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In this note we determine the possible limiting distributions of extreme steps of a random
function on finite sets as numbers of elements of these sets tend to infinity.
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1. INTRODUCTION

Double arravs of random variables arise in connection with many combinatorial problems.
Limiting distributions of extreme values in such double arrays may belong to the well
known types of extreme value distributions, but other distributions can also appear. There
are many excellent references of the well established extreme value theory for i.i.d. and
stationary random sequences: see Leadbetter, Lindgren and Rootzén (6], Resnick [10],
Leadbetter and Rootzén [5]. Many results of this theory can be modified in order to
investigate extreme values in double arrays of random variables.

Random functions on finite sets, and particularly random permutations, have been very
much studied and many asymptotic results have been obtained. For example, the number of
cycles of a random permutation and the logarithm of the order of a random permutation of

the set N,, = {1.2,....n} are asymptotically normally distributed; see for example Kolchin
3.
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2. RANDOM FUNCTIONS ON FINITE SETS

Let Q, be the set of all functions f : N,, — Ni, where N, = 1,2,...n and k = k(n).
Suppose that any function f € €, has probability k~". For any f € Q, and j € N, let

Xnj(f) = [f(4) = f(L+ 1), where f(n+1)= f(1).

If j is fixed, then every value f(s), where s ¢ {j,j + 1}, can be chosen in k ways. The
values f(j) and f(j + 1) can be chosen in k ways so that f(j) = f(j +1). The values
f(j) and f(j + 1) can be chosen in 2(k — l) ways so that |f(j) — f(j + 1)| = [, where
I €{1,2,....k —1}. Hence, the number of functions f for which Xy;(f) = 0 is equal to
k"=2. k = k"~!. The number of functions f for which X,;(f) =1 € {1,2,....k— 1} is
equal to k"2, 2(k — ). Therefore, for any j € N,,, the marginal distribution of random
variable X, is given by

2(k — 1)
k2

P{X,, = O} = %,p{xnj —y = where L € {1,2,....k —1}.
Using the equality X,;(f) = |f(j) — f(j + 1)|, we conclude that randcm variables Xp,
and Xp,; are independent if 1 < |[¢—j| < n—1. As usual, we shall say that random variables

Xn1....,Xnn are 1-dependent (including dependence of X, and Xy1). Let us denote

Mn = ma:x{an,...,Xnn}q

mn = min{Xn1,...,Xnn}

We refer to M, and m, as the extreme steps of a random function f. The next two
theorems give limiting distributions of the extreme steps in a random function f : N — Ny,
as n — oo and k = k(n) — oc.

Theorem 1 — (a) If n/k? — 0 as n — oo, then the following equality holds:

k e‘Iz, if x <0,
lim P{ M, <z-—+k} =
nl—»n;o { n= \/ﬁ } { 1, if x> 0.

(b) If n/k? — « as n — oo, where 0 < a < +00, then the following equality holds:

lim P{M, <k-1+z}=

n—oc

e—[l‘]([.’t]—l)a, r < 0'
1, x> 0.
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(c) If n/k? — oo as n — oo, then it is not possible to determine sequences a, > 0
and b, € R, such that the limiting distribution of random variable (M, — bn)/an is a
non-degenerate one.

Theorem 2 — (a) If n/k — 0 as n — oo, then the following equality holds:

i <
limP{mn§x~£}= 0, if x <0,
n—oc 2n 1—e7%, ifxz>0.

(b) If n/k — B as n — oo, where 0 < 3 < +00, then the limiting distribution of random
variable m,, is given by

0, if £ <0,
. < gl — ,
nh—>nf}c P{mn < I} { 1— e—(2[z]+1)5. if z>0.

(c) If n/k — oo as m — oo, then it is not possible to determine sequences a, > 0
and b, € R, such that the limiting distribution of random variable (mn, — bp)/a, is a

non-degenerate one.
3. ON EXTREME VALUES IN DOUBLE ARRAYS OF RANDOM VARIABLES

As one considers extreme values of stationary random sequences and extreme values in
double arrays of random variables that are stationary in each row, it can be useful to
introduce the associated i.i.d. sequence and the associated double array with i.i.d members
in each row. In connection with i.i.d. settings, let us recall the definition of the domain of
attraction of a non-degenerate distribution function G.

