# ON VALUE DISTRIBUTION OF DIFFERENTIAL MONOMIAL OF ALGEBROID FUNCTIONS\*

#### GAO LINGYUN

Department of Mathematics, Jinan University, Guangzhou, Guangdong, 510 632, P.R. China

(Received 5 October 2001; accepted 22 November 2002)

In this paper we obtain the following result: Let w(z) be a v-valued algebroid function and  $\Phi = (w')^{i_2} \dots (w^{(n)})^{i_n} (w(z))^n$ , and

$$(n - l_2 v) [n - l_2 v - 2 \sigma(v - 1)]$$

$$\geq 2 l_0 (n - l_2 v) + l_2 (n - l_2 v + 1)$$

$$+ 2 (v - 1) l_2 [l_0 (n - l_2 v) = 2 (n - l_2 v + 1)].$$

Then  $\Phi$  assumes all values except possibly zero infinitely often.

Key Words: Algebroid Functions; The value Distribution; Differential Polynomials

#### 1. Introduction

We use the standard notation of Nevanlinna theory of meromorphic functions (see [1]).

In this paper, we will mainly consider the problem of possible Picard values of algebroid function and derivatives of the form

$$(w')^{i_2} \dots (w^{(n)})^{i_n} (w(x))^n,$$
 ... (1)

where w(z) is a v-valued algebroid function.

We denote

$$\Phi = (w')^{i_2} \dots (w^{(n)})^{i_n} (w(z))^n, l_0 = i_1 + \dots + i_n,$$

$$l_2 = i_1 + 2i_2 + \dots + ni_n, \ \sigma = i_1 + 3i_2 + \dots + (2n-1) \ i_n.$$

For the case  $(i_1, ..., i_n) = (1, 0, ..., 0)$ , Hayman, Pang and Kari Katajamaki have proved the following theorems, respectively.

**Theorem**  $A^2$  — Suppose that w(z) is a transcendental entire function and  $n \ge 2$ . Then  $w'(z) w(z)^n$  assumes all values except possibly zero infinitely often.

<sup>\*</sup>Project supported by National Natural Science Foundation of P.R. China

**Theorem**  $B^3$  — Let w(z) be a v-valued algebroid function and a be a finite complex number. Then

$$w'(z) w(z)^n = a, n \ge 4 v - 1$$

have infinite roots.

**Theorem**  $C^4$  — Let w(z) be a v-valued transcendental entire algebroid function and set

$$\phi(z) = w'(z) w(z)^n,$$

where  $n \in N$  and  $a \in C - \{0\}$ . Then if  $n \ge 8 \ v - 6$ , we have

$$\overline{N}\left(r,\frac{1}{\phi-b}\right)\neq S(r,w)$$

for each  $b \in C$ .

Our result is:

**Theorem** 1 — Let w(z) be a v-valued algebroid function and

$$(n - l_2 v) [n - l_2 v - 2 \sigma(v - 1)]$$

$$\geq 2l_0 (n - l_2 v) + l_2 (n - l_2 v + 1) \qquad ... (2)$$

$$+ 2 (v - 1) l_2 [l_0 (n - l_2 v) + 2 (n - l_2 v + 1)].$$

Then  $\Phi$  assumes all values except possibly zero infinitely often.

## 2. SOME LEMMAS

Lemma 1 — Let w(z) be a v valued algebroid function and  $\Phi$  be as in (1),  $a_j \neq 0$ , j = 1, 2, ..., p be distinct complex numbers, then

$$pT\left(r,\,\boldsymbol{\Phi}\right)\leq\overline{N}\left(r,\,\boldsymbol{\Phi}\right)+\overline{N}\left(r,\,\frac{1}{\boldsymbol{\Phi}}\right)+\sum_{k=1}^{p}\,\overline{N}\left(r,\,\boldsymbol{\Phi}=a_{k}\right)+N_{x}\left(r,\,\boldsymbol{\Phi}\right)+S\left(r,\,\boldsymbol{\Phi}\right).$$

Proof See [4].

