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Necessary and sufficient conditions have been established for an infinite matrix A=(f) of

continuous linear functionals on a Banach space X to transform the vector-valued sequence spaces
of Maddox [ (X, p), [ (X, p), o (X, p), and ¢ (X, p) into the scalar-valued sequence space c(g), where

p=(,) and g=(q;) are bounded sequences of positive real numbers.

Key Words : Matrix Transformations; Maddox Vector-Valued Sequence Spaces

1. INTRODUCTION

The study of matrix transformations of scalar-valued sequence spaces is known since the turn of the
century. In seventies, Maddoxlz, Gupta4 studied matrix transformations of continuous linear mappings

. . k
on vector-valued sequence spaces. Das and Choudhury1 gave conditions on the matrix A=(f,) of

continuous linear mappings from a normed linear space X into a normed linear space Y under which
A maps ¢, (X) into ¢, (), ! (X) into [ (), and [} (X) into lp (V). Liu and Wu?2 gave the matrix

characterizations from vector-valued sequence spaces Co X,p), 1 (X,p) and I (X. p) into scalar-valued
sequence spaces ¢, (g) and [ (q). Suantai®® gave the matrix characterizations from the Naukano
vector-valued sequence XX, p) into the vector-valued sequence spaces c; (Y, g),c (¥), and [ (Y). In

this paper, we continue the study of matrix transformations of continuous linear mappings on
vector-valued sequences spaces.

The main purpose of this paper is to give the matrix characterizations from
co X, p), L (X, p), 1, (X, p), and IX, p) into c(q), where ¢ (X, p), ¢ (x,p), I, (X, p), and I(X, p) are the

vector-valued sequence spaces of Maddox as defined in Section 2. When X = K, the scalar field of
X, the corresponding spaces are written as ¢, (p), ¢ (p), ., (p) and I(p), respectively. Several papers

deal with the problem of characterizing those matrices that nlléip a scalar-valued sequence space of
Maddox into another such spaces, see™ 1,13, 15, 17, 1819, 21 " gome of these results become
particular cases of our theorems. Also some more interesting rcsults are derived.

Section 2 deals with necessary preliminaries and some known results quoted as lemmas which
. e . k
are needed to characterize an infinite matrix A=(f,) such that A maps the vector-valued sequence

spaces of Maddox into ¢(g), and we also give some auxiliary results in Section 3. The main results
of the paper is in Section 4.
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2. PRELIMINARIES AND LEMMAS

Let (X,1l-ll) be a Banach space and p=(pkx) a bounded sequence of positive real numbers. Let N
be the set of all natural numbers, we write x=(xx) with x¢ in X for all ke N. Let W(X) and
@ (X) denote the space of all sequences and the space of all finite sequences in X, respectively.
When X = K, the scalar field of X, the corresponding spaces are written as w and ¢ respectively.
An X-valued sequence space is a linear subspace of W(X). The sequence spaces of Maddox are
defined as

co (X, p) ={x= (0 lim Iz Pr= 0},

k— o0

cX,p)= { x=(xp): lim llx,~alPx=0forsomeae X},

IN(X,P)={X=(xk): suplxkllpk<oo},
k

IX, p) = {x=0): Y, N Pr<ooy.
k=1

When X = K, the scalar field of X, the corresponding spaces are written as
co @), c(p), I, (p) and I(p) respectively. All of these spaces are known as the sequence spaces of

Maddox. These spaces were introduced and studied by Simons'® and Maddox® °. The space I(p)
was first defined by Nakano'* and it is known as the Nakano sequence space. Also, we need to
define the following sequence space :

My(X,p)=¢x=(x): Z Ikalln"l/pk<ooforsomeneN .
' k=1 :
When X = K, the scalar field of X, the corresponding space is written as M, (p). This space

* was first introduced by Maddox'®. Grosse-Erdmann® has investigated the structure of the spaces
co@),c@),l(p) and [_(p) and he also gave the matrix characterizations between scalar-valued

sequence spaces of Maddox in®>. Let E be an X-valued sequence space. For xe E and ke N we
write that x, stand for -the kth term of x and for x€ X and ke N, let ¢¥ (x) be the sequence