Definition 1 — A distribution function F belongs to the domain of attraction for maxima
of a non-degenerate distribution function G if there exist real constants a, > 0 and bn.
n € N. such that
F™(anx + by) — G(x), weakly as n — oc. In that case we use notation F' € D(G).

Remark 1 : A classical result of Gnedenko [1] states that only three types of distribution
functions have non-empty domains of attraction for maxima. See de Haan [2] and Lead-
better, Lindgren and Rootzén {6] for details. The following Frechet, Weibull and Gumbel
distribution functions determine these three types:

o, (z) = 0, if x <0,
* B exp(—z~®), ifz2>0.

Vo(z) = exp(—z~?), ifr <0,
T, if z>0.

A(z) = exp(—e %), —o0 <z < +00;
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where o > 0. We refer to ®,.%,, and A as the extreme value distributions. The three
possible types of limiting distributions for minima in i.i.d. sequences of random variables
are determined by the following distribution functions:

O P A,

1, ifx>0.
N 0, if £ <0,
Uo(z) = :
1 — exp(~z%), if x> 0.
Alz) = 1-exp(—€®), —oc <z < +00;

where o > 0.

Remark 2: Limiting distributions obtained in Theorem 1(a) and Theorem 2(a) are
the Weibull type extreme value distributions ¥5(z) and ¥1(z) (for maxima and minima
respectively). Note also that some discrete distributions appeared in Theorem 1(b) and
Theorem 2(b) as limiting distributions of extreme values M, and my, as n — oo.

Remark 3: Let F, be the distribution function of random variables X,;.1 < j < n, that
were introduced in section 2. Distribution functions Fy,.n € N, have jumps at the right end
point. and consequently, none of them belongs to domains of attraction of extreme value
distributions.

Definition 2 — Let Xpy, Xno,. .., Xnk,,n = 1,2,... be a double array of random vari-
ables such that the following conditions are satisfied:

(a) For any n random variables X1, Xno, ..., Xnk, are independent with the common
distribution function F:

(b) ,,]i“x k, = +0oc.

The sequence (F,) belongs to the domain of attraction of a non-degenerate distribution
function G if there exist real constants a,, > 0 and b,, n € N, such that

F,’f" (anx + bp) — G(x)

weakly as n — 20. In that case we shall use notation (Fy) € D(G).

Remark 4: Examples of sequences of distribution functions (Fy), such that (Fy) € D(G)
for extreme value distribution function G although none of distribution functions F;, belongs
to D(G), were given in Mladenovié [8, 9]. The limiting distribution of the maximal step
of a random permutation of the set N, is determined in Mladenovi¢ [8]. Necessary and
sufficient conditions under which a sequence of distribution functions (F,) belongs to D(A)
are given in Mladenovié [9]. The appearance of discrete distributions in Theorems 1 and 2

should not be considered as a surprise because of every non-degenerate distribution function
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can determine the limiting behavior of extreme values in double arrays of random variables
that are independent in each row.

Ezample 1 — Let G be a non-degenerate distribution function, and X,;,..., Xnn,n € N,
a double array of random variables such that the following condition is satisfied: for any n,
random variables Xp1,..., Xnn, are independent with the common distribution function

1+ %ﬂ, if G(z) 2 e™™,
Fuo(z) =
0, if G(z) <e™

Let M, = max{Xni,...,Xnn}. If G(z) > 0, than Fy(z) = 1+ %ﬂ for sufficiently
large n, and consequently we get as n — oo:

P{M, < z} = (Fa(z))" = (1 + lni(x))"
— elnG(::) — G(a:)

If G(z) = 0, then P{M, < z} = (Fu(z))™ = 0. Hence. the limiting distribution of M,
is determined by distribution function G.

Definition 3 — Let (k) be a sequence of positive integers such that k, — oo as n — oo.
A double array of random variables Xy;,1 < j < ky, where n € N, is strict stationary if it
is strict stationary in each row.

In the next part of this section we shall assume that k, = n. In that case a double array
will be called a triangular array.

