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We obtain two partition identities and show their equivalence to two identities of Euler. Our work is a sequel
to the recent work of J. P. O. Santos [3].

Key Words : Partitions; Combinatorial Identities.

1. INTRODUCTION

Partition theoretic identities are important in the theory of g-series as, in many instances, they lead
to important g-series identities. In Theorem 2.1 and Theorem 3.1 we prove two partition identities
which are respectively equivalent to the two of Euler’s identities
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The identities (1.1) and (1.2) are special cases of Euler’s celebrated theorem [1, p.19],
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An analytic proof of the general identity (1.3) can be found in [1, p.19]. Another, employing
the partition function p (m, n), the number of partitions of n with exactly m parts, and partition
analysis can be found in [2, p. 564]. However, our proof of the special cases (1.1) and (1.2) is

new and we believe that it throws further light on (1.3).

2. COMBINATORIAL PROOF OF (1.1)

We first obtain a partition theoretic result. In what follows we always assume that the members of
a partition are in non-increasing order.

Theorem 2.1 — Let A, be the collection of partitions of n into odd parts and B, the
collection of partitions (A, A,, ... &) of n such that n—2A; <A, —A,. Then #A =#B,.

PROOF : If (4, fhy, - ) =(2k = 1,2k =1,... 2k ~1)€ A  define

Flp by s )= ()”1’ Mg Ay ) by
1
1
/11 =7 (n+r) = k1+k2+...+kr

and, for ZSkSkl,
A, = number of parts of (u;, iy, ... 4,) which are greater than or equal to 2k - 1.

Clearly, from these definitions,

AZSr=2/'L]—n

or,

n—ZISll-—lz

and hence, [ll, A, ...,/lk] ) = f(Uy tys o ) € B,
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In the other direction, suppose (ll,...ls)e B, so that n=},1+...+ls and

u+1
n— A £ A, — Ay Then define : 7= k; := number of parts of (;, 4,, ..., A;) which are greater

than or equal to i for i = 1, 2, ., 4, g, =1 for i=A,+1,.., 4, + A4, —(ky+k,+... +k; ). Then
2

clearly, (1, iy, ... 11,) =f_1 (Aps Ays s A ) with r=2.2+/'Ll—(k]+...+k/12).

Thus there is a 1-1 correspondence (namely f) between the members of An and those of

Bn and hence the theorem has been proved.

Remark 2.1 : In view of the Euler’s identity "the number of partitions of »n into distinct
parts equals the number of partitions of n into odd parts”

(i) the Theorem 2.1 can be extended as follows:

#A =#B =#C

n n n

where Cn is the collection of partitions of n into distinct parts.

(i) it would be interesting to try and provide similar combinatorial proof of the identity
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We are now in a position to prove (1.1) combinatorially, employing Theorem 2.1.
Theorem 2.2 — The Identity (1.1) holds.

PROOF : Theorem 2.1 is easily seen to assert the following two facts:

(i) If n is even, then the coefficient of ¢" in the power series expansion of

1
A-9(-P)(A-g)...(1-g* "N ...

equals the coefficient of ¢"/2 in the power series expansion of

) .
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(i) If n is odd, then the coefficient of ¢" in the power series expansion of

1
A=) (A-P)(A-g)...(1-g* 1.

n+1
equals the coefficient of ¢ 2 in the power series expansion of
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> -
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Now, if C is the coefficient of ¢" in the power series expansion of
n

1
Q- (1-¢%...(1-g*" 1.,

3

we have, from the above two facts,

= =0 (q;q)Zk
and
(-~ 00 k
2 G, 4= ) @9, .
n=1 k=1 2k 1
so that
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or, what is the same,
2 = 2 ¢4 |= )Y 2. 2
(g:97) n=0 k=0 @397,

This completes the proof of Theorem 2.2.

In the article [3] even though Santos states an equivalent of Theorem 2.1 and gives a

graphical illustration of his theorem he has not realized the equivalence of the partition theoretic
Theorem 2.1 with the analytic identity (1.1).

3. COMBINATORIAL PROOF OF (1.2)

Following theorem is the counter part of Theorem 2.1.
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Theorem 3.1 — Let A, be the collection of partitions of n into even parts and B, the

collection of partitions (A}, A,, ..., A;) of n such that n — A; < A, — 2A,. Then #A =#B,.

PROOF : The proof is similar to that of Theorem 2.1. In fact, define

f:An—-éBn

f(‘ul’”z’ e l) = AL A, A )

where
/'Ll :=n/2+r=(k1+k2+...+k)+r (with 'uj=2kj’ j=1,.,0,

and, for 2<k Sk1

A, = number of parts of (4, ..., 41,) which are greater than or equal to 2k.
Clearly, these definitions imply,
A,ZSr=Zl -n/2 or, ZAZSZAI -n or, n-— /'Ll < }'1 - 2/12.

Thus (4, ..., lﬂl /o) indeed belongs to B,.

In the other direction, starting from (ll, ),2, ls) in Bn, define, for i = |, 2, ..., 12,

w | X

= k; ;= number of parts of (4, ..., 4;) which are greater than or equal to i and

ui=2 for i=12+1, ...,12+n/2—(k1+...+k12).

Then clearly,

(”']’ #2, #) = f—l (2‘1912, ’A' )

s

with

r=2«2+n/2"‘(k1 +... +kAZ).

This completes the proof of the theorem.

We are now in a position to prove (1.2) combinatorially.
Theorem 3.2 — The Identity (1.2) holds.
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PROOF : The proof follows from Theorem 3.1 in exactly the same way as Theorem 2.2 from
Theorem 2.1 and hence we omit the details.
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