
Indian J. Pure Appl. Math.,43(4): 323-342, August 2012

c© Indian National Science Academy

THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF AN INITIAL

BOUNDARY VALUE PROBLEM FOR THE GENERALIZED

BENJAMIN-BONA-MAHONY EQUATION1

Huiping Cui

∗Basic Department,Guangdong Pharmaceutical University, Guangzhou510006,

Peoples’ Republic of China

(Received11June2010;after final revision8 February2012;

accepted14May2012)

The asymptotic behaviors of solutions of an initial-boundary value problem

for the generalized BBM equation with non-convex flux are discussed in this

paper. It is proved that under the conditions of constant boundary data and

small perturbation for the initial data, the global solutions exist and converge

time-asymptotically to a stationary wave or the superposition of a stationary

wave and a rarefaction wave. The proof is given by a technicalL2-weighted

energy method.

Key words : Asymptotic behaviors; generalized BBM equation; initial-

boundary value problem; stationary solution; rarefaction wave.

1This work was supported by National Natural Science Foundation of China (grant number:

10571075 , 10871082)



324 HUIPING CUI

1. INTRODUCTION

Consider the initial-boundary value problem of the generalized Benjamin-Bona-

Mahony equation as follows:





ut + f(u)x = uxx + uxxt, x > 0, t > 0

u(x, t)|x=0 = u−, t ≥ 0

u(x, t)|t=0 = u0(x) =





u−, x = 0

u+, x →∞,

(1.1)

whereu± are constant satisfyingu− < u+ andf satisfies:




f ∈ C2

f(0) = f ′(0) = 0, f ′′(0) > 0

f(u) > 0, u ∈ [u−, 0).

(1.2)

We also assume the initial datau0 satisfies the compatibility condition:

u(0) = u−. (1.3)

The equation of type(1.1)1 is related to the well-known BBM equation, which

was advocated by Benjamin-Bona-Mahony [1] as a model in the study of unidi-

rectional long waves of small amplitudes in water. It has been used to account

adequately for observable phenomena such as the interaction of solitary waves and

dissipationless, undular shocks. In recent years, the generalized BBM equation has

been the subject of numerous investigations.(A complete literature in this direction

is beyond the scope of this paper, however, we want to mention [2-6, 8-12]. For the

corresponding results on some related models such as the scalar conservation law,

the Korteweg-de Vries-Burgers equation, the Navier-Stokes equations, the psedo-

parabolic equation etc., see [7, 13-28] and the references cited therein.) In the

case of the convex flux functions, the Cauchy problems, the initial boundary value

problems and the large time behaviors of solutions to the initial value problem for
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various generalized BBM equation have been studied, cf. [3, 6-9]. Under certain

assumptions bothL2 andL∞ rates of decay of the solutions to these problems were

established, cf. [4, 5, 10-12].

When the flux function is non-convex, the problem becomes complex and dif-

ficult. Recently, Hasimoto-Matsumura [13] investigated the large time behavior of

the solution to the initial-boundary value problem in the half-space for scalar Burg-

ers equation without convexity. Motivated by theL2-weighted energy method in

[13], our present paper is devoted to studying the existence and the asymptotic be-

havior of global solutions of the generalized BBM equation (1.1) with non-convex

flux function. Under the conditions that

u− < u+ ≤ 0 and f(u+) < f(u) for u ∈ [u−, u+) (1.4)

andu− < 0 < u+, respectively (the function in both cases is as shown in the figure

below), using anL2-weighted energy method as in [13], we prove that solutions for

the initial-boundary value problem (1.1) exist and converge time-asymptotically to

a stationary wave and the superposition of a stationary wave and a rarefaction wave.

Notations: Hereafter, we denote several generic positive constants depending

on a, b, ... by Ca,b,... or simply byC. Lp = Lp(R+)(1 ≤ p ≤ ∞) denotes the

usual Lebesgue space onR+ = (0,∞) with its norm

‖ f ‖Lp= (
∫

R+

|f(x)|pdx)
1
p , 1 ≤ p < ∞, ‖f‖L∞ = sup

x∈R+

|f(x)|.