Definition 4 — [Leadbetter (1974)] Let X,;,1 < j < n,n € N, be a strict stationary
triangular array, and (u,) a sequence of real numbers. The condition D(uy) is satisfied if
forall 1 < j; < - < Jk < Jk+1 <+ < Je+1 < n. where jp+1 — jx = I, the following
inequality holds

k k+l
P(n{an, S“n}) P ( ﬂ {Xnj, Sun})

s=1 s=k+1

k+l1
- P(ﬂ{an,Sun}>
s=1

and ap,lp, — 0 as n — oo for some I, = o(n).
Definition 5 — ([Loynes (1965)] Let Xpj,1 < j < n,n € N, be a strict stationary
triangular array, and (uy) a sequence of real numbers. The condition D’(u,) is satisfied if

S an.ln L]

fn/r}
lim limsup n- Z P{Xn1 > un, Xnj > un} =0.

T—=00 p—ooo ;
j=2

93
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Remark 5: Note that conditions D(u,) and D'(u,) were originally introduced for sta-
tionary random sequences.

Definition 6 — Let Xp;,1 < j < n,n € N, be a strict stationary triangular array of
random variables and F,(z) = P{Xy; < z} the common marginal distribution function of
random variables from the nth row. The associated triangular array of random variables
that are independent in each row is the triangular array X;,,1 < j < n,n € N, such that
for any n, random variables in the nth row are independent with the common distribution
function Fy,(z).

Let Xp,.1 < j < n,n € N, be a strict stationary triangular array of random variables,
and X;,,1 < j < n,n € N, the associated triangular array of independent random variables
in each row. Let us denote M,, = max{Xn1,...,Xnn} and M} = max{X},,.... X, }. The
next theorem gives conditions under which maxima M,, and M;; have the same asymptotic
distribution as n — oo with the same normalizing constants.

Theorem 3 — If X,1...., Xnn are stationary and m-dependent, un, = an + bp.an >
0.b, € R, satisfies the usual tail normalizing condition, and for i # j, the indicator functions
1 x,,>un} and l{x, su,) are negatively correlated or have correlation 0, then Leadbetter
conditions D(u,) and D’(uy) hold, and hence maxima have the same asymptotic distribu-
tion as if the sequence were i.i.d.

Proor: Condition D(uy) is an obvious consequence. Denote Fp(z) = P{Xn; < z}.
Suppose that n(1 — Fy(un)) ~ 7 € Rasn — oo. For j € {3,....,n— 1} we get

P{an > Up, Xn2 > Un} < P{an > 'un,an > un}
2
T
= (1 = Fa(un))® ~ —,88 1 — 0.

Consequently

[n/r] 72
n: Z P{an > Un,an > Un} ~ T,
i=2

as n — oo, and condition D'(u,) follows. Application of Theorem 3.5.2 from Leadbetter,
Lindgren and Rootzén [6] ends the proof.

4. PROOF OF THEOREMS 1 AND 2

Let X7,.... X}, be a sequence of n independent random variables which have the same
distribution as random variables X1, ..., Xnn that were introduced in section 2, i.e.

Pixg =1y =260

1
k
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where | € {1,2,...,k — 1}. Throughout this section we shall use the following notations:
F, — the common distribution function of random variables X,; and X;j, j € N, and

M; = max{X;,....Xn.}.

my = min{X,,...,Xn.}.

It is easy to verify that for any m € {1,...,k — 1}, the following equalities hold:

2m+1 m(m+1)
k k2

Fp(m) =

k2 —2mk—k+m2+m

Lemma 1 - (a) If n/k? — 0 as n — o0, then the following equality holds:

k e~ if x <0.
. I*< A — )
nh—“o’op{]v"~m ﬁ+k} {1. if > 0.

(b) If n/k? — a as n — oc, where 0 < a < +0oc, then the limiting distribution of My is
given by the following equality:

lim P{M, <k-1+z}=
n-—oc

e~lzl(=-De 5 <0,

{ 1, x>0

(c) If n/k? — oc as n — oo, then it is not possible to determine sequences a, > 0 and
b, € R, such limiting distribution of random variable (M,; — b,)/a, is a non-degenerate
one.

