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Let the classes S: (b) and K. (b) consist of functions which are starlike and convex of complex order b as

introduced by Nasr and Aouf” 8, The main object of the present paper is to investigate the starlike and convex
functions of complex order involving a certain linear operator defined by means of Hadamard product.
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1. INTRODUCTION

Let A denote the class of functions of the form

f@=2+ Y ai IR)
k=2

which are analytic in the unit disc U = {z:l1zI<1}. A function f (z) belonging to the class A is
said to be starlike of complex order b(be C \{0}) if and only if z~ ! f(@#0(ze U) and

1(z2f' () ) .
Re{1+b(f(z) —1]}>0, (ze U). .. (1.2)

We denote by S; (b) the subclass of A consisting of functions which are starlike of complex
order b. Further, let ST (b) denote the class of functions f(z) € A satisfying

@)

: o (1
e <Ibl (be C\(O}) (1.3)

We note that ST (b) is a subclass of Ss (b) (see3).
A function f{z) belonging to the class A is said to be convex of complex order b(be C\
{0}) if and only if f'(2)#0(ze U) and

12f” (@)

Req 1 +—=5—-3>0, e U). .. (1.4)
e‘{ b f @ } e O

We denote by K. (b) the subclass of A consisting of functions which are convex of complex

order b. Furthermore, let K, (b) denote the class of functions f(z) € A satisfying
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f

—"ﬁ(i’[dbt (be C \{0)). (1)
f @
We note that
fye K. ()= z2f’ (2) € i (b) .. (1.6)
and fR)e K b)) & zf ()€ S\ (k) o (1)

for be C \ {0}.
We also have K, (b) c K. (b).

A function fiz) belonging to the class A is said to be close-to-convex of complex order
b (b e C\{0}) if and only if there exists a function g (z) € K, (d) (d € C\{0}) satisfying the condition

Re{1+%(f,(z)—l]}>0, (z € U). . (1.8)

g )
We denote by C. (b) the subclass of A consisting of functions which are close-to-convex of

complex order b.

The classes S, (b) and K. (b) introduced and studied by Nasr and Aouf”” 8 and the classes

S| (b), K, (b) and C. (b) introduced by Choi’,
Remark 1 : Setting b=1-a{0<a<1), we observe that So(1-a)=S" (), K-(1-c)

= K(a) and Co (1 - )= C (&), where s (@), K (@) and C () denote the usual classes of starlike,
convex and close-to-convex of real order ¢, respectively,

For the functions fj(z) (=1, 2) defined by

[@=3 a7 .. (1.9)
k=0

let f * f, (z) denote the Hadamard product (or convolution) of f; (z) and f, (z) defined by

00

1
Hh@= Y a, a2 .. (1.10)
k=0 .

Now, we define the function ¢ (a, ¢, ; z) be defined by

o0

p@c;= Y,

k=0

(a)k e+ 1

Z , .. (1.11
©4 (ze U) (1.11)

for c#0,~1,-2, .., where (x), is the Pochhammer symbol defined by

_Nx+k) |1 (fk=0),
=R T x41).. x+k-1), (fke N=1,2,.).
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Corresponding to the function ¢ (a,c,;z), Carlson and Shafer? defined a linear operator
L(a,c) on A by

oo

@
L@Af@=9@adf@=| Y, SEF |er@ . (112)
k=0 'k

for f(z)€ A and c#0,-1,-2, ....
Remark 2 : If ¢>a>0,L (a,c)f(z) has integral representation

1

L@of@= | ' fudpw,
0

where u satisfies

ua—l (1 _u)c—-a—l

B(a,c—a)

du(u)= du

1
and J. du(u)=1, where B(a, c—a) is the familiar Beta function.
0

Remark 3 : For f(z)e A

L(n+1,1)fd (z)=-(l—z)n—;,—*f(z) =D"f(2),

the symbol D" f(z) was introduced by Ruscheweyhlo and is called the Ruscheweyh derivative of
fz) of nth order.

c+1

c
Zz

Lc+1,c+2)f@)= [ rod=1r0 L (113)
0

where ¢ + 1 > 0. The operator J, was introduced by Bernardi'. In particular, the operator J;, was
studied earlier by Libera, and Livingston®
2. MAIN RESULTS

In order to prove our main results, we shall require the following lemmas to be used in sequel.