Hm,p(m ≥ 0, 1 ≤ p < +∞) denotes the usual Sobolev space with the norm

‖ f ‖Hm,p= (
m∑

j=0

‖ ∂j
xf ‖p

Lp)
1
p .



326 HUIPING CUI

SetHm = Hm,2. For simplicity, we write‖ · ‖Hm = ‖ · ‖m and‖ · ‖L2 = ‖ · ‖.
For brevity,‖f(·, t)‖ and‖f(·, t)‖m are denoted by‖f(t)‖ and‖f(t)‖m, respec-

tively. Let T be a positive constant and letB be a Banach space,Ck([0, T ]; B)
denotes the space ofB-valuedk-times continuously differentiable functions on

[0, T ] andL2([0, T ]; B) denotes the space ofB-valuedL2 functions on[0, T ]. We

also denote byH1
0 = H1

0 (R+) the space of functionsf ∈ H1 with f(0) = 0, as a

subspace ofH1(R+).

2. MAIN RESULTS

In this section, we present our main results. Corresponding to the casesu− <

u+ ≤ 0 andu− < 0 < u+, we divide this section into two cases. Throughout

this section, we always assume the condition (1.2) and (1.3) hold. By the condition

(1.2) and the properties of continuous function, there exist positive constantsr, ν

such that

f ′′(u) ≥ ν > 0 for |u| ≤ r, and f(u) ≥ ν for u ∈ [u−,−r]. (2.1)

Case1 : Converge Asymptotically to a Stationary Wave

Whenu± satisfy the condition (1.4), we will prove that the solutions converge

time-asymptotically to a stationary waveφ(x) for the problem (1.1). Hereφ(x) is

the following boundary value problem of the ordinary differential equation:




f(φ)x = φxx, x > 0

φ(0) = u−, φ(+∞) = u+.
(2.2)
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For the properties of the solutionφ(x) to the boundary value problem (2.2), we

have the following lemma, which is proved in the same way as in [2,7,14].

Lemma2.1 — Assume (1.2) and (1.4). Then the boundary value problem (2.2)

has a unique solutionφ ∈ C3([0,∞)) satisfying




u− < φ(x) < 0, φx(x) > 0, x > 0

|φ(x)− u+| ≤ Ch(ũ)(1 + x)−1, x > 0

|∂k
xφ(x)| ≤ Ch(ũ)(1 + x)−2 (k = 1, 2), x ≥ 0

for the casef ′(u+) = 0 and




u− < φ(x) < u+, φx(x) > 0, x > 0

|φ(x)− u+| ≤ Ch(ũ) exp (−|f ′(u+)|x), x > 0

|∂k
xφ(x)| ≤ Ch(ũ) exp (−|f ′(u+)|x) (k = 1, 2), x ≥ 0

for the casef ′(u+) < 0, whereC is a constant,̃u = u+ − u−, h is a function ofũ

satisfying lim
ũ→0h(ũ) = 0.

Setu(x, t) = φ(x) + v(x, t), whereφ = φ(x) is the stationary solution ob-

tained in Lemma 2.1, then the problem (1.1) can be reformulated as




vt + (f(φ + v)− f(φ))x = vxx + vxxt, x > 0, t > 0

v(0, t) = 0, t ≥ 0

v(x, 0) = v0(x) := u0(x)− φ(x), x > 0.

(2.3)

For the existing of the weak solutions, the interested reader is referred to [28-

30] and the references cited therein. We want to seek the solution of (2.3) in Banach

space:

X(0, T ) = {v|v ∈ C([0, T ]; H2
0 ) ∩ C1([0, T ];H1)},

where0 < T < ∞.

Our main result in the case (1.4) can be stated as follows.
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Theorem2.2— (Asymptotics to the Stationary Wave) Assume (1.2), (1.3), (1.4)

andv0 ∈ H2. If there exists a positive constantη such that‖v0‖2
H2 + h(ũ) ≤ η,

then the problem (2.3) has a unique global solutionv ∈ X(0,∞) satisfying

lim
t→∞ sup

x∈R+

|∂
iv(x, t)
∂xi

| = 0 (i = 0, 1).