ProOF: (a) Let kK = k(n) be a sequence of positive integers such that n/k? — 0 as
n — oc. Let us denote u, = k + zk/\/n, where < 0 and rn, = un — [un]. Then
[un] = un —rn = k + xk//n — r, and consequently we get

n(1 — Fy(un)) = n(1 — Fa([ua]))

24 2zkrn+_:f_lg+r2_r
TR T

— 2% as n — 00.
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Now. it is easy to obtain that nli,moo P{M} < up} = e* for z < 0. Obviously; P{M} <

un} =1for alln € N and r > 0.

(b) Let k = k(n) be a sequence of positive integers such that n/k? — o, where 0 < o <
+oc. For any r < 0, we get

P{M:<k—-1+2} = {Fp(k—1+[z])}"

= (1 - %ﬁ)kwm)

— el 45— oo

For z > 0 and every n € N, we get P{M; <k—-1+z}=1.
(c) If k(n) is a sequence of positive integers such that n/k? — oo as n — oo, then the
statement of Lemma follows because of the following relations:

Folk—1) = 1,F(k—-2)=1-2/k?%

9 \ ¥ (n/k?)
(1 ) — 0,n — oco.

{Fu(k - 2)}" -5

PRrROOF OF THEOREM 1 — (a)—(b) Using Theorem 3, it is enough to note the following: If
n/k? — 0asn — oo and u, = k+ zk/\/n, where z < 0, then 1 — F,(u,) ~ 2?/n as n — oo.
Ifn/k? — .0 < o < +00, and up = k—1+x, where z < 0, then 1—Fy, (u,) = [z]([z]—1)/k?
as n — <.
(c) The statement is a consequence of Lemma 1 and 1-dependence. a
Lemma 2 — (a) If n/k — 0 as n — oo, then the following equality holds:

0, if ¢ <0,
lim P m;S$-£}= _ lx .
n—oo 2n 1—-e7% ifz>0.

(b) If n/k — 3 as n — oo, where 0 < 3 < +00, then the limiting distribution of random
variable m,, is given by

0 ifzx<0

. * _ 3 )

nlgglo P{my, < 2} = { 1—e~@EI+DE - if 7 > 0.
«¢) If n/k — oo as n — oo , then it is not possible to determine sequences a, > 0

and b, € R, such that the limiting distribution of random variable (m} — by)/an is a
non-degenerate one.
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PROOF : (a) Let k = k(n) be a sequence of positive integers such that n/k — 0 as
n — 0. For every z > 0 let us denote up = up(z) = ¢+ £, [up] = un —rp = - £ = 1y,
where 0 < 7, < 1. Then we get

P{ms <un} = P{my < [un]}

2[un n2 Un "
- (1o 2 )

z V" e
= 1-|1-=+o0|~— —1-e"
n n

as n — oc. Since P{m} <0} =(1-1/k)" > 0asn — o0, and P{m}, < z} = 0 for every
z < 0 and n € N, the statement of lemma follows.

(b) Let k = k(n) be a sequence of positive integers such that n/k — fasn — oo,
where 0 < 3 < +00. For any x > 1 and k — 1 > z. the following equalities hold

P{m}i <z} = 1-(1-Fy([2])"

2] +1  [2]([z] + 1) \*™/F)
= 1- (1— A + 2 )

and we get P{m} <z} —1-— e~ 1B a5 n — 00, For 0 < z < 1, we obtain that

P{m; <z} = P{m; <0}=1-(1-F,(0)"

1\ F(n/k)
1—(1—;) —al—e’a,asn-u)o.

Obviously, P{my, < z} =0 for any = < 0.

(c) Let k = k(n) be a sequence of positive integers such that n/k — oo and k — oo as
n — 0o. Then, for every x > 0 the following relations hold:

P{m}<g} > P{my=0}=1-(1~Fy(0)"

= 1—(1-1/k)*™* 51, asn — co.

Since P{m}, < z} = 0 for z < 0 and any n € N, the statement of this part of Lemma
follows. O

PROOF OF THEOREM 2 — If n/k — 0 as n — oo, and u, = zk/(2n) where z > 0,
then Fy(up—) ~z/nasn — oco. If n/k — 3,0 < 8 < +00, as n — oo, and u, = T where
x> 0, then Fy,(up—) ~ C(z)/n as n — oo for some constant C(z). Statements (a) and (b)
follow from Lemma 2, and modification of Theorem 3 for minima. The statement (c) is a
consequence of Lemma 2 and 1-dependence. O
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