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In this paper we shall consider an odd order delay differential equation with positive and negative coefficients.
New sufficient conditions which guarantee the osciallation of all solutions are presented. Our results extend and
improve some known results in the literature. Next, these results are applied to establish the oscillation criteria
for hyperbolic delay differential equations with positive and negative coefficients corresponding three sets of
boundary conditions.
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1. INTRODUCTION

In recent years oscillation theory of delay differential equations has received considerable atention.
This is largely due to the fact that delay differential equations find various interesting applications
in the real world problem, see e.g. [15].

In this paper we shall consider the following higher-order delay differential equation with

variable coefficients

where

and

(1) + P(Ox(t = 0) ~ Q(Ox(t - ) = O, 121, neN. w (1D
PO € C(lt, ), R"), 627206/n>0 and n > 1 is odd, . (12)
P()2Q(t+ t-0) for t21;+ 0~ 1, and not identically zero for large ¢, .. (1.3)
1—- (s( )2)‘ f Q(u)du ds 2 0, for all sufficiently large t. . (1.4)
n
-0+1T
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By a solution of eq. (1.1) we mean a function x € C[[#; - O, o), R], for some t; ¢, such
that x(r) is n times continuously differentiable on [fj, =) and such that eq. (1.1) is satisfied for
t>1,. Let g€ C[[t,_ 0,11}, R] be a given initial funciton, and let y,k=0, 1, .., n — 1 be given
initial constants. By using the method of steps one can see that eq. (1.1) has a unique solution

x € C[[t; ~ 0, ), R] such that
x(t) = ¢r) for te [1, -0, 1] .. (1.5)

and

-
[%x(t}} =y, for k=01, .., n-1 .. (1.6)

Definition 1 — We say that (1.1) is oscillatory if every solution of eq. (1.1) is oscillatory,
e., for each initial point #; 2, the unique solution of (1.1) and (1.5) has arbitrarily large zeros.

Otherwise, it is called nonoscillatory.

We also consider the hyperbolic delay differential equation

g ux.0 ;Ex D = 4ty Au - Pulx, 1 - 0) + Q(tyutx, 1 - 0 - (B)
r

where (x,1) € 2x[1y,<)=G, and £ is a bounded set in R" with a piecewise smooth boundary

g
- u(x, 1)
d£2. and Au(x, 1) = 2 ——'—-—2-—— together with two kinds of boundary conditions
ox

=1 ]

du(x, t

ML Z 0, on (no)e a2y ) .. (B1)

ux, 1) = 0, on  (x, )€ I2X [z, ), ... {B2)
and

Au(x,

“;‘V D 4y =0, on (x,1) € 32 [t =), . (B3)

where N is the unit exterior normal vector to 92, fx, 1) is a nonnegative continuous function on
I x 1. ). The related results can refer to 5, 19].

Definition 2 — A function u(x, f) € C2(G) N c! (G) is said to be a solution of the problem
(E), (B)) [(By), (By)] if it satisfies (E) in the domain G and satisfies the boundary condition (B;)
[(By), (B3)].
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Definition 3 — The solution u(x,f) of the problem (E), (Bl), [B2), (B3)] is said to be

oscillatory in the domain G=0QX[f), ) if for any positive number [ there exists a point

(xy, 1) € X[}, o) such that the equality u(x, ;) = O holds.

Definition 4 — A function U(f) is called eventually positive (negative) if there exists a

number f; 21, such that U(r) > 0(<0) holds for all #; 2¢,.

For the oscillation of (1.1) when n = 1 the work of Qian and Ladas?! %rovides some finite
sufficient conditions for the oscillation of all solutions, and Elabbasy and Saker'® have extended the
results in’' to the delay differential equations with several positive and negative coefficients.
However, for the same case Agarwal and Saker3, Elabbasy et al’? present some new infinite sufficient
conditions, which extend and improve the results in?. Recently, in the same case, Lakrib° by the
same procedure used in’ and obtained the same condition for oscillation of delay differential equations
with positive and negative coefficients. Except for some speical case of g.]) vyhen n > 1, to the
best of our knowledge, the only oscillation results for (1.1) is due to Li . He has proved that if

(1.2)-(1.3) hold, then every solution of (1.1) oscillates if the inequality

)+ [PG) - 0+ 17— 0)) 21— 6) <0 (L)

has no eventually positive solution. The oscillation of various other functional differential equations
has been investigated by several authors. For some of these contibutions we refer to the monographs
{1, 2, 11, 12, 17] and for other oscillation of equations with positive and negative coefficients we
refer to the paper [6, 7, 8, 9, 10, 19, 23].

