integration
py—— d M
Ug(y) = _[ log -—y—lx—yl' ve C

1s called the logarithmic potential of  and

1
fx—yl

Lw:=f yorduo)= [ ] tog dp () d ), . (10)

is said to be the energy of u. For a compact subset F of C, set

W, (F): = inf {/, (u) :Supp () CF and total mass of u is 1}.

And C, (F)=(W, (F))_] is called the Wiener capacity of F if W, (F)<eo, and F is called
’-

a set with Wiener capacity zero if W, (F)= . Furthermore, C;(F)=exp (- W, (F)) l) is called the

logarithmic capacity of E. The logarithmic capacity of an open set G is defined as C;(G) = sup
{C;(F):F is a subset of G}; The logarithmic oufer capacity of a general set E is C7 (E) = inf
{C,(G):G is open and GDE}; A set E is said to be capacitiable if

C,(E) = sup {C,(F): F is a compact subset of E}.

By replacing the a-capacity with the logarithmic capacity we get
Definition 9 — A subset G of the plane C is called an open set of L-sun topology or L-sun
open set, if every point x in G satisfies the following condition : there is a Borel set F=F_ having

logarithmic capacity zero such that for each e S, \F. there exists a real number tg>0 satisfying

{z=x+1&e C:05r<z§}gG. .. (1d)
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Definition 10° — The coarsest topology on C in which all logarithmic potentials are
continuous is called 2-fine topology. The open set of 2-fine topology is called 2-fine open set.
Lemma 9° — A subset E of C is a 2-fine open set when and only when E:=C\G is thin

at each point xge G, i.e. for any ge (0, 1) we have

oo

Y =k .

k=1 108 C; (Ep)
where C; (F) is the outer logarithmic capacity of F,

Ek:=Em{ze C:qkﬁlz——xol<qk‘l}, ke N.

Lemma 10% — For any z € C, there is a neighborhood base B of 'the 2-fine topology such

that each member in B is compact in the Euclidean topology.

Lemma 11° — Suppose E is a Borel subset of C and C,(E)=0, then C, (E)=0.

Theorem 4 — L-sun topology is strictly coarser than the o-sun topology (1< a<?2).

PROOF : Suppose F is a Borel subset of S and C;(F)=0, then C,(F)=0 by Lemma 11.

Hence by Definition 6 and 9, any L-sun open set is an o-sun open set, which means the o-sun

topology is finer than the L-sun topology.

For any 1< a<2, there is an o such that 0< a< & <2. By Lemma 2, one can construct
a Borel subset F of S such that

C, (=0 and Cy (F)>0.

Then we have C;(F)>0 by Lemma 11. Then one can construct an o-sun open set which

is not an L-sun open set as we do in the proof of Theorem 2. Therefore the L-sun topology is

strictly coarser than the a-sun topology.

Lemma 12 — Suppose E is a Borel subset of C, a mapping f: E — C is bi-Lipschitz, i.e.
(2) 1s valid then

nC(EYSC,(f(E)<pC/(E)
especially for a similar mapping'g :CoC:gx)=px, p20, we have
C, (g (E))=p C/(E).

The proof is similar to Lemma 6 and omitted.
~ By Lemmas 9 and 12 we can prove the following theorem similarly to Theorem 1.

Theorem 5 — The L-sun topology is strictly finer than the 2-fine topology.
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5. SOME PROPERTIES OF THE a-SUN TOPOLOGY AND L-SUN TOPOLOGY

Definition 11® — A topology 7 on C is said to satisfy the essential radius condition if for any x

on C and any neighbourhood U of x, there exists an essential radius r(x, U,)>0 such that
lx=yl< min {r(x, U), r(y, Uy)} =>U.NMN Uy:&@,

for every neighbourhood U, Uy of x and y in C, where ix—y!l is the Euclidean distance
between x and y.

Theorem 6 — The o-sun topology and L-sun topology both have the following properties:
(1) Satisfy the essential radius conditon;

(2) Have the Euclidean Gginsertion property: i.e. for any o-(or L-) sun open set G and
o-(or L-) sun closed set F with G F, there exists a set D of type Euclidian Gg such that

GcDcF,

(3) Both the o-sun topology and L-sun topology are not separable;

(4) Both the a-sun topology and L-sun topology are locally connected.

The proof is similar to that in [9] and omitted. We can also conclude the following results.
Theorem 7 — The o-sun topology is not normal, where a e (1,2).

: PROOF : By Lemma 2, Lemma 7, Theorem 6 and Theorem 2.2 of {10, p 347], a method
similar to [9] leads to the conclusion.
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