Here,h = h(ũ) sketch the strength of the stationary wave. The constantη is

used to sketch the smallness of the stationary wave and the initial perturbation to

control the growth of the solutionu.

Case2 : Converge Asymptotically to Superposition of a Stationary Wave and

a Rarefaction Wave

Under the conditionu− < 0 < u+, we expect that the asymptotic state of the

solution of (1.1) is the linear superposition of the corresponding stationary solution

φ connectingu− to 0 and the rarefaction waveϕR
1 connecting0 to u+. Next, we

give the definition ofφ andϕR
1 . The stationary solutionφ connectingu− to 0

for (1.1) is defined by Lemma 2.1 in whichu+ = 0. The rarefaction waveϕR
1

connecting0 to u+ for (1.1) is defined by the restriction ofψR on the half line

ψR(x
t )|x>0, whereψR is the solution of the following Riemann problem for the

Burgers equation:




ut + f(u)x = 0, −∞ < x < ∞ t > 0

u(x, 0) =





0, x > 0

u+, x < 0.

Under the condition (2.1),ψR is exactly given by

ψR(x
t ) =





0, x ≤ 0

(f ′)−1(x
t ), 0 ≤ x ≤ f ′(u+)t

u+, x ≥ f ′(u+)t.

Because of the non-smoothness ofψR, as in the previous paper [2,13-15], we

first make a smooth approximation of the rarefaction waveϕR
1 . Let w(x, t) be the
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unique smooth solution of the Cauchy problem:




wt + wwx = 0, −∞ < x < ∞, t > 0

w(x, 0) = w10(x) = w+ · kq

∫ x
0 (1 + y2)−qdy = 1, q > 1

2 ,

wherekq

∫∞
0 (1 + y2)−qdy = 1. We define the smooth approximation ofϕR

1 by

ϕ = ϕ(x, t) = (f ′)−1(w(x, t))|x>0.

Then as in [14,15], we have the following lemma forϕ.

Lemma2.3 — Assume thatf ∈ C2, f ′′ > 0, f(0) = f ′(0) = 0 andu+ > 0,

thenϕ satisfying




ϕt + f(ϕ)x = 0, x, t > 0

ϕ(0, t) = 0, t ≥ 0

ϕ(x, 0) = ϕ0(x) := (f ′)−1(w0(x, t)) =





0, x = 0

→ u+, x →∞
and

(i) 0 = u− < ϕ(x, t) < u+, ϕx(x, t) > 0 for t ≥ 0, x > 0;

(ii) for any p (1 ≤ p ≤ ∞), there exists a constantCp,q such that

‖ϕx(t)‖p
Lp ≤ Cp,qh(u+)(1 + t)−p+1,

‖ϕxx(t)‖p
Lp ≤ Cp,qh(u+)(1 + t)−p− p−1

2q ,

‖ϕxxt(t)‖p
Lp ≤ Cp,qh(u+)(1 + t)−p− 2p−1

2q ,

‖ϕxxtt(t)‖p
Lp ≤ Cp,qh(u+)(1 + t)−p− 3p−1

2q ;

(iii) there exists a constantCq such that

‖ϕ2
xx

ϕx
(t)‖L1 ≤ Ch1(u+)(1 + t)−1− 1

2q ,

‖ϕ2
xxt
φx

(t)‖L1 ≤ Ch1(u+)(1 + t)−1− 1
q ,
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whereh1 is a function ofu+ satisfying lim
u+→0

h1(u+) = 0;

(iv) lim
t→∞ sup

x∈R+

|ϕ(x, t)− ϕR
1 (x, t)| = 0.

Set

Φ(x, t) = φ(x) + ϕ(x, t). (2.4)

Substituting (2.4) into(1.1)1 , we have

Φt + f(Φ)x − Φxx − Φxxt = −F (φ, ϕ), (2.5)

whereF (φ, ϕ) = −(f ′(φ+ϕ)−f ′(φ))φx− (f ′(φ+ϕ)−f ′(ϕ))ϕx +ϕxx +ϕxxt.