Lemma 1 — (Miller and Mocanué) Let ¢ (u, V) be complex valued function,
9:D—>C,DcCxC (C is the complex plane).
and let u=u, +iu,, V=" +iv,. Suppose that the function ¢ (u, v) satisfies
(i) ¢ (u, v) is continuous in D;
(i) (1, 0) € D and Re {¢(1,0)} > O;

1+u

- Re | 9(iuy, vp) } <0.

(iii) for all iu,, v;) € D such that v; <—
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Let p(x)=1+p;z+p,y 22+ .. be regular in the unit disc U, such that (p (z), zp’ (z)) € D for
all ze U. If

Re{ ¢ (p(2), 20" (2)) 1>0(ze U), . (2.1

then Re {p(2)} > 0 (ze V).
Lemma 2 — (Ruscheweyh and Sheil-Small”) — Let {(z) and g(z) be analytic in U and
satisfy {(0)=g (0)=0, £ (0)=0 and g’ (0)#0. Suppose that for each o(lgl=1) and p(Ipl=1)

—-0Z

C(z)*[’—f—&c—’ﬁ]g(zwo (ze U\{0}).

then for each function F (z) analytic in the unit disc U and satisfying the inequality Re {F(z))
> 0 (ze U), we have

{*G(2)
Re({*g(z) >0 (ze V),

where G@)=F(2)g(2).

Lemma 3 (Ruscheweyh and Sheil-Small“) — Let {(z) be convex and g(z) be starlike in U.
Then for each function F (z) analytic in the unit disc U and satisfying the inequality Re {F(z))

> 0 (ze U), we have

Re[ Cr2 @) ]>O (ze U),

Applying the above lemmas we derive

Theorem 1 — Let f(z) € S (b) (be C \{0}) and let

0@, c, ;z)*[%%}r(z);w(ze U\ (O)). . (22)

for each 6(lol=1) and p(lpl=1), and for c#0,-1,-2, ... . Then we have
L(a,c)f(z)e S (b).

PROOF : It is sufficient to show that

1({z(L@af@)
Re{l-&-b( L@ /@) 1]}>0, . (2.3)

for ze U. Since

1_,,1 M—l =1+_1_ L(a’c)(zf’(z))_l
b{ L(ac)f(2) b{ L@of@

_ 9@ *[(b=-Df@+zf" (3)]
B p(a,c 2)*bf(2) . (2.4
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putting {(2)=¢@(a,¢,;2),8 (@) =bf(z) and F(z)=1 +%(-Z-L—(-Z—)— 1 ) in Lemma 2, we can see that

[
1{z(L(a,)f@)
Re{ 1+— -1 0,
e{ b[ L@ of @) g
which completes the proof of Theorem 1.

Corollary 1 — Let the function fz) defined by (1.1) be in the class S: (b) and let
D"[ll—t%}/(z);to (ze \O})

for each g(lol=1) and p (I pl=1). Then D" f(z) belongs to the class Si (b).

Corollary 2 — Let the function fiz) defined by (1.1) be in the class S (b). and let
Lc+ 1,c+2)(lli_i’o—"zz-}/(z)¢o (ze U \{0})

for each o(Iol=1) and p(Ipi=1). Then J_f(z) belongs to the class S (b).

Corollary 3 — Let ¢(a,c,;z) be convex and let f(z)e S’; (b) (Ibl<1). Then
L(a,c)f(z) € Ss (b).
PROOF : From the hypothesis, we obtain
f@e S cS =S (bl<1).

By applying Lemma 3 in view of Theorem 1, we have the desirous result immediately.
Theorem 2 — Let f(z) € K. (b) (be C\{0)}). and let

L(a,c,;z)[liﬂ—‘-’—z)zf'(z);eo (ze U\{0})

1-0z2
for each c(lol=1) and p(lpl=1), and for c#0,~1,~2... . Then we have
L(ac)f @) e K. (b).

PROOF : Applying (1.6) and Theorem 1, we observe that

fReKB)of (@)e S (B)=La )y @)e Syd)=

z2(L(a, c)f(2)) € Ss (b)=L(a,c)f(z) € K. (b)

which evidently proves Theorem 2.
Corollary 4 — Let the function f{z) defined by (1.1) be in the class K, (b) and let

Dﬂ(—‘ii_%;’z—z}f'(z)#o (ze U\OD
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for each o(lol=1) and p(Ipl=1). Then D" f(2) belongs to the class K. (b).
Corollary 5 — Let the function f (z) defined by (1.1) be in the class K. (b) and let

L(c+1,c+2)(lliﬂﬂ)zf'(z)¢0 (ze I\O))

-0z |
for each o(lol=1) and p(Ipl=1).. Then J_ f(z) belongs to the class K. (b).