The plain of the paper is as follows: In Section 2, we shall present oscillation criteria for
eq. (1.1). The obtained results improve and extend those established in Li [18]. These results will
be used in Section 3, 4 and 5 to establish the oscillation of (E)-(B1), (E)-(B2) and (E)-(B3)
respectively.

In what follows, a functional inequality will be assumed to hold for all sufficiently large
values of 1.

2. MAIN RESULTS
To prove our main results we shall need the following lemmas :

Lemma 2.1'% — If w(r) is a function such that it and its all derivatives up to (n — 1)

inclusive are absolutely continuous and of constant sign in the interval [fj, o) satisfy w(r)#0 for

PN
121y and w(t)w( ) <0. Then there exists an even integer k,0<k<n-1, such that for r21¢,

w(?) w'(i)(t)>0, for i=0,1,...k,
[ D lww >0, for i=k+1, .,

and

(t—tl)n—l

(n-1)...(n—k)

Iw(t)lZl WD n-k-1y
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Lemma 2.2° — Suppose that fe C(")[[T, o), R T20, such that f ® (t) (i < n) is of one sign
in [T, o) and £ (s)<0 for t>T. Then a > O implies that

11

T !f(""l)(t), 12T+ 20

flt ay=

Lemma 32" _ Assume that (1.2)-(1.4) hold. Let x(#) be an eventually positive solution of
eq. (1.1) and set

e n—2 S
an=xtn- | %—)—,— [ o®x0-vdods 121y+0-1, @
t s—(0 1)
then
<o, V>0, ., 2(1)<0, z2(1)>0. . (2.2)

and z(r) satisfy the equation (1.7).
Theorem 2.1 — Assume that (1.2) - (1.4) hold. Then every solution of eq. (1.1) oscillates
if the delay differential equation

V() + R(t) y(t - 0) =0, . (23)

where

-1
(t-1, o .

R(t)=[P(t) - Q(t + 0 - 0)] (n-1)!

has no eventually positive solution.

PROOF : Assume for the sake of contradiction that the equation (1.1) has an eventually
positive solution x(¢). By Lemma 2.3 it follows that the function z(r) satisfies (2.2) and the inequality
(1.7) holds for r>1,. By Lemma 2.1 for z (t— o) for we have

(t—t,~ o) !
2(1—0)2——(—"2—:)*!“*2("—])(1—0‘).

Thus (1.7) leads to

(t-1,-0)" !

_n) _ _
TN+ [P (-0 +1-0)] 1)

Do <o.
Let w0 =z"' (1) then y(r) > 0 and satisfies the inequality
Vi + Ry(r-0))£0.

But, then by Corollary 3.2.2 in [12] the delay differential equation (2.3) has an eventually
positive solution al_so. This contradiction ensure that every solution of (1.1) is oscillator ]
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Theorem 2.3 — Assume that (1.2)-(1.4) hold. Then, either

t
lim inf j R(s)ds>l .. (2.5)
tsee o €

or

14
lim sup J‘ R(s)ds>1 ... (2.6)
I=e -0

implies that every solution of eq. (1.1) oscillates.

PROOF : It is well known that (2.5) or (2.6) implies that (2.3) has no eventually positive
solution (see, for example, Theorem 2.3.3 and 3.4.3 in []2]). This contradiction completes the proof

||
Theorem 2.4 — Assume 1that (1.2)-(1.4) hold. Then, either
t
o 1
lim inf [ R, (sds>— 7
(4
e -0,
or
t .
lim inf | R (s)ds>1 . (28)
I ee t-0

1
implies that every solution of eq. (1.1) oscillates.