©,0,0, .., 0, x, 0, ..) with x in the kth position and let e(x) be the sequence (x, x, x,...), and we
denote by e the sequence (I, 1, 1 ..). An X-valued sequence space E is said to be normal if
(x) € E and (y) € W(X) with lly, I<Slix Il for all ke N implies that Oy € E. For a fixed scalar

sequence u = (u;) the sequence space E, is defined as
Eu={x=(xk)e WX): (uxp) € E}.
The a—,B~- and y- duals of a scalar-valued sequence space F are defined as
F§={ze w:(x Y € ngm:everyye F}

for {=a, B,y and Xq=11, Xg=cs, and Xy=bs, where /i, cs and bs are defined as
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h={x(pew: Y Ixl<e},
k=1

oo

Cg=yx=(xp)E W: Z X converges .,
k=1

n
bg=1 x=(x;) € w:sup, 2 X | <oo .
k=1

In the same manner, for an X-valued sequence space E, the a—, f— and Yy~ duals of E are
defined as

E€={ X (fix)e ngor every x = (x) € E}

for {=a, B, y where Xq=11,Xg=cs and Xy=bs.

It is obvious from the definition that E% gE‘B c E? and it is easy to see that if £ is normal,

then EazEp=Ey.

Let A=(f f,) with f',: in X’, the topological dual of X. Suppose that E is an X-valued

sequence space and F a scalar-valued sequence space. Then A is said to map E into F, written by

- -]

A:E—F if, for each x=(xp) € E,A, (x)= 2 f Z (%) converges for each ne€ N and the sequence
k=1

Ax=(A,(x)) € F. We denote by (E, F) the class of all infinite matrices mapping E into F. If

u=(u) and v =(vy) are scalar sequences, let

W B Py ={ A= (6D Wy 0D k€ E P

If u,#0 for all ke N, we put u! =(1/uy). Suppose the X-valued sequence -space E is

endowed with some linear topology T. Then E is called a K-space if, for each ke N the kth
coordinate mapping' P : E — X, defined by p; (x) =x;, is continuous on E. A K-space that is Frechet

(Banach) space is called an FK — (BK -) space. -

The spaces ¢ (p) and c(p) are FK-spaces. In co (X, p), we consider the function

g(x)= sup llx; IIP/M, where M = max {1, sup, p;}, as a paranorm on ¢y (X, p), and it is known
k

that ¢y (X, p) is an FK-space under the paranorm g defined as above. In l(X, p), we consider it as
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1/M

a paranormed sequence space with the paranorm given by Il (x) Il = Z I} x, 1Pk . It is known
k=1

that (X, p) is an FK-space under the paranorm defined as above.

Now let us quote some known results as the following.
Lemma 2.1'0 — If p=(py) is a bounded sequence of positive real numbers with p, > 1 for
all ke N, then

l(p)ﬂ= xXew: Z lxkltkMtk<wforsome MeN
k=1

where 1/pr+1/tx=1 for all ke N.

Lemma 2.2'6 — If p=(py) is a bounded sequence of positive real numbers with p, <1 for
all ke N, then [ ()P =1_ (p).

Lemma 2.3% — If p=(p,) is a bounded sequence of positive real numbers, then

oo

l«,(p)ﬂz XEW: 2 kalnl/pk<ooforallneN .
k=1

Lemma 2.4 — If p=(py) is a bounded sequence of positive real numbers,» then

co 0P =M, ().

Lemma 2.5% — Let p=(p,) be a bounded sequence of positive real numbers and A = (f ',:)
an infinite matrix. Then A : ¢y (X, p) — ¢, if and only if

(l)f: :v—)O as n — oo for each ke N and

©0

(2) lim sup, 3, Wf lm YPi=0.
m= e k=1
Lemma 2.6% — Let p=(p,) be a bounded sequence of positive real numbers and A = (f Z)
an infinite matrix. Then A :1_(X, p) = ¢, if and only if

*

w
(l)f: —0 as n—> o for each ke N and
- n ]/p .
(2) for each Me N, 3, If;IM'"Pi—>0 as k— e uniformly on ne N.
j>k
Lemma 2.7% — Let p=(p;) be a bounded sequence of positive real numbers with P> 1

and 1/p,+1/1,=1 for all ke N and let A=(f:) be an infinite matrix. Then A:[(X,p) > ¢, if
and only if
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»

