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Kirk (8) recently introduced asymptotic contractions and proved by an ultraproduct technique that an asymptotic
contraction on a complete metric space has a unique fixed point provided the mapping has a bounded orbit. A
simple and elementary proof is given in this note. Moreover, weakly asymptotic contractions are introduced and
it is proved that a weakly asymptotic contraction on a complete metric space has a unique fixed point should
the mapping has a bounded orbit.
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1. ASYMPTOTIC CONTRACTIONS

Let (M, d) be a complete metric space. Recall a map T: M — M is called a contraction if
d(Tx, Ty) £ ad (x,y), x,yeM

where aoe [0, 1) is a constant. It is well-known that the Banach contraction principle ensures that
every contraction T on a complete metric space M has a unique fixed point u and for each
xeM, T"x > u.

Due to its wide applications, the Banach contraction principle has been extended in various
ways; see, for example, [2], [3] and [4]. For recent applications in inverse problems for differential
and integral equations see (9,10 and 11).

A recent extension appeared in (8) in which Kirk introduced asymptotic contractions and
proved that an asymptotic contraction T on a complete metric space M has a unique fixed point u

and for each xe M, T" x — u provided T has a bounded orbit.

Let @ denote the collection of all functions ¢ from R :=[0, «) —R7* satisfying the
properties:

() @ is continuous;

(i) o)<t for all t > 0.
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Definition 1 (8) — Let, (M, d) be a complete metric space. A mapping T: M — M is said
to be an asymptotic contraction if, for each integer n 2= 1, there exists a function ¢ : R - R*

such that
d(T"x, T"y) < ¢ d(xy) forall x,yeM o (D

and if @, Qe @ uniformly on the range of d.
Then Kirk (8) proves the following theorem.

Theorem 1 — Suppose (M, d) is a complete metric space and suppose T:M —M is an

asymptotic contraction for which the mappings @, in (1) are continuous. Assume also some orbit of

oo

T is bounded. Then T has a unique fixed point z, and moreover the Picard sequence {T"x }n=l

converges to z for each xe€ M.

Theorem 1 can be viewed the asymptotic version of the following known result (2,3).

Theorem 2 — Suppose (M, d) is a complete metric space and suppose a mapping

T:M — M satisfies the condition

d(Tx,Ty) < ¢(d(x,y)) forall x,ye M (2

where @& @ is a given function. Assume that T has a bounded orbit. Then T has a unique fixed

point z, and moreover for each x€ M , the sequence {T”xL

in=1 COMverges to z.

Theorem 1 was proved in (8) using an ultraproduct technique. In this note we shall give a
simple and elementary proof to Theorem 1. Moreover, we will introduce the notion of weakly
asymptotic contractions and the main result (Theorem 3) of this note contains Theorem 1. (During
the review process of this paper, one of the referees pointed out that an elementary proof of Theorem
1 was also given independently in (1 and 6).

In our argument below we put
o= {6 € ® : ¢ isincreasing on R" }

The key idea of our proof is to replace each function @, in (1) by another function ¢,

which is increasing and which is constructed in following manner. For a continuous function

¢:IR" — R" define @ by

a(t):=max{<p(r):re[o,t] mm}, e

where R(d) = {d (x,y):x,ye M} is the range of d and R (d) is the closure of R(d).
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Lemma 1 — If @€ @, then pe .

PROOF : It is evident that ¢ is increasing. Since ¢ (¢) = @ (t") for some 1" e [0, 1, it follows
that ¢ (1) <t for all ¢+ > 0; that is, ¢ satisfies condition (ii) above. It remains to prove the continuity

of ¢@. Namely, ¢ satisfies condition (i) above as well; hence g€ &. This follows from the fact that

for 0<s<1, 0<p () — ¢ (s) < max { oM -os):te s, f] N R@) } and the uniform continuity of

¢ over, any closed bounded interval [a, b}, where 0 <a<b <o, B

2. WEAKLY ASYMPTOTIC CONTRACTIONS

We now introduce the following notion of weakly asymptotic contractions.

Definition 2 — A continuous mapping T from a complete metric space (M, d) into itself is .
said to be a weakly asymptotic contraction if for an arbitrary &£ > 0O, there is an integer n821 such

that

n n
d(T sx,Ts)S(p(d(x,y))+£for all x,ye M, v (B
where @€ @ is given (i.e., independent of £).
It is easily seen that an asymptotic contraction in the sense of Definition 1 is, due to the
requirement that ¢, — @€ @ uniformly on the range of d, a weakly asymptotic contraction in the

sense of Definition 2.