PROOF : It is well known that (2.7) or (2.8) implies that (2.4) has no eventually positive
solution (see, for example, Theorem 2.3.3 and 3.4.3 in [12]). This contradiction completes the proof

|
It is clear that there is a gap between the conditions (2.5), (2.6)[(2.7), (2.8)]. The problem

t— o0 1o .

t t
of filling this gap for the equation (2.3)[(2‘4)] when the limit lim J R(s) lim j Ry(s) | does
t— 0O 1—-C
not hold has been addressed by several authors, e.g., see[13, 15]. In view of these works and the
fact that every solution of (1.1) oscillates when (2.3)[(2.4)] has no eventually positive solution one

can state several finite sufficient conditions for oscillation of all solutions.

In the following theorems we infinite sufficient conditions for the oscillation of (1.1) which
shows that the condition (2.5) and (2.7) are not necessaries.

Theorem 2.5 — Assume that (1.2)-(1.4) hold,

!
0<d< lim J. R(s) ds .. (29)

[ —> o0 t—-0

and
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oo t+ 0
[ Rl [ Reyds+1 |di=eo . (2.10)

IO t

Then every solution of eq. (1.1) oscillates.

PROOF : Assume for the sake of contradiction, that the eq. (1.1) has an eventually positive
solution x(1). Then from Theorem 2.1, y(z) is positive solution of eq. (2.3). Let

M) ==y (@) /y() . (2.1
Clearly, then A(r) is non-negative and continuous, and there exists 121t such that
!
v(1;)>0 and y(r) = y(t;) exp| - J. A(s) ds |. Furthermore, A(r) satisfies the generalized characteristic
I]
equation,
t
An=Rmexp| | Ms)ds |. . (212)
-0

As, integration (2.3) from ¢ ¢t + o, we find

I+0

Wi+ o)~y + | Rs)ys-0)ds = 0,

1

and hence in view of y(r) being positive and decreasing, we find

1+ 0 t+0
¥ > j R(s) y(t — 0) ds > (1) J R(s) ds

t !
which implies that

I+

| Rsyas<1. . (2.13)

I
Now, using the inequality (cf. [11, p.32])

Inr+1

et >x+ for x, and r > 0 .. (2.14)

in the right side of the function

1 !
A1) = R(z) mA(r) J As)ds |, . (2.15)
-0

we obtain
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t
ADAD-R(®) | Ms)ds 2R In [A® + 11, . (2.16)

t—0

Then for N > T,

N N t N
| a0a@de- [ Rey | Msydsdr= | R@in A+ 11 dr. 217
T T -0 T

Interchanging the order of integration, we find

N 1 N-o t+0
[Roy| [ awds ar> | x| | Reyas |ar
T 1~0 T to

Hence, it follows that

N N-o t+0

[ a0awdi- | a0 | | Reds |ar

T T t
N N t

> [ Anawdi- | Ro) [ asds ar . (2.18)
T T t-o

From (2.17) and (2.18), it follows that

N N-o t+0 N
[ xvawd- | a0 f R@s)ds |dr > | R In [A@) + 1] . . (2.19)
T T t T

Combining (2.13) and (2.19), we find

N N
[ awdrz [ RoyWmiA@w + 11,
N-o T

or

N
=95 [ reyInfA@) + 1] dr.
YN - o

Thus, from (2.14), we obtain

im X=9_ o
oY) (2:20)
t+0

Now, since d< ! R(s)ds there exist a sequence {(#}, 44y >~ as k—e and
. !
€ (1, 1, + 0) for every k such that
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& n+a
J Ryas=2 ana | Res 25 . @21)
Ik k

Integrating both sides of (2.3) over the intervals [z, {k] and [Ck, 1, + 0], we have

&
W) -y + | Ry - o)ds=0. L (222)
[l\'
and
Ik + 0
Vo +0)-y&) + | Re»i-0)ds=0. . (223)
S