) f: 290 as'n — oo for each ke N and

@ Y, IIf: Wem 'k > 0 as m — oo uniformly on ne N.
k=1

Lemma 2.8%% — Let p=(p,) be a bounded sequence of positive real numbers with p, <1
for all ke N and let A=(f:) be an infinite matrix. Then A : I (X, p) = ¢, if and only if

*

§)) f: 1)0 as n — oo for each ke N and

(2) sup Iif ) IPx<o.
n, k

3. SOME AUXILIARY RESULTS

Suppose that £ and F are sequence spaces and that we want to characterize the matrix space
(E, F). If E and/or F can be derived from simpler sequence spaces in some fashion, then, in many
cases, the problem reduces to the characterization of the corresponding simpler matrix spaces. We
begin with giving various useful results in this direction.

Proposition 3.1 — Let E and E, (ne N) be X-valued sequence spaces, and F and
F, (ne N) scalar-valued sequence spaces, and let u and v be scalar sequences with u, #0,v, #0
for all ke N. Then

o0 * oo

@ U EF|= N (E,F),

n=1 n=1
W E M F,|= M (EF)
n=1 n=1

(iii) (Ey+Ey, PY=(Ey, P) N (Ey, P),

V) (E, Fy) =y (E, F), .

PROOF : All of them are obtained directly from the deﬁn’;tions.
Proposition 3.2 — Let p=(p,) be a bounded sequences of positive real numbers. Then

@) cX,p)=co(X,p)+ {e (x): xe X}

oo

@) My(X.p)= U 100 oy

n=1

@) Lo (X, p)= U e X)(;1/x

n=1
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PROOF : Assertions (/) and (if) are immediately obtained from the définitions. To show (iii),

let xe (X, p), then there is some ne N with Il x, Wr<n for all ke N. Hence |l xk Nhn~YPe<1 for

all ke N, so that x € [, (X),~1/»,. On the other hand, if xe U [, (X),,~ 1/ then there are some
n=1

neN and M > 1 such that IkaI""l/p&SM for every ke N. Then we have

Il x, IPx < nMPx < n M® for all ke N, where a=sup, p,. Hence x e I_ (X, p). |
k k Pi o O

The next proposition give a relationship between the ﬂ— dual of vector-valued and
scalar-valued sequence spaces.

Proposition 3.3 — Let X be a Banach space and F a normal scalar-valued sequence space

and define F (X)={(xk)e WX)y:(lixlhe F } Then for (fk)CX',. the topological dual of X,
(f) e FXP if and only if (1f, e FP. ’

PROOF : If (lif ll) e Fﬂ then for x=(x;) € F(X) we have

If, (x,) 1 < If, Ml x, <o, so that xe F (X2
T % kG
k=1 k=1

Conversely, suppose that (f;) € F (X)ﬁ and a=(ay) € F. Since F is normal, (la;l) e F. For

. nf
each ke N, we can choose x,€ X such that llx,ll=1 and |f; (xk)|z—f7"—. Let y=(a;xy), then

yé F (X). Choose a sequence (f;) of scalars such that Itkl <1 and f; (t; a; Xy = fr (k) L ag | for all

ke N. Since F is normal (f;y;) € F(X), so we obtain that z Ji (4 yi) converges. This implies
k=1

Z If a1 <2 2 fi () 1 ag | < oo, Tt follows that (Il f Il e FP.
k=1 k=1

By using Proposition 3.3, the following results are obtained immediately from Lemmas 2.1-2.4
respectively.

Proposition 3.4 — If p=(p,) is a bounded sequence of positive real numbers with pk>1
for all ke N then

1XpP={(f)cx: Z I WM <o for some Me N

where 1/pi+ 1/t =1 for all ke N.
Proposition 3.5 — If p=(p;) is a bounded sequence of positive real numbers with ‘kaI
for all ke N, then ! (X, p)P=1_ (X", p).



MATRIX TRANSFORMATIONS OF SOME VECTOR-VALUED SEQUENCE SPACES 683

Proposition 3.6 — If p=(p,) is a bounded sequence of positive real numbers, then

oo

L pP={¢)cx": fllnP< oo forallne N
k k
k=1

Proposition 3.7 — If p=(p,) is a bounded sequence of ppsitive real numbers, then
c(X, pP=My (X', p).

