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Let a denote an ideal of a complete Noetherian local ring (R, m) and M and N two
R-modules. For a positive integer ¢, we show that

Homp(R/a, Homp(H; (M, N), Er(R/M)))
is finitely generated whenever M is finitely generated of finite projective dimension
and
(a) Hg(M , N) is Artinian for all § > ¢; and,
(b) t > Pdg(M) where Pdr(M) is the projective dimension of M.

Hence, the set CoassHE(M, N)NV (a) is finite where V (a) denotes the set of all prime
ideals of R containing a. This implies thatif d =dim N > 1 and N is finitely generated
then the set CoassHI~1(N) N V(a) is finite.

Key Words: Local Cohomology Modules; Generalized Local Cohomology Modules; Associated
Primes; Co-Associated Prime

1. INTRODUCTION

Suppose that R is a Noetherian ring, a is an ideal of R and N is an R-module. The ith local
cohomology module of IV with respect to a is defined as

Hi(N) = limExt%(R/a", N).
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The reader can refer to [4], for the basic properties of local cohomology modules.

In [11], Huneke asked whether the number of associated prime ideals of a local cohomology
module H:(R) is always finite. If R is regular local containing a field then Hi(R) has only
finitely many associated primes for all + > 0, cf. [12] (in the case of positive characteristic),
[17] (in characteristic zero) and [18] (in characteristic free). In [22], Singh has given an example of
Noetherian non-local ring R and an ideal a such that H3(R) has infinitely many associated primes.
More recently, in [13], Katzman constructed a hypersurface S and an ideal a such that H2(S) has
infinitely many associated primes (see also [23]).

On the other hand, Brodmann and Lashgari [3] and the present author with Salarian {15] have
shown that the first non finitely generated local cohomology module H:(N) of finitely generated
module N with respect to an ideal a has only finitely many associated primes. For some other work
on this question, we refer the reader to [20], [21], [8] and [7].

There have been four attempts to dualize the theory of associated prime ideals by Macdonald
[19], Chambless [5], Zoschinger [26] and Yassemi [25]. In [25], it is shown that, in the case the ring
R is Noetherian, these definitions are equivalent. Let (R, m) be a local ring and E = Egr(R/m),
the injective hull of R/m. Following [25], we define a prime p to be a coassociated prime of N if
p is an associated prime of D(V), where D( ) is the Matlis’ dual functor Hompg( , F). Hence, the
natural question concerning with local cohomology theory is "when the set of Coassociated primes
of local cohomology module H:(N) is finite” (cf. [6, Lemma 3], [9] and [14, 2.6]). Delfino and
Marley, in [6, Lemma 3], showed that, if (R, m) is a complete Noetherian local ring, a an ideal of
R and N a finitely generated R-module of dimension d, then

CoassHY(N) = {p € V(AnnN)|dimR/p = d and v/a + p = m}.

In this paper, we show that if R is a complete Noetherian local ring and N has positive Krull
dimension such that H, g (IN) is Artinian for all j > ¢ and for some positive integer ¢, then Hompg(R/a,
D(HE(N))) is finitely generated and so CoassH'a(N) NV (a) is finite. This result ”in some sense”
is dual of the main result of [3] and [15] which we mentioned above.

A generalization of local cohomology functors has been given by Herzog in [10] (see also [24]
and [2]). For each i > 0, the functor H:( , ) defined by

H}(M,N) = lim Ext}(M/a"M, N),

for all R-modules M and N. Clearly, this notion is a generalization of usual local cohomology
functor. There are not many results concerning the finiteness of associated primes of this generalized
local cohomology modules (cf. [1] and [16]). In this paper, we prove the following theorem.

Theorem 1.1—Suppose that a is an ideal of a complete Noetherian local ring R, M a non-zero
finitely generated R-module of finite projective dimension, and N an R-module. Also, suppose that
t is a positive integer such that

(a) HI(M, N) is Artinian for all j > ¢; and,
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(b) t > Pdgr(M) where Pdr(M) is the projective dimension of M.
Then Hompg(R/a, D(H{(M, N))) is finitely generated and so, the set

CoassH!(M,N) UV (a)

is finite where V' (a) denotes the set of all prime ideals of R containing a.

Throughout this paper, all rings are non trivial commutative rings unless an additional condition
is considered. For an R-module X,Pdg(X) stands for projective dimension of X. We use N
(respectively Ny) to denote the set of positive (non-negative) integers. All other notations are
standard.

2. COASSOCIATED PRIMES OF GENERALIZED LOCAL COHOMOLOGY MODULES

We now briefly recall some basic properties of generalized local cohomology modules.
(1) Let M and N be finitely generated R-modules, a an ideal of R and I3, be an injective
resolution of N. According to [24] one has

HY(M,N) = H'(Ty(Hompg(M, I%))) = H'(Hompg(M,T(I%))) for all 4.

(2) Let ay,...,a, be a generating set of a, and let K¢ denote the Koszul complex of R with
respect to af,...,al,. Let P, be a projective resolution for M. If C! denotes the total complex
associated to the double complex K! ®g P,, then by [10, Satz 1.1.6] we have

H(M,N) = lim Hompg(C:N)) for all 4.
tNg
(3) From the definition of generalized local cohomology and (2) it follows easily that for any
exact sequence 0 — W — X — Y — 0, and any finitely generated R-modules N and M
we have the following long exact sequences

0 — HY(M,W) — H(M,X) — H(M,Y) — H:(M,W) — ...,

and
0 — HY(Y,N) — H%(W,N) — HY(W,N) — HL(Y,N) — ....