From (2.21), (2.22) and (2.23), it follows that
d < d <
—y(tk)+5y(§k~ 0)<0 and “}’(Ck) +5y(tkk) <0,

which implies that

W& - 0) < 2 2

)’(gk) “ld )
But, this contradicts (2.21). Hence, every solution of (1.1) oscillates. |
Similar to Theorems 2.5 one can use eq. (2.4) and proves the following theorem.
Theorem 2.6 — Assume that (1.2)-(1.4) hold,

t+0,
0<d< hm inf j R\ (s)ds
t

t— o0

and

t+0'l

J R | [ Rs)ds+1 |di=oo

[0 t

Then everv solution of eq. (1.1) oscillates.

3. OSCILLATION OF BOUNDARY VALUE PROBLEM (E), BD
The following results provide some sufficient conditions for the oscillation of (E), (B1).

Theorem 3.1 — Assume that (1.2)-(1.4) hold. Then every solution of (E), (Bl) oscillates if
every solution of eq. (2.3) or eq. (2.4) oscillates.
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PROOF : Assume for the sake of contradiction that (E), (B1) has a nonoscillatory solution.
Since the negative solution of (E), (B1) is also a solution, then without loss of generality we assume

that (F  (B1) has a solution u(x,?)>0, u(x,t—0) and u(x,t—17) in £2+[t}, =) for some 1, 21, Set

Ue = | uxndx, 121 - (3.1)
Q

then U(r) > O for r21,. Integrating (E) with respect to x over the domain €2, we get

£ '[ u(x, 1) dx |=a(t) j Au(x, t)dx

a’ | o Q

— | Poutx, t- odx— | 0z, 1 - vax. . (3.2)
Q 2 i

From Green’s formula and the boundary condition (B1), we have

| Autx, ndx = f a“(" Dgs=0, r21, . (33)
Q0
“are dS is the surface element on J2. Then (3.2) reduces to
]
i j u(x, t) dx =~—J p(x, Hu(x, t — o)dx — J q(x, Hu(x, t — 1)dx. .. (3.2)
a' | o Q Q

which in view of the definition of U(f), can be rewritten as

%U(r)+P(t)U(t—O')—Q(t)U(I‘— <0, 21 ... (3.5)
t
Set
j =l j Uu— du ds, 12 36
() = U@ — ) Q)U(u—-nduds, t12t,=1t,+0-T. ... (3.6)
§—0+71
Then O+ PO -0+ T-0 UC-0)<0, 121, BER)

The remainder of the proof is similar to the proof of Theorems 2.1 and 2.2 and will be
omitted.

Theorem 3.1 shows that the oscillation of (E). ‘Bl) is equivalent to oscillation of the delay
differential eq. (3.1) or (32.). Thus, we can use the rcsults of Section 2 to obtain some oscillation
criteria for the problem (E), (B1), we state two such results in the following theorems:

Theorem 3.2 — Assume that (1.2)-(1.4) and (3.1) hold. Then, either (2.4) or (2.5) implies
that every solution of (E), (Bl) oscillates.

Theorem 3.3 — Assume that all the assumption of Theorem 2.6 hold, and (3.1) holds. Then
every solution of (E), (Bl) oscillates.
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4. OSCILLATION OF BOUNDARY VALUE PROBLEM (E), (B2)

In the following theorems we provide some sufficient conditions for oscillation of all solutions of
(E) and (B2) and the following fact will be used. For the following Dirichlit problem in the domain
Q

Au+ou = 0 in (x,1) € 2x(t}, ] .. 4.1
u=290 on (x,1) € d2X[t;, ) .. (4.2)

in which @ is a constant. It is well known?? that the smallest eigenvalue @, of problem (4.1), (4.2)

is positive and the corresponding eigenfunction @ (x) is also positive’ on x € £2. With each solution
u(x, 1) of problem (1.3), (B2) we associate a function V(¢) defined by

vin= | uxn®ds 121,
Q

Theorem 4.1 — Assume that (1.2)-(1.4) and (3.1) hold. Then every solution of (E), (B2)
oscillates, if every solution of the delay differential equation

) (t—tz—O')"_l
O+ [P -Q,(t+ 71— 0)] —T_IT——z(t— o) = 0, . (4.3)
or
() ' _
7O+ [P0~ 0,(t+1-0)] -1 z(t-0ay) =0, . 4.4
where
i t t
P/ (n=P@exp| J a(s)ds and Q,(H=0()exp| q j a(s)ds
-0 -7
oscillates.