Let v(x, t) = u(x, t) − Φ(x, t) = u(x, t) − φ(x) − ϕ(x, t), then the problem

(1.1) is reformulated in the form




vt + (f(Φ + v)− f(Φ))x − vxx − vxxt = F (φ, ϕ), x > 0, t > 0

v(0, t) = 0, t ≥ 0

v(x, 0) = v0(x) := u0(x)− φ(x)− ϕ(x, 0), x > 0.

(2.6)

Our main result in the caseu− < 0 < u+ can be stated as follows.

Theorem2.4— (Asymptotic to Superposition of a Stationary Wave and a Rar-

efaction Wave) Assume (1.2), (1.3),u− < 0 < u+ < r andv0 ∈ H2. Then, there

exists a positive constantη such that, if‖v0‖2
H2 +d0 ≤ η, then the initial-boundary

value problem (2.6) has a unique global solutionv ∈ X(0,∞) satisfying

lim
t→∞ sup

x∈R+

|∂
iv(x, t)
∂xi

| = 0 (i = 0, 1),

wherer is defined by (2.1),d0 = max{h(−u−), h1(u+)}, h andh1 are defined by

Lemma 2.1 and Lemma 2.3, respectively.

3. THE PROOF OFMAIN RESULTS

In this section, we will prove our main results. For brevity, we only prove Theorem

2.4 in details. Theorem 2.2 can be proved in the same way as the proof of Theorem

2.4.
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The proof of Theorem 2.4 combines the local existence results with the a priori

estimates. We now state the local existence result as follows.

Proposition3.1 — (Local Existence) Under the assumptions of Theorem 2.4,

the problem (2.3) has a unique solutionv(x, t) ∈ X(0, t0), wheret0 depends only

on‖v0‖H2 .

Similar to [10], we can prove Proposition 3.1 by a standard iterative method,

we omit the proof of Proposition 3.1. To extend the local solutionv(x, t) obtained

in globally, we need the a priori estimate as follows.

Proposition3.2 — (a Priori Estimate) Suppose thatv(x, t) ∈ X(0, T ) is a

solution of the problem (2.6) for some positive constantT with

N(T ) = sup
t∈[0,T ]

‖v(t)‖2
2 ≤ δ2, 0 < δ ¿ 1. (3.1)

If ‖v0‖2
H2 + d0 is sufficiently small, then it holds

‖v(t)‖2
2 +

∫ t
0 (‖√Φxv(τ)‖2 + ‖vx(τ)‖2

1 + ‖vt(τ)‖2
1)dτ ≤ C(‖v0‖2

2 + d
1
6
0 ),
(3.2)

whereC is a positive constant independent ofT .

We shall prove Proposition 3.2 by anL2-weighted energy method. Because

the flux functionf is not convex, we can not use the standardL2-energy method

directly to derive the a priori estimate ofv andvx in (3.2). We now give a simple

explanation. Sincev andu+ is sufficiently small in thea Priori estimate (3.2), the

linear problem of (2.3) withu+ = 0 (accordingly,Φ(x, t) = φ(x)) can be taken

as: 



vt + (f ′(φ)v)x = vxx + vxxt, x > 0, t > 0

v(0, t) = 0, t ≥ 0

v(x, 0) = v0(x), x > 0, v0 ∈ H2.

(3.3)

Let v ∈ C([0, T ]; H2
0 ) ∩ C1([0, T ]; H1) be a solution of (3.3). Multiply (3.3)

by v and integrate the resulting equation with respect tox over(0,∞). Then from
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the integration by parts, we have

d

dt

∫ ∞

0

1
2
(v2 + v2

x)dx +
1
2

∫ ∞

0
f ′′(φ)φxv2dx +

∫ ∞

0
v2
xdx = 0. (3.4)

If we note φx > 0, the estimate of (3.4) works well in the casef ′′ > 0,

but not in the case thatf is not convex becausef ′′ changes its sign. In order to

overcome the above difficulty, we try to apply a weighted energy method as in

[13], where in order to show the asymptotic stability of solutions for non-convex

Burgers equation, a weight functionw is manipulated as a function of the solution

φ for (2.2). Here we choose the same weight functionw as in [13] byw = w(u) =
f(u) + δg(u), whereg(u) = −u2m + r2m, δ > 0 andm ≥ 1 are constant. Now

we state the following lemma about the weight function.