4. MAIN RESULTS

We begin with the following useful result.
Theorem 4.1 — Let q=(q,) be a bounded sequence of positive real numbers and let E be

a normal X-valued sequence space which is an FK-space containing ®(X). Then
(E.c@)=(E,co(q) ® (E,(e)).

To prove this theorem, we need the following two lemmas.

Lemma 4.1 — Let E be an X-valued sequence space which is an FK-space containing
@ (X). Then for each ke N, the mapping T, : X — E, defined by T, x= & (x), is continuous.

PROOF : For each k€ N, we have that V = {ek (x) :x€ X} is a closed subspace of E, so it

is an FK-space. Since E is a K-space, the coordinate mapping p; : V— X is continuous and bijective.

. . -1 . .
It follows from the open mapping theorem that p, is open, hence p; :X — V is continuous. It

. . -1
follows that T} is continuous because Ty =p; . O

Lemma 4.2 — If E and F are scalar-valued sequence spaces such that E is normal containing
¢, F is an FK-space and there is a subsequence (n;) with xnk-—>0 as k—oo for all x=(x,) € F,
then (E,F®(e))=(E,F)® (E,(e)).

PROOF : See [3, Proposition 3.1 (vi)] O

PROOF OF THEOREM 4.1 : Since c(g)=cy(q) ®(e), it is clear that (E, cy(g)+(E, (e))
C(Ecy(@® (e)) = (E,c(q). Moreover, if Ae (E cy(q@) N(E (e)), then A€ (E cy(q)

M {e)), so that Ae (E,0), which implies that A = 0 because E contain @®(X). Hence
(E,cp(q))+(E,(e)) is a direct sum. Now, we will show that (E, c (g)) < (E, cy () ® (E, (e)). Let

A=(f) e (E.c(@)=(E co(q)®{e)). For xe X and ke N., we have (f: (x))

Cad
n=

| = Ak (x) € cq
n

(@) ®(e), so that there exist unique (b: (x)) . € ¢ (g) and (c;: (69) ):= | € (e) with

(f:(,;))e;:l:(b:(x))::]=(c:(x)):=]. - (41)
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For each n, ke N, let g: and hz be the functionals on X defined by
gr (x)=by, (x) and Ay (x)=cp (x) for all xe X.
Clearly, g, and h; are linear, and by (4.1)

fr=gr+h for all n,ke N. . (42)

Note that ¢c(q) D (e) is an FK-space in its direct sum topology. By Zeller’s theorem,

A:E—>cy(q) ®(e) is continuous. For each ke N, let T : X — E be defined by T (x) = ek (x). By

Lemma 4.1, we have that T is continuous for all k€ N,. Since the projection P; of cy(g) ®(e)
onto ¢y (g) and the projection P, if c¢j(g) GB (e) onto {e) are continuous and gz =ppoPioAcT,
and hZ:pn oPyo ATy for all n,ke N, we obtain that gZ and hz are continuous, so gz, hz € X’ for
all n,ke N. Let B=(gy) and C=(hy). By (4.1) and (42), we have A = B + C, B=(gpe

(@ (X), cq(g)) and C=(h:)e (D (X),(e)). We will show that Be (E,cy(q)) and Ce (E,{e)). To

do this, let x=(x;) € E. Then for a=(ag) e [, we have llogx =10 lllx l<IIMx|l, where
M = sup; | oy |. Then the normality of E implies that (g x;) € E. Hence (fz i, 1 € (s o (@) ©
(e)), moreover, we have (gg () k€ (P, co (@) (hy (g D€ (D(e)), and (f i = (x
Dk + (h: (X)n, k- Since [, is normal containing ¢ and cy(g) < cp, it follows from Lemma 4.2

that (g (%) n 2 € (o C0(@)) and (kg (%) 5 2 € (r (€)). This implies that Bxe cy(g) and
Cxe(e), so we have Be (E, cy(q)) and Ce (E,(e)), hence Ae (E cy(q) ® (E,{e)). This
completes the proof. ~ O

Theorem 4.2 — Let q=(q;) be a bounded sequence of posiive real numbers and A = (f Z)
an infinite matrix. Then A :1_(X) — c(q) if and only if there is a sequence (fp) with f € X' for all
ke N such that