Lemma 2 — Let w(z) and  $\Phi$  be as above. Then

$$N_{x}\left(r,\,\boldsymbol{\Phi}\right)\leq N_{x}\left(r,\,w\right).$$

Proof See [4]

Lemma 3 — Let w(z) be a v value algebroid function and  $\Phi$  be as above. Then

$$(l_2 + l_0) N(r, w) - N(r, \Phi) + N\left(r, \frac{1}{\Phi}\right) = l_2 N_1(r, w)$$

$$- l_2 N_x(r, w) - (l_2 - l_0) N\left(r, \frac{1}{w}\right),$$
 ... (3)

where  $N_1(r, w)$  is the count function of all multiple points of w(z) and every  $\tau$  multiple point are counted only  $\tau - 1$  times.

**PROOF**: Let  $w_i$ ,  $i = 1, ..., \lambda$  be the branches of w(z),  $w_i(z_0) = a$ . Then by

$$w(z) - a = (z - z_0)^{\tau/\lambda} w_0(z), w^{(k)}(z) = (z - z_0)^{(\tau - k\lambda)/\lambda} \overline{w}_0(z).$$

We know that  $z_0$  is a zero of  $w^{(k)}(z)$  with multiplicity  $\tau - k \lambda$  if  $\tau - k \lambda > 0$ ;  $z_0$  is a pole of  $w^{(k)}(z)$  with multiplicity  $k \lambda - \tau$ , if  $\tau - k \lambda < 0$ . Thus

$$\begin{split} &(l_2+l_0) \ n \ (r,w) - n \ (r \ \varPhi) + n \left(r,\frac{1}{\varPhi}\right) \\ &= (l_2+l_0) \sum_{w=\infty} \tau - \left\{\sum_{w=\infty} (l_0 \ \tau + l_2 \ \lambda) + \sum_{w\neq\infty} (l_2 \ \lambda - l_0 \ \tau)^+\right\} \\ &+ \sum_{w\neq\infty} (l_0 \ \tau - l_2 \ \lambda)^+ \\ &= \sum_{w=\infty} (l_0 \ \tau + l_2 + l_2 \ \tau - l_2) - \left\{\sum_{w=\infty} (l_0 \ \tau + l_2 + l_2 \ \lambda - l_2)\right. \\ &+ \sum_{w\neq\infty, \ l_2 \ \lambda - l_0 \ \tau > 0} \left[l_2 \ \lambda - l_2 - (l_2 \ \tau - l_2)\right] \\ &+ \sum_{w\neq\infty, \ l_2 \ \lambda - l_0 \ \tau > 0} \left[l_2 \ \tau - l_2 - (l_2 \ \lambda - l_2)\right] \\ &- \sum_{w\neq\infty, \ l_2 \ \lambda - l_0 \ \tau > 0} (l_2 - l_0) \ \tau - \sum_{w\neq\infty, \ l_2 \ \lambda - l_0 \ \tau < 0} (l_2 - l_0) \ \tau \\ &= l_2 \ \Sigma \ (\tau - 1) - l_2 \ \Sigma \ (\lambda - 1) - (l_2 - l_0) \ \Sigma \ \tau \\ &= l_2 \ n_1 \ (r, w) - l_2 \ n_x \ (r, w) - (l_2 - l_0) \ n \left(r, \frac{1}{w}\right). \end{split}$$

Integrating logarithmically we obtain (3).

## 3. PROOF OF THEOREM 1

We assume conversely that  $\overline{N}\left(r, \frac{1}{\Phi - b}\right) = S(r, w)$  for some  $b \in C - \{0\}$ .

First, we prove that

$$T(r, \Phi) \ge (n - l_2 v) T(r, w) - \sigma N_x(r, w), (r \to \infty, r \notin I). \qquad \dots (4)$$

In fact,

$$(n+l_1) T(r, w) = T(r, (w)^{n+l_1}) = T\left(\frac{\Phi_w l_1}{w^{i_0} (w')^{i_2} \dots (w^{(n)})^{i_n}}\right)$$

$$\leq T(r, \Phi) + T\left(r, \frac{w^{i_0} (w')^{i_2} \dots (w^{(n)})^{i_n}}{w_{l_1}}\right) + O(1)$$

$$= T(r, \Phi) + T\left(r, \left(\frac{w'}{w}\right)^{i_1} \dots \left(\frac{w'}{w}\right)^{i_n}\right) + O(1)$$

$$\leq T(r, \Phi) + l_1 m(r, w) + N\left(r, \left(\frac{w'}{w}\right)^{i_1} \dots \left(\frac{w^{(n)}}{w}\right)^{i_n}\right) + S(r, w). \qquad \dots (5)$$