PROOF : Assume for the sake of contradiction that (E), (B2) has a nonoscillatory solution.
Since the negative solution of (1.3), (B2) is also a solution, then without loss of generality we

assume that (E), (B2) has a solution u(x,#)>0, u(x,t—0) and u(x,t— o) in £2x[t), ) for some

1) 2 9. Multiplying (E) by @(x) and integrate with respect to x over the domain 2, we have

d"
| Jun@ax |=a0) | A 0@ @dr- | Plux, 1- o) (x)dx
ar’ | o a o
- j O(Nu(x, t — 1) @ (x)dx. .. (4.5)
Q

Using Green’s formula and boundary condition (B2), we obtain
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f Au(x, 1) @ (x)dx = J (Cb(x) gl%— aglsx) }d5+ J’ u(x, 1y AD (x)dx
2N

Q

= -0y J u(x, @ (x)dx, 121,
Q

where dS is the surface element on JdQ2. From the definitions of V(r), we get
V@) + aga)V() + POV - 0) - QV(t - D SO, 121, .. (4.6)

Set

!
Vie)=v()exp | —oy Jl a(s)ds |,

fo

which is oscillation invariant transformation, reduces inequality (4.6) to

V@) + P (v - 0) - 0,V — D <0, 121, CH)
Set
() = (1) — j' (S ) j Q@u)V(s — Ddu ds, 1> 1.
§—0+7T
Then

M)+ [P - Q)1+ T- )] v(t—-0) <O, 121,

The remainder of the proof is similar to the proof the Theorem 2.1 and 2.2 and will be
omitted.

Theorem 3.2 follows that the oscillation of (E) and (B2) is equivalent to oscillation of the
delay differential eq. (4.3) or (4.4). So one can apply the results in section 2, and obtain some
succifient conditions for oscillation of all solution problem (E) and (B2). The details are left to the
reader. :

5. OSCILLATION OF BOUNDARY VALUE PROBLEM (E), (B3)

In the following theorem we establish some sufficient conditions for oscillation of all solutions of
(E) and (B3).

Theorem 5.1 — Assume that (1.2)-(1.4) and (3.1) hold. If every solution of (2.3) or (2.4)

oscillates, then every solution of (E) and (B3) oscillates.

PROOF : Assume for the sake of contradiction that (E), (B3) has a nooscillatory solution.
Since the negative solution of (E), (B3) is also a solution, then without loss of generality we assume

that (E), (B3) has a solution u(x,#)>0, u(x,t—0) and u(xt—17) in 2X [}, ) for some #; 21, Set
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U= J u(x, tydx, 121,
Q

then U(r) > O for r>1,. Integrating the (E) with respect to x over the domain {2, we have

LI [ uwnde |=at) [ sucx ndx
ar | o Q

| PO, - oydx— | Qutx, 1 - dx. (50
Q 2

From Green’s formula and boundary condition (B3), it follows that

| j Au(x, t)dx = — J —vudS<0, 121,
(o} a2

where dS is the surface element on JdQ. Then (5.1) reduces to

L[ s nde |== ] Poute, i~ oyds— | Qutx, 1- mid, - (52)
ar’ | g Q Q

by using the definiton of U(r), and substitute in (5.1), we have
U™ 1) + POUG - 0) - QUG - 1) <0, 121, .. (5.3)

The remainder of the proof is now similar to the proof of Theorem 3.1 and will be omitted.

Theorem 3.3 shows that the oscillation of problem (E) and (B3) is equivalent to oscillation
of the delay differential eq. (2.3) or (2.4). One can apply the results in Section 2 to obtain some

sufficient conditions for oscillation of all the problem (E) and (B3). The details are left to the reader.
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