(1) Y, Ufli<es,
k=1

(2) m'/ 9, (f:—fk)g 0 as n—ee for every k,me N and

(3) for each me N, Z ml/qnllf;—j;ll——)O as k — e uniformly on ne N.
j>k
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PROOF : Necessity. Let A € (I (X), c(q)). It follows from Theorem 4.1 that A = B + C,
where Be (I, (X),¢cy(g)) and Ce (I, (X),(e)). Then there is a sequence (f,) with f, € X’ for all

ke N such that C= (fk)n, ¢ and B= (f: - fk)n, L € (I, (X), cy(q)), which implies that (f;) € [ (X)ﬂ, SO

(1) is obtained by Proposition 3.6. Since ¢y (@)= M ¢ 4 (by [2, Theorem O (i)]), we have by
{(m

m=1
Proposition 3.1 (ii) and (iv) that for each me N, (m'/%n (f} —f), ) : 1. (X) = c,. Hence, (2) and

(3) are obtained by Lemma 2.6.

Sufficiency — Suppose that there is a sequence (f;) with fy e X’ for all ke N such that

conditions (1), (2) and (3) hold. Let B=(fZ = fion, x and C=—(fk),,‘ ¢ It is obvious that A = B +

C. By condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1 (i) and (iv) that

oo

Be (I, (X), cy(g)). By Proposition 3.6, condition (1) implies that z Jx () converges for all
k=1

x=(x) € I, (X), which implies that Ce (I, (X),(e)). Hence, we obtain by Theorem 4.1 that
A e (I, (X), c(g)). This completes the proof. O

Theorem 4.3 — Let p=(p;) and q=(qy) be bounded sequences of positive real numbers

and A =(f:) an infinite matrix. Then A : 1 (X, p) = c(q) if and only if there is a sequence (f}) with
fxe X for all ke N such that (1), (2) and (3) are satisfied, where

(1) for each me N, Y, lf i m"Pe<os,
k=1

*

(2) rl/qn(f:—fk)i) 0 as n — o for every k,re N and

(3) for each m,re N, 4, Z m\’P; IIf; —fj f—> 0 as k — o uniformly on ne N.
Jj>k
Moreover, (3) is equivalent to (3’), where

. . 9n
(3’) for each me N, lim supn( Z m'’? Hf;l ——f}- IIJ =0.

k= e j>k

PROOF : Necessity. Suppose that A : [ (X, p) = c(g). By Theorem 4.1, A = B + C, where
Be (I, (X,p).cy(q)) andCe (I, (X,p).(e)). Then there is a sequence (f;) with f,e X’ for all

ke N such that C=(f}), , and B= (f: —fi) € (U (X, p). 9 (). Since C=(fi) 1l (X. p) > (e), it
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implies by Proposition 3.6 that (1) holds. Since cy(q9)= N CO(,,,V‘Ik)’ we have by Proposition 3.1
m=1

(i1) that for each re N, (rl/q" f Z ~fiDn ki lo X, P) > co Hence, (2) and (3) holds by an application

of Lemma 2.6.

Sufficiency — Suppose that there is a sequence (f;) with fye X’ for all ke N such that

condition (1), (2) and (3) hold. Let B=(f: ~fdn, k and C=(fi), p It is obvious that A = B + C.
By condition (2) and (3), we obtain by Lemma 2.6 and Proposition 3.1 (ii) and (iv) that

o0

Be (I.. (X, p), ¢y (). By Proposition 3.6, condition (1) implies that 2 fi (x;) converges for all
k=1

x= (5 € L (X, p), which implies that C ¢ (L, (X,p),(e)). Hence, we obtain by Theorem 4.1 that
A€ (l,, (Xv p)’ c (q))

Now we shall show that (3) and (3’) are equivalent. Suppose (3) holds and let € > 0. Choose
re N such that 1/r<e. By (3), there exists ky€ N such that

A Y mPiif] - fili<1 for all k2ko and all ne N,
j>k
which implies that
. n
sup [ Y mPhifj £ | <1/r<e for k2ko,
noolj>k
hence, (3’) holds.