We estimate  $N\left(r, \left(\frac{w'}{w}\right)^{i_1} \dots \left(\frac{w^{(n)}}{w}\right)^{i_n}\right)$ . The poles of  $\left(\frac{w'}{w}\right)^{i_1} \dots \left(\frac{w^{(n)}}{w}\right)^{i_n}$  may arise only

from one of the following cases:

Case (i) — the zeros of w(z);

Case (ii) — the poles of w(z);

Case (iii) — the brances point of w(z).

Case (i) — If  $z_0$  is a zero of w(z), then its contribution to

$$N\left(r,\left(\frac{w'}{w}\right)^{i_1},\ldots,\left(\frac{w^{(n)}}{w}\right)^{i_n}\right)$$
 is  $l_1N\left(r,\frac{1}{w}\right)$ .

Case (ii) — If  $z_0$  is a pole of w(z), then

$$w(z) = (z - z_0)^{-\frac{\tau}{\lambda}} w_0(z), w_0(z_0) \neq 0, \infty,$$

$$w^{(k)} = C (z - z_0)^{-\frac{\tau + k \lambda}{\lambda}} w_k(z), w_k(z_0) \neq 0, \infty.$$

Thus

$$\tau \left( z_0 \left( \frac{w'}{w} \right)^{i_1} \dots \left( \frac{w^{(n)}}{w} \right)^{i_n} \right) \le i_1 \lambda + \dots + n i_n \lambda = l_2 \lambda \le l_2 v.$$

Its contribution to

$$N\left(r,\left(\frac{w'}{w}\right)^{i_1}\ldots\left(\frac{w^{(n)}}{w}\right)^{i_n}\right)$$
 is  $l_2 v \overline{N}(r,w)$ .

Case (iii) — Let  $w_i(z)$ ,  $i=1, 2, ..., \lambda$  be branches of w(z) such that  $w(z_0)=a, a \neq 0, \infty$ . Then in the neighbourhood of  $z_0$ , we have

$$w\left(z\right)=a+(z-z_{0})\overline{\lambda}\;w_{0}\left(z\right),w_{0}\left(z_{0}\right)\neq0,\infty,$$

$$w^{(k)} = C \left( z - z_0 \right)^{\frac{\tau - k \lambda}{\lambda}} w_k \left( z \right), w_k \left( z_0 \right) \neq 0, \infty.$$

It easy to see that  $z_0$  is a pole when  $\tau - k \lambda < 0$ .

Thus

$$\tau \left( z_0, \left( \frac{w'}{w} \right)^{i_1} \dots \left( \frac{w^{(n)}}{w} \right)^{i_n} \right) \le \sum_{\alpha = 1}^n i_\alpha \left[ \alpha \lambda - \tau \right]^+ \le \sum_{\alpha = 1}^n i_\alpha \left[ \alpha \lambda - 1 \right]$$

$$\le (\lambda - 1) \sum_{\alpha = 1}^n i_\alpha \left[ 2 \alpha - 1 \right]$$

$$= \sigma(\lambda - 1).$$

Its contribution to

$$N\left(r,\left(\frac{w'}{w}\right)^{i_1}\ldots\left(\frac{w^{(n)}}{w}\right)^{i_n}\right)$$
 is  $\sigma N_x(r,w)$ .

Combining the cases (i)-(iii), we get

$$N\left(r, \left(\frac{w'}{w}\right)^{i_1} \dots \left(\frac{w^{(n)}}{w}\right)^{i_n}\right) \le l_1 N\left(r, \frac{1}{w}\right) + l_2 v \overline{N}(r, w) + \sigma N_x(r, w). \tag{6}$$

Substituting the inequality (6) into the inequality (5), we obtain the inequality (4). Secondly, by Lemma 1 and Lemma 2, we have

$$T(r, \Phi) \le \overline{N}(r, \Phi) + \overline{N}\left(r, \frac{1}{\Phi}\right) + N_{X}(r, w) + S(r, w). \tag{7}$$