We next show that a weakly asymptotic contraction on a complete metric space has a unique
fixed point provided it has a bounded orbit.
Theorem 3 — Suppose (M, d) is a complete metric space and suppose T:M —> M is a

weakly asymptotic contraction. Assume that T has a bounded orbit at some x€ M. Then T has a

unique fixed point z. Moreover the Picard sequence {T"x} converges to z.

n=1

PROOF : Put
d =dT"x,T™x) for n,m=21
n.m

and

d = limsup d = lim sup{d tn,m2k} < oo,
oo n, in n,m
n,mm-— oo k— oo
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Observe that for any € > 0 and for all n,m>n, by the weakly asymptotic contraction

condition (4), we have

n n—-—n ne m—ne
dym = d(T‘(T ‘)T (T x))
n—ns m—ns
< (p(d(T xT x))+£
n-—ns m—ne
< @ldT x, T x))+8

= -(b(dn—ne,m—ne)"_e’

where @ is defined as in (3). Taking the limsup as n,m —eo and noting the continuity and

increasingness of @ we get
d_ < @(doo) + €.

But € > 0 is arbitrary, it follows that

d_<§d).

This implies d_ = 0; hence {T"x} is Cauchy. It is then easily seen that {T"” x} converges

to the unique fixed point z of T.

Corollary 1 — (Kirk [8]). Suppose (M, d) is a complete metric space and suppose

T:M— M is an asymptotic contraction for which the mappings ¢, in (1) are continuous. Assume

also some orbit of T is bounded. Then T has a unique fixed point z, and moreover the Picard

-]

sequence {T”x}n converges to z for each xe M.

=1

Note that Theorem 3 also extends a theorem of Browder (3) who assumed that for some

integer N2> 1, the map TV satisfies condition 4).

3. CONCLUDING REMARKS

Another way to weaken the notion of asymptotic contractions in Definition 1 is given below.

Definition 3 — A mapping T from a complete metric space (M, d) into itself is said to be

a limiting asymptotic contraction provided
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limsup d(T"x,T"y) € @(d(x,y)) for all x,ye M, . (5)
n— oo
where pe @ is given. Obviously an asymptotic contraction is a limiting asymptotic contraction.

It turns out that the limiting asymptotic contractivity condition (5) is too weak to guarantee
the existence of a fixed point, nor the map is necessarily contractive. Indeed, we have the following
characterization of limiting asymptotic contractions.

Theorem 4 — A map T on a complete metric space (M, d) is a limiting asymptotic
contraction if and only if

limsup d(T"x,T"y) =0 forall x,ye M. .. (6)

n—» oo

PROOF : Indeed, that (6) implies (5) is trivial. To show that (5) implies (6), replacing the

x and y in (5) by T™x and T™y, respectively, where m> 1 is a fixed integer, we get (noticin
g

that

limsup d(T"x, T"y) = limsup d(T" " x, T"*™y))

n —> oo n— oo
limsup d(T"x, T"y) < 9 (T™x, T™y)) for all x,ye M. o (D
n— oo

Taking the lim sup as m — oo in (7) yields

n— oo m—> oo

limsup d(T"xT"y) < & ( fim sup d(T'"x,T'"y)).

It follows that limsup d(T"x, T"y) = 0.

n— oo

Tingley (12) constructed a limiting asymptotic contraction 7' on a bounded closed convex
subset K of a Hilbert space which is fixed point free. Note that his map is not contractive (i.e.,
ITx—Tyll Z lx—yll for some x#y,x,ye K). However even a contractive limiting. asymptotic

contraction may fail to have a fixed point, as shown in the following example.

Example 1 — (cf. [T]) Let M = {fe C[0,1]:f(©0)=f(1)=1,0<f(x)< 1} which is equipped

with the usual sup norm. Define an operator T: M — M by

Tf(x) = xf(x) for all xe [0, 1].

It is easily seen that T is contractive and does not have a fixed point. We now show that
T is a limiting asymptotic contraction. As a matter of fact, it is not hard to see that given fe M
and x e [0, 1], we have
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T"fx) = X" f(x).

Thus, if given another g € M, we have

IT"fx)-T"gx) | = 1X1f(x)-g )
For £ > 0, since f(1)—g (1) = 0, by continuity of f—g, we can find, 6 € (0,1) such that
If(x)—gx)I<e for all xe [1-5,1]. .. (8)

Now take an integer N > 1 big enough so that
y(1-8)'<e for all n2N . (9)
where ¥ = max {lf(x)—g(x)|:xe [0,1-8]}. Combining (8) and (9) we find that
d(T"f,T"g) = max {(X"1f(x)—g(x)i:xe [0,1]} < & for all n=>N.

Namely, limsup d(T"f,T"g) = 0, ie., T is a limiting asymptotic contraction.
n—0
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