Corollary 6 — Let ¢(a,c,;z) be convex and let f(z)e K; (b)(1bI<1). Then
L(a, o)f(z)e K, (b).

Theorem 3 —Let f(z) € Co (b) (be C\(0}) and h(z) e Ss (b) (be C\{0}), and let

0. c;2)* (11—+M Jh @) #0 (ze MO,

-0z
for each oc(lol=1) and p(pl=1), and for c#0,-1,-2, ... . Then we have
Lia,c)f(2)e Cs(b).

PROOF : By Theorem 1, if h(z) € S; (b), then L(a,c) h(z) e Ss (b). It is sufficient to show
that

1{@L(a,f@)
Re{1+b( L(a.0)h(2) 1)}>0.

for ze U. Since

Ll(zl@of@y |\, 1(L@aE @),
bl La,c)h(z) b La,c)h(2)

_9@c:*[(b-1D)h@)+2f (2)]
@(a,c,;2)* bh(2)

putting {(2)=@(a,c,;z),8(z)=bh(z) and F(z)=1 +;17-[-ZhLé)§l— 1 ] in Lemma 2, we can see that

1(z2(L(@f@)
e 1l 80L 1 )]0
which completes the proof of Theorem 3.
Corollary 7 — Let the function f (z) defined by (1.1) be in the class C. (b) and
h(z)e S, (b) and let
D"(lli_%]h(z);to (ze MO}
for each o(lol=1) and p(Ipl=1). Then J_ f(z) belongs to the class C. (b).

Theorem 4 — Let the function flz) defined by (1.1) be in the class Ss (b) (be C\{0}) and
let
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1
0<BS§ .. (2.5)

Then we have

B

b
Re{f(z)} >231+1 (ze U) . (2.6)

z
PROOF : If we put

1
ﬂ*23+1

B

and {L(fl}b>(l -Br@+B - 27

where B satisfies (2.5) then p(z) is regular in the unit disc U and p(z) = 1+ pPyz+p, Z* +.... from
(2.7) after taking the logarithmic differentiation we have that

Bizf'@ ,|__(1-P7p'( )
b{ f@ 1} 1-Pp@+ph - (28)

and from that we have

z2ff@ |_,._(1-fzp' @ ,
Hb{ f@ 1}_1”3[(1_ﬁ)p(z)+m . (2.9)

Since zf(z) € S. (b) then from (2.9) we get

(1-Bp @
Re{l+ B[(l—ﬁ)p(z)+ﬁ]}>0 (ze U). .. (2.10)

Let the function ¢ (u, v) defined by

(1-Bv
Bl(1-Bu+p]

o, v)=1+

(it is noted u = p(z) and v=zp’(z)). Then ¢ (u, v) is continuous in D.—:(C—l—__‘%Jx C. Also

2
(1+u,)
(1,0)e D and Re{¢(1,0)}=1>0. Furthermore, for all (iu,, v,)€ D such that v, <- S we

have

Re ! 6 =1+R A-hw__|_,,_PU-Pu
e{ @y v = 1R B [~ B pR e B

BU-B(+u) (1-H2B(1-H-Plu
- 2 2 = 2 2 <0
B[(1-puy+ 1 2B[(1-Puy+f
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because 0<fB<1 and B<-;—. Therefore, the function ¢ («, v) satisfies the conditions in Lemma 1

This proves that Re {p(z)} > 0, for ze U, that is, from (2.7),

B

Re{f—(zg}b>,6 (ze U)

which equivalent to the statement of Theorem 4.

Remark 4 : Taking b= (1 — a) cos Ae it and B= yY(1 — @) cos A in Theorem 4, we the result
obtained by Obradovic and Owa’.

Corollary 9 — Let the function f (z) defined by (1.1) be in the class K. (b) (be C \ {0}),

and let

0<B<

N =

Then we have

(ze U) 2.1

L
Relf' @b >

PROOF : Note that f(z) € K. (b) if and only if zf'(z)e€ Ss (b). Hence, replacing f(z) by
7’ (2) in Theorem 4, we have the assertion (2.11)
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