Since the poles of  $\Phi$  must be the pole of w(z) or a branch point of w(z), we get

$$\overline{N}(r, \Phi) \le \overline{N}(r, w) + N_x(r, w). \tag{8}$$

Let

$$w(z) - a = c(z - z_0)^{\tau/\lambda} w_0(z), w_0(z) \neq 0, \infty$$
. Then

$$\boldsymbol{\Phi} = C\left(z - z_0\right)^{\frac{(l_0) \, r - l_2 \, \lambda}{\lambda}} \boldsymbol{\Phi}_0\left(z\right) \neq 0, \, \infty.$$

Thus

$$\overline{n}\left(r, \frac{1}{\Phi}\right) \leq \overline{n}\left(r, \frac{1}{w}\right) + \sum_{w \neq 0} \frac{\left(l_0 \tau - l_2 \lambda\right)^+}{\lambda}$$

$$\leq \overline{n}\left(r, \frac{1}{w}\right) + l_0 \sum_{w \neq 0} (\tau - 1) \qquad \dots (9)$$

$$= \overline{n}\left(r, \frac{1}{w}\right) + l_0 n_1 (r, w)$$

$$(n - l_2 v) \, \overline{n} \left( r, \frac{1}{w} \right) \leq \sum_{w \neq 0} (l_0 \tau - l_2 \lambda - l_1) \leq n \left( r, \frac{1}{\Phi} \right) - l_0 \, \overline{n} \left( r, \frac{1}{\Phi} \right)$$

$$< n \left( r, \frac{1}{\Phi} \right) - \overline{n} \left( r, \frac{1}{\Phi} \right),$$

that is

$$\overline{n}\left(r,\frac{1}{w}\right) < \frac{1}{n - l_2 v} \left[n\left(r,\frac{1}{\Phi}\right) - \overline{n}\left(r,\frac{1}{\Phi}\right)\right].$$
... (10)

It follows from (9) and (10)

$$\overline{N}\left(r,\frac{1}{\Phi}\right) < \frac{1}{n - l_2 v} \left[n\left(r,\frac{1}{\Phi}\right) - \overline{n}\left(r,\frac{1}{\Phi}\right)\right] + l_0 N_1(r,w). \qquad \dots (11)$$

By Lemma 3, we have

$$N_1(r, w) \le 2T(r, w) + N_r(r, w).$$
 ... (12)

Combining (11) and (12), we get

$$\overline{N}\left(r, \frac{1}{\Phi}\right) < \frac{1}{n - l_2 \, \nu + 1} \, N\left(r, \frac{1}{\Phi}\right) \frac{2l_0 \, (n - l_2 \, \nu)}{(n - l_2 \, \nu + 1)} \, T(r, w) \\
+ \frac{l_0 \, (n - l_2 \, \nu)}{n - l_2 \, \nu + 1} \, N_x \, (r, w). \qquad \dots (13)$$

Combining (7), (8) and (13), we get

$$\left(1 - \frac{1}{n - l_2 \, \nu + 1}\right) T(r, \Phi) < \frac{2l_0 \, (n - l_2 \, \nu) + l_2 \, (n - l_2 \, \nu + 1)}{(n - l_2 \, \nu + 1)} T(r, w) 
+ \frac{l_0 \, (n - l_2 \, \nu) + 2 \, (n - l_2 \, \nu + 1)}{n - l_2 \, \nu + 1)} N_x (r, w). \quad \dots (14)$$

Substituting the inequality (4) into the inequality (14), we get

$$(n - l_2 v) [(n - l_2 v) - 2 \sigma (v - 1)]$$

$$<2 l_0 (n - l_2 v) + l_2 (n - l_2 v + 1)$$

$$+ 2 (v - 1) l_2 [l_0 (n - l_2 v) + 2 (n - l_2 v + 1)].$$

This is a contradiction. This proves Theorem 1.

### **REFERENCES**

- 1. He Yuzan and Xiao Xiuzhi, Algebroid functions and ordinary differential equations, Peking: Science Press, 1988.
- 2. W. Hayman, Ann. of Math., 70 (1959), 9-42.
- 3. X. C. Pang, Chinese Ann. Math., 14 (1993), 51-56.
- 4. K. Katajamaki, Complex Variables, 30 (1996), 135-44.