Lemma3.3 — (Weight Function) Under the condition (1.2), if we takeδ suffi-

ciently small andm sufficiently large, then it holds

1
2
(f ′′(u)w(u)− f(u)w′′(u)) > 0, w(u) > 0 for u ∈ [u−, r].

Motivated by the argument in [13], we introduce a new unknown functionṽ by

v(x, t) = w(Φ(x, t))ṽ(x, t), (3.5)

whereΦ(x, t) = φ(x)+ϕ(x, t), w = f + δg is the weight function in Lemma 3.3.

We note thatw is well defined by Lemma 3.3, that is, smooth and satisfied

ν ≤ w(Φ(x, t)) ≤ C, C1 ≤ (w′
w )(Φ) ≤ C2, x ≥ 0, t ≥ 0 (3.6)

for some positive constantsC, C1 andC2.

Next, we proceed to prove Proposition 3.2. The proof of Proposition 3.2 can

be obtained by a series of lemmas.

Lemma3.4 — Under the assumption of Proposition 3.2, the following estimate

is valid:

‖v(t)‖2
1 +

∫ t
0 (‖√Φxv(τ)‖2 + ‖vx(τ)‖2)dτ

≤ C(‖v0‖2
1 +

∫ t
0 ‖F (τ)‖

4
3

L1dτ + d0 + ε
∫ t
0 ‖vxx(τ)‖dτ + d0

∫∞
0 ‖vt(τ)‖2)dτ,

(3.7)
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whereε is a sufficiently small positive constant.

PROOF : Substituting (3.5) into(2.6)1 and multiplying the resulting equation

by ṽ, we obtain after integrating it over[0,∞) that

∫∞
0 (w(Φ)ṽ)tṽdx +

∫∞
0 (f(Φ + w(Φ)ṽ)− f(Φ))xṽdx

− ∫∞
0 (w(Φ)ṽ)xxṽdx− ∫∞

0 (w(Φ)ṽ)xxtṽdx =
∫∞
0 F ṽdx.

(3.8)

We rewrite the second term on the left hand side of (3.8) as

∫∞
0 (f(Φ + w(Φ)ṽ)− f(Φ))xṽdx

= − ∫∞
0 (f(Φ + w(Φ)ṽ)− f(Φ))ṽxdx

=
∫∞
0 − w′

w2 (
∫ Φ+wṽ
Φ f(s)ds− f(Φ + wṽ)wṽ)Φxdx

+
∫∞
0

1
w (f(Φ + wṽ)− f(Φ)− f ′(Φ)wṽ)Φxdx

=: I3 + I4.

We further rewriteI3 andI4 by the Taylor’s formula as

I3 =
∫∞
0

1
2w′f ′(Φ + wṽ)ṽ2Φxdx

− ∫∞
0

w′
w2 (

∫ Φ+wṽ
Φ f(s)ds− f(Φ + wṽ)wṽ + 1

2f ′(Φ + wṽ)w2ṽ2)Φxdx

=
∫∞
0

1
2w′f ′(Φ)Φxṽ2dx +

∫∞
0 O(|ṽ|)Φxṽ2dx,

I4 =
∫∞
0

1
2wf ′′(Φ)ṽ2Φxdx

+
∫∞
0

1
w (f(Φ + wṽ)− f(Φ)− f ′(Φ)wṽ − 1

2f ′′(Φ)w2ṽ2)Φxdx

=
∫∞
0

1
2wf ′′(Φ)Φxṽ2dx +

∫∞
0 O(|ṽ|)Φxṽ2dx.

