# A NOTE ON QUASI POWER INCREASING SEQUENCES

# H. S. ÖZARSLAN

Department of Mathematics, Erciyes University, 38039, Kayseri, Turkey E-mail: seyhan@erciyes.edu.tr

(Received 30 January 2002; accepted 2 August 2002)

In this paper a theorem of Özarslan<sup>8</sup> has been proved under weaker conditions by using a quasi  $\beta$ -power increasing sequence instead of an almost increasing sequence.

#### Key Words: Absolute Summability; Quasi Power Increasing Sequence

### 1. INTRODUCTION

A positive sequence  $(b_n)$  is said to be almost increasing if there exists a positive increasing sequence  $(c_n)$  and two positive constants A and B such that  $Ac_n \le b_n \le Bc_n$  (see [1]). Let  $\sum a_n$  be a given infinite series with partial sums  $(s_n)$ . Let  $(p_n)$  be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^{n} P_v \to \infty \text{ as } n \to \infty, \ (P_{-i} = p_{-i} = 0, i \ge 1).$$
 ... (1)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v$$
 .. (2)

defines the sequence  $(\sigma_n)$  of the  $(\overline{N}, p_n)$  mean of the sequence  $(s_n)$ , generated by the sequence of coefficients  $(p_n)$  (see [5]). The series  $\Sigma a_n$  is said to be summable  $|\overline{N}, p_n|_k, k \ge 1$ , if (see [2])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} | \Delta \sigma_{n-1}|^k < \infty$$
 ... (3)

and it is said to be summable  $| \overline{N}, p_n; \delta |_k, k \ge 1$  and  $\delta \ge 0$ , if (see [3])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{\delta_k + k - 1} |\Delta \sigma_{n-1}|^k < \infty, \qquad \dots (4)$$

where

$$\Delta \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_v, \quad n \ge 1.$$
 ... (5)

In the special case when  $\delta = 0$  (resp.  $p_n = 1$  for all values of n)  $|\overline{N}, p_n; \delta|_k$  summability is the same as  $|\overline{N}, p_n|_k$  (resp.  $|C, 1; \delta|_k$ ) summability.

Quite recently Özarslan<sup>8</sup> proved the following theorem for  $|\overline{N}, p_n; \delta|_k$  summability factors of infinite series.

Thereom A — Let  $(p_n)$  be a sequence of positive numbers such that

$$P_n = O(np_n)$$
 as  $n \to \infty$ . ... (6)

Let  $(X_n)$  be an almost increasing sequence and suppose that there exists sequences  $(\beta_n)$  and  $(\lambda_n)$  such that

$$|\Delta \lambda_n| \le \beta_n , \qquad \dots (7)$$

$$\beta_n \to 0 \text{ as } n \to \infty,$$
 ... (8)

$$\sum_{n=1}^{\infty} n \mid \Delta \beta_n \mid X_n < \infty, \qquad \dots$$
 (9)

$$|\lambda_n| X_n = O(1) \text{ as } n \to \infty.$$
 ... (10)

If

$$\sum_{n=v+1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} \frac{1}{P_{n-1}} = O\left\{ \left(\frac{P_v}{p_v}\right)^{\delta k} \frac{1}{P_v} \right\} \qquad \dots (11)$$

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k - 1} |s_n|^k = O(X_m) \text{ as } m \to \infty, \qquad \dots (12)$$

then the series  $\sum a_n \lambda_n$  is summable  $|\overline{N}, p_n; \delta|_k$  for  $k \ge 1$  and  $0 \le \delta < 1/k$ .

Remark: It may be noted that, if we take  $(X_n)$  as a positive non-decreasing sequence and  $\delta = 0$  in this theorem, then we get a result of Bor<sup>4</sup> on  $|\overline{N}, p_n|_k$  summability factors.

#### 2. THE MAIN RESULT

The aim of this paper is to prove Theorem A under weaker conditions. For this we need the concept of quasi  $\beta$ -power increasing sequence. A positive sequence  $(\gamma_n)$  is said to be quasi  $\beta$ -power increasing sequence if there exists a constant  $K = K(\beta, \gamma) \ge 1$  such that

$$K n^{\beta} \gamma_n \ge m^{\beta} \gamma_m \qquad \dots \tag{13}$$

holds for all  $n \ge m \ge 1$  (see<sup>6</sup>). It should be noted that the class of almost increasing sequences is a strict subclass of the quasi  $\beta$ -power increasing sequences if  $\beta > 0$ . So that every almost increasing sequence is quasi  $\beta$ -power increasing sequence for any nonnegative  $\beta$ , but the converse need not be true as can be seen by taking the example, say  $\gamma_n = n^{-\beta}$  for  $\beta > 0$ . So we are weakening the hypotheses of the theorem replacing an almost increasing sequence by a quazi  $\beta$ -power increasing sequence.