Conversely, assume that (3’) holds. Let m,re N and 0<e<1. Then there exists ky € N such
that )

. dn
sup (Z mPFr g | <ef/r for all k> ko
nooji>k

where H = supp gn. This implies that

A% Y mPinf] - fil<e® < for all k2ky and all ne N
Jj>k

hence, (3) holds. O

Theorem 44 — Let p=(p;) and q=(q;) be bounded sequences of positive real numbers

and A=(f 2) an infinite matrix. Then A : ¢y (X, p) = c (q) if and only if there is a sequence (f;) with
fi€ X for all ke N such that (1), (2) and (3) are satisfied, where
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M) Y, 1f M YPicos for Me N,
k=1

1 *

) ma(f:—fk)go as n— e for every m,ke N and

oa

(3) for each me N, sup, m/ 9 Z Ile—kaIr_l/Pk —0 as r— oo,
k=1 '

Moreover, (3) is equivalent to (3’) where

o0 qn
(3) lim sup, | Y, Wfp—fllr' 7P| =0,
k=1

r—> o0

PROOF : Necessity — Suppose that A : ¢ (X, p) = c (g9). By Theorem 4.1, we have A = B
+ C, where Be (cg(X,p),cy(q)) and Ce (co(X,p),(e)). It follows that there is a sequence

oo

(fiy €X' such that C=(f), , and B=(f;cl —fion, i Since co(g@)= N €0,k it follows from

r=1

Proposition 3.1 (ii) and (iv) that for each me N, (m' % f Z =JfiDn, k € (co (X, p), cp), hence, conditions
(2) and (3) hold by using the result from Lemma 2.5. Since C=(fy), € (co (X, p),{e)), we have

-]

that Z Ji (xp) converges for all x=(x;) € ¢y (X, p), so that (f;) € cg (X, p)ﬂ, hence, by Proposition
k=1

o0

3.7, we obtain that there exists M € N such that 3, Il fi I M~ "Pk<co Hence, (1) is obtained.
' k=1

Sufficiency — Assume that there is a sequence (f) € X" such that conditions (1), (2) and (3)

hold. Let B=(fz ~fion,k and C=(f}), - Then A = B + C. By conditions (2) and (3), we obtain
from Proposition 3.1 (ii) and (iv) and Lemma 2.5 that B € (cq (X, p), ¢y (9)).The condition (1) implies

oo

by Proposition 3.7 that 2 Ji (xp) converges for all x=(x;) € cg (X, p), so that C € (cy (X, p).(e)).
' k=1

Hence, by Theorem 4.1, we obtain that A € (cy (X, p), ¢ (9))-

Now, we shall show that conditions (3) and (3’) are equivalent. To do this, suppose that (3)
holds and let € >0. Choose me N, 1/m <¢&. From (3), there is ro € N such that

o0

sup m'/n N fp—fill 7 VPe< 1 for all r2rg,
n k=1
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q’l

-]

This implies that sup 2 il f: =il P | <1/m<e for all r2 ro- Hence, (3') holds.
n k=1

Conversely, suppose that (3’) holds. Let me N and O0<e< 1. Then there exists rye N such

dn

oo

that sup, L Z Ilf’,: -fill VP <efl/m for all r2ry, where H = sup, q,- Hence, we have
k=1

00

m/n Yy Wfs—fillr YPe<gf/On<e for all r2ry and ne N,
k=1

so that (3) holds. This completes the proof. ]
Theorem 4.5 — Let p=(p,) and q=(q;) be bounded sequences of positive real numbers

and A=(f :) an infinite matrix. Then A : c (X, p) — ¢ (q) if and only if there is a sequence (f,) with
fke X’ for all ke N such that (1), (2), (3) and (4) are satisfied, where

(1) Y, Wf WM YPe< oo for some Me N,
k=1

*

1/ n w
(2) for each m,ke N, m qn(fk-fk)—> 0 as n— oo,

(3) for each me N, sup m'/% Y “f:—fk Wr
n k=1

1/pk—>0 as r— o and

oo

4| Y fr0| eclg forall xe X.
k=1
=1
Moreover, (3’) is equivalent to (3’) where (3)

n

oo

lim sup, | ¥ Mfe—filly?* | =o.

r —> o0 k=1

PROOF : Since c (X, p)=cj(X, p)+|e(x):xe X| (Proposition 3.2 (i), it follows from
Proposition 3.1 (iii) that Ae (c(X,p),c(q)) if and only if Ae (cg(X,p).c(q) and
Ae ({e(x):xe X}, c(q)). By Theorem 4.4, we have A€ (c (X, p),c(q))_ if and only if conditions