Definition 2.1—(See [25].) Let (R, m) be a local ring, M an R-module and £ = Eg(R/m),
the injective hull of R/m. We define a prime ideal p of R to be a coassociated prime of M if p is an
associated prime of D(M) where D( ) is the Matlis’ dual functor Homp( , E). We denote the set
of coassociated prime of M by Coassg M (or simply CoasspM if there is no ambiguity about the
under ring).

Note that CoassM = ¢ if and only if M = 0.

Now, we prove the main result of this paper which is a dual of the main result of [3] ”in some
sense”.

249



250 KAZEM KHASHYARMANESH

Theorem 2.2—Suppose that a is an ideal of a complete Noetherian local ring R, M a finitely
generated R-module of finite projective dimension, and N an R-module. Also, suppose that ¢ is a
positive integer such that

(a) H{(M, N) is Artinian for all j > ¢; and,

(b) t > Pdp(M).

Then Hompg(R/a, D(H!(M, N))) is finitely generated and so, the set

CoassH:(M, N) NV (a)

is finite.

PROOF: Set d := dim N. We use induction on d. In the case d = 0, by [2, 5.2], H};(M, N)=0
for all 1 > Pdr(M). If M is projective, then H:M, N = 0, because t > 0. Now suppose, in-
ductively, that Pdg(M) > 0 and consider the exact sequence 0 — M’ — P — M — 0 in
which P is projective and Pdg(M’) = Pdg(M) — 1. Thus, by [2, 5.2], we get Hi(M',N) =
HY*Y(M,N) for all i € a. Now, by inductive hypothesis, Homg(R/a, D(H:™1(M', N))) is
finitely generated and so, Homg(R/a, D(HL(M, N))) is finitely generated too. This complete
our inductive step in the case d = 0.

Suppose, inductively, that d > 1 and the assertion is true for every finitely generated R-module
with Krull dimension less than d and N is a finitely generated R- module of Krull dimension d. Set
L := N/T'(N) and consider the exact sequence

0 —T4(N)—-N—L-—0
to deduce the exact sequence
Hy(M,To(N)) — Hy(M,N) — Hy(M,L) — H*'(M,Ta(N)).

Since t > Pdgr(M), by [16, 2.2], Hi(M,T4(N)) = Exth(M,Te(N)) = 0 for all 4 > ¢ and
so HY(M,N) = H:(M, L) for all i > t. Hence, we can (and do) assume that N is an a-torsion-
free R-module. So a contains an element z which is a non-zerodivisor on N. Now, by applying
the functor Hi(M, ) on the exact sequence 0 — N =+ N — N/zN — 0, we conclude
that the generalized local cohomology module H:(M, N/zN) is Artinian for all i > t. Since
dim N/zN < d, by inductive hypothesis, Homg(R/a, D(H{(M, N/xN))) is finitely generated.
Also, the short exact sequence 0 — N — N — N /zN — 0 provides an exact sequence

HY{(M,N) = HY(M,N) — HY{(M,N/zN) — HY(M, N)
which, in turn, yields the following exact sequence
D(HL (M, N) - D(HY(M, N/zN)) L5 D(HL(M,N)) - D(HL(M, N)).

Since R is complete and H:*!(M, N) is Artinian, Img is finitely generated. By breaking the above
exact sequence in two exact sequences

0 — Img — D(H!(M, N/zN)) — Imf —» 0
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and
0 — Imf — D(H(M,N)) = D(H!(M, N)),

and applying the left exact functor Hompg(R/a, ) on them, we deduce the exact sequence
Hompg(R/a, D(H{(M, N/zN))) — Homg(R/a,Imf) — Extk(R/a,Img)

and an isomorphism Homg(R/a, D(H!(M, N))) = Hompg(R/a,Imf). Therefore Hompg(R/a, D
(HL(M, N))) is finitely generated. Hence

Ass Homp(R/a, D(HY(M,N))) = AssD(H!(M,N)) N Supp(R/a)
= AssD(HY{(M,N))NV(a)
= CoassHL(M,N) NV (a)
is finite. This complete the proof of theorem. O
Now, the following corollary is immediately consequence from 2.2.
Corollary 2.3—Suppose that a is an ideal of a complete Noetherian local ring R, and N an
R-module. Also, suppose that ¢ is a positive integer such that H, g (N) is Artinian for all j > ¢. Then
Hompg(R/a, D(HL(N))) is finitely generated and so, the set CoassH:(N) N V (a) is finite.

Corollary 2.4—Suppose that a is an ideal of a complete Noetherian local ring R, and N a finitely
generated R-module such that d = dim N > 1. Then

Homp(R/a, D(HEY(N)))

is finitely generated and so, the set CoassH3~1(N) NV (a) is finite.
PROOF: It follows from [4, 7.1.7] and Theorem 2.2. O

For an R-module N, the cohomological dimension of N with respect to a is defined as
cd(a, N) := max{i € Z|H.(N) # 0}.

Corollary 2.5—Suppose that a is an ideal of a complete Noetherian local ring R, and NV a finitely
generated R-module. Set ¢ := cd(a, N). Then

Homp(R/a, D(Hg(N)))
is finitely generated and so, the set CoassHS(N) NV (a) is finite.
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