Now, we shall prove the following theorem:

**Theorem** — Let  $(X_n)$  be a quasi  $\beta$ -power increasing sequence for some  $0 < \beta < 1$ . If all the conditions from (6) to (12) are satisfied, then the series  $\sum a_n \lambda_n$  is summable  $|\overline{N}, p_n; \delta|_k$  for  $k \ge 1$  and  $0 \le \delta < 1/k$ .

We need the following lemma for the proof of our theorem.

Lemma 7 — Under the conditions on  $(X_n)$ ,  $(\beta_n)$  and  $(\lambda_n)$  as taken in the statement of the theorem, the following conditions hold, when (9) is satisfied:

$$n \beta_n X_n = O(1) \text{ as } n \to \infty, \qquad \dots (14)$$

$$\sum_{n=1}^{\infty} \beta_n X_n < \infty. \tag{15}$$

## PROOF OF THE THEOREM

Let  $(T_n)$  denotes the  $(\overline{N}, p_n)$  mean of the series  $\sum a_n \lambda_n$ . Then, by definition and changing the order of summation, we have

$$T_n = \frac{1}{P_n} \sum_{v=0}^n P_v \sum_{i=0}^v a_i \lambda_i = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v \lambda_v.$$

Then, for  $n \ge 1$ , we have

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \lambda_v.$$

By Abel's transformation, we have

$$T_{n} - T_{n-1} = \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \Delta \left( P_{v-1} \lambda_{v} \right) s_{v} + \frac{p_{n}}{P_{n}} s_{n} \lambda_{n}$$

$$= -\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} s_{v} \lambda_{v} + \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} \Delta \lambda_{v} + \frac{p_{n}}{P_{n}} s_{n} \lambda_{n}$$

$$= T_{n,1} + T_{n,2} + T_{n,3}, \text{ say.}$$

Since

$$|T_{n,1} + T_{n,2} + T_{n,3}|^k \le 3^k (|T_{n,1}|^k + |T_{n,2}|^k + |T_{n,3}|^k),$$

to complete the proof of the Theorem, it is enough to show that

$$\sum_{n=1}^{\infty} (P_n/p_n)^{\delta k + k - 1} |T_{n,r}|^k < \infty \text{ for } r = 1, 2, 3.$$
 ... (16)

Now, when k > 1 applying Hölder's inequality with indices k and k', where  $\frac{1}{k} + \frac{1}{k'} = 1$ , we have that

$$\begin{split} &\sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k+k-1} | T_{n,1}|^{k} \leq \sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k-1} (P_{n-1})^{-k} \\ &\left\{ \sum_{v=1}^{n-1} p_{v} | s_{v} | | \lambda_{v}| \right\}^{k} \\ &\leq \sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v} | s_{v} |^{k} | \lambda_{v} |^{k} \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v} \right\}^{k-1} \\ &= O(1) \sum_{v=1}^{m} p_{v} | s_{v} |^{k} | \lambda_{v} |^{k} \sum_{n=v+1}^{m+1} (P_{n}/p_{n})^{\delta k-1} \frac{1}{P_{n-1}} \\ &= O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{\delta k-1} | s_{v} |^{k} | \lambda_{v} | | \lambda_{v} |^{k-1} \\ &= O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{\delta k-1} | s_{v} |^{k} | \lambda_{v} | \\ &= O(1) \sum_{v=1}^{m-1} \Delta | \lambda_{v} | \sum_{r=1}^{v} (P_{r}/p_{r})^{\delta k-1} | s_{v} |^{k} \\ &+ O(1) | \lambda_{m} | \sum_{v=1}^{m} (P_{v}/p_{v})^{\delta k-1} | s_{v} |^{k} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v} | X_{v} + O(1) | \lambda_{m} | X_{m} \\ &= O(1) \sum_{v=1}^{m-1} \beta_{v} X_{v} + O(1) | \lambda_{m} | X_{m} \\ &= O(1) \text{ as } m \to \infty. \end{split}$$

bu virtue of the hypotheses of the Theorem and Lemma.