(1)-(3) hold and it is clear that Ae ({e(x):xe€ X}, c(g) if and only if (4) holds. We have by
Theorem 4.4 that (3) and (3’) are equivalent. Hence, the theorem is proved. J

Wu and Liu (Lemma 2.7) have given a characterization of an infinite matrix A such that
A€ (I(X, p), cy) when p, > 1 for all ke N. By applications of Proposition 3.1 (ii) and (iv), Proposition
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oo

3.4, and Theorem 4.1, and using the fact that c;(q)= o 17q,0 WE obtain the following result.
(m k)

m=1
Theorem 4.6 — Let p=(p;) and q=(q;) be bounded sequences of positive real numbers

with py>1 for all ke N and 1/p,+1/4=1 for all ke N, and let A=(fZ) be an infinite matrix.
Then A :1(X,p)— c(q) if and only if there is a sequence (f) with f,€ X' for all ke N such that

(1) Y, Nf WM k<o for some Me N,
k=1

(2) m 9 (Fy~f) >0 as n— oo for all m, ke N and

(3) for each me N, Y, m'¥lf, —f W' r % =0 for all me N.
k=1

By using Lemma 2.8, Proposition 3.1 (ii) and (iv), Proposition 3.5 and Theorem 4.1, we
also obtain the following result:

Theorem 4.7 — Let P=(p,) and g=(g,) be bounded sequences of positive real numbrs with
py<1 for all ke N such that

() sup, Il f IP¥ c oo

(if) m]/qn(fk—fk)—ao as n— oo for all m,ke N and
(iii) sup,  mPx Wil f} ~f W< oo for all ne N
When p, =1 for all ke N, we obtain the following.

Corollary 4.8 — Let g=(q,) be a bounded sequence of positive real numbers and let

A=(f :) be an infinite matrix. Then A : /[, (X) > c(g) if and only if there is a sequence (f,) with
f € X for all ke N such that

(1) supy llfi I <eo,

@) mY (f-f) 5 0as n—w for all m, ke N and
3 Van |l f2_f, ll < oo £ N
(3) sup, 4y m fr—Jyll<oo for every me N.

Theorem 4.9 — Let p=(p,) be a bounded sequence of positive real numbers and A = (f Z)
an infinite matrix. Then A : My (X, p) > c (q) if and only if there is a sequence (f,) of bounded linear

functionals on X such that

(1) sup, m'Pelif ll<oo for all me N,
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(2) for each m,re N,r"/%m"Pe(fr —f) = 0 as n—> o for all ke N and

() for cach m,re N, sup PO m Pl fy — f I < oo,
n,

PROOF : It follows from Theorem 4.1 that A € (M, (X, p), ¢y (q) ©(e)) if and only if there

is a sequence (fy) of bounded linear functionals on X such that A=B+(fy), where

oo

B:My(X,p) = co (@) and (f), x: Mo (X.p) —(e). Since B=(fx—fon x and Mo(X,p)= U |

m=1

X~ 7Py (by Proposition 3.2 (ii)), we have by Proposition 3.1 (i) and (iv) that B: M, (X, p)

— ¢q (@) if and only if (ml/pk (fz ~fn k5 X) > cp(g) for all me N. Since ¢y (q) =

oo

M €0, /4, » by Proposition 3.1 (if) and (iv), we have (m/Px (f;c2 ~fDn k + 1) (X) > ¢o{g) if and only

r=1

if (7% m"Pe(fi = fin i 2 1y (X) > g for all re N. By Lemma 2.8, we have

(Y m! P~ fiDn, k1 (X) = ¢ if and only if

*

@ r I mPe(fh—£) %> 0 as n— o for all ke N and

by sup I mPrllfy —fll < oo,
n, k

By Proposition 3.1 () and (iv),we have (fi), ;:My(X,p)—>(e) if and only if
(ml/pkfk)n‘k:ll(X)—%(e) for all meN. By Proposition 3.5, we obtain that

(m'Pef), 1 (X) > (e) if and only if sup m/PEl| f, Il < 0. Hence, the theorem is proved.
k

O
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