Since  $v \beta_v = O(1/X_v)$  by (14), using the fact that  $P_v = O(v p_v)$  by (6), and  $|\Delta \lambda_n| \le \beta_n$  by (7), and after applying Hölder's inequality again, we have that

$$\sum_{n=2}^{m+1} (P_n/p_n)^{\delta k + k - 1} |T_{n,2}|^k$$

$$\sum_{n=2}^{\infty} (P_{n}/p_{n})^{\delta k-1} (P_{n-1})^{-k} \left\{ \sum_{v=1}^{n-1} P_{v} | \Delta \lambda_{v} | | s_{v} | \right\}^{k}$$

$$= O(1) \sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k-1} (P_{n-1})^{-k} \left\{ \sum_{v=1}^{n-1} P_{v} | \Delta \lambda_{v} | | s_{v} | \right\}^{k}$$

$$= O(1) \sum_{n=2}^{m+1} (P_{n}/p_{n})^{\delta k-1} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} (v \beta_{v})^{k} p_{v} | s_{v} |^{k}$$

$$\times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \right\}^{k-1}$$

$$= O(1) \sum_{v=1}^{m} (v \beta_{v})^{k} p_{v} | s_{v} |^{k} \sum_{n=v+1}^{m+1} (P_{n}/p_{n})^{\delta k-1} \frac{1}{P_{n-1}}$$

$$= O(1) \sum_{v=1}^{m} (v \beta_{v})^{k} (P_{v}/p_{v})^{\delta k-1} | s_{v} |^{k}$$

$$= O(1) \sum_{v=1}^{m} (v \beta_{v})^{k-1} (v \beta_{v}) (P_{v}/p_{v})^{\delta k-1} | s_{v} |^{k}$$

$$= O(1) \sum_{v=1}^{m} \Delta (v \beta_{v}) \sum_{r=1}^{v} (P_{r}/p_{r})^{\delta k-1} | s_{r} |^{k}$$

$$= O(1) \sum_{v=1}^{m-1} \Delta (v \beta_{v}) \sum_{r=1}^{v} (P_{r}/p_{r})^{\delta k-1} | s_{r} |^{k}$$

$$+ O(1) m \beta_{m} \sum_{v=1}^{m} (P_{v}/p_{v})^{\delta k-1} | s_{v} |^{k}$$

$$= O(1) \sum_{v=1}^{m-1} \Delta (v \beta_{v}) | X_{v} + O(1) m \beta_{m} X_{m}$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta(v \beta_v)| X_v + O(1) m \beta_m X_m$$

$$= O(1) \sum_{v=1}^{m-1} v | \Delta \beta_v | X_v + O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{v+1} + O(1) m \beta_m X_m$$

$$= O(1)$$
 as  $m \to \infty$ ,

by virtue of the hypotheses of the Theorem and Lemma.

Finally using the fact that  $P_{\nu} = O(\nu p_{\nu})$  by (6), as in  $T_{n,1}$ , we have that

$$\sum_{n=1}^{m} (P_n/p_n)^{\delta k + k - 1} |T_{n,3}|^k = O(1) \sum_{n=1}^{m} (P_n/p_n)^{\delta k - 1} |s_n|^k |\lambda_n|$$

$$= O(1)$$
 as  $m \to \infty$ .

Therefore, we get (16) and this completes the proof of the theorem.

If we take  $p_n = 1$  for all values of n in this theorem, then we get a new result concerning the  $|C, 1; \delta|_k$  summability factors.

#### **REFERENCES**

- 1. S. Aljancic and D. Arandelovic, Publ. Inst. Math., 22 (1977), 5-22.
- 2. H. Bor, Math. Proc. Cambridge Phil. Soc., 97 (1985), 147-149.
- 3. H. Bor, Jour. Math. Anal. Appl., 179 (1993), 644-49.
- 4. H. Bor, Internat. J. Math. Sci., 17 (1994), 479-82.
- 5. G. H. Hardy, Divergent Series, Oxford Univ. Press., Oxford, (1949).
- 6. L. Leindler, Publ. Math Debrecen, 55 (1999), 169-76.
- 7. L. Leindler, Publ. Math. Debrecen, (to appear).
- 8. H. S. Özarslan, Internat. J. Math. Sci., 25 (2001), 293-98.