Hence, we have

∫∞
0 (f(Φ + w(Φ)ṽ)− f(Φ))xṽdx

=
∫∞
0

1
2(wf ′′ + w′f ′)(Φ)Φxṽ2dx +

∫∞
0 O(|ṽ|)Φxṽ2dx.

(3.9)
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We also rewrite the third term on the left hand side of (3.8) as

− ∫∞
0 (w(Φ)ṽ)xxṽdx =

∫∞
0 (wṽ2

x − 1
2w′Φxxṽ2 − 1

2w′′Φ2
xṽ2)dx

=:
∫∞
0 wṽ2

xdx + I5 + I6.
(3.10)

Now, recalling the relationΦt + f(Φ)x − Φxx − Φxxt = −F (φ, ϕ) andφx =
f(φ), we further rewriteI5 as

I5 =
∫∞
0 (−1

2w′f ′(Φ)Φx − 1
2w′ϕt − 1

2w′F + 1
2w′ϕxxt)ṽ2dx, (3.11)

andI6 as

I6 = − ∫∞
0

1
2w′′(φx + ϕx + f(Φ)− f(φ + ϕ))Φxṽ2

xdx

= −1
2

∫∞
0 w′′f(Φ)Φxṽ2dx− 1

2

∫∞
0 w′′Φxṽ2(f(φ)− f(φ + ϕ) + ϕx)dx

= − ∫∞
0

1
2w′′f(Φ)Φxṽ2dx +

∫∞
0 O(|ϕ|+ |ϕx|)Φxṽ2dx.

(3.12)
Substituting (3.11) and (3.12) into (3.10), we have

− ∫∞
0 (w(Φ)ṽ)xxṽdx

=
∫∞
0 −1

2(w′′f + w′f ′)(Φ)Φxṽ2dx +
∫∞
0 O(|ϕ|+ |ϕx|)Φxṽ2dx

+
∫∞
0 (−1

2w′ϕtṽ
2 + wṽ2

x − 1
2w′F ṽ2 + 1

2w′ϕxxtṽ
2)dx.

(3.13)

We also rewrite the fourth term on the left hand side of (3.8) as

− ∫∞
0 (w(Φ)ṽ)xxtṽdx = −(w(Φ)ṽ)xtṽ|∞0 +

∫∞
0 (w(Φ)ṽ)xtṽxdx

=
∫∞
0 (w′ϕtṽ + wṽt)xṽxdx = − ∫∞

0 (w′ϕtṽ + wṽt)ṽxxdx

= − ∫∞
0 w′ϕtṽṽxxdx +

∫∞
0 w′Φxṽtṽxdx + d

dt

∫∞
0

1
2wṽ2

xdx− ∫∞
0

1
2w′ϕtṽ

2
xdx.

(3.14)
Combining (3.8)-(3.14), we have

d
dt

∫∞
0

1
2w(ṽ2 + ṽ2

x)dx +
∫∞
0

1
2(wf ′′ − w′′f)(Φ)Φxṽ2dx +

∫∞
0 wṽ2

xdx

=
∫∞
0 (F ṽ + 1

2w′F ṽ2)dx− ∫∞
0

1
2w′ϕxxtṽ

2dx− ∫∞
0 O(|ṽ|+ |ϕ|+ |ϕx|)ṽ2Φxdx

+
∫∞
0 (−w′Φxṽtṽx + 1

2w′ϕtṽ
2
x)dx +

∫∞
0 w′ϕtṽṽxxdx.

(3.15)
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Using the Sobolev’s inequality and Lemma 2.3 easily gets

| ∫∞0 O(|ṽ|+ |ϕ|+ |ϕx|)Φxṽ2dx| ≤ C(N(T ) + h1(u+))
∫∞
0 Φxṽ2dx.

(3.16)
By the Sobolev’s inequality and Young’s inequality, one obtains

| ∫∞0 (F ṽ + 1
2w′F ṽ2)dx| ≤ C

∫∞
0 |ṽ||F |dx ≤ C‖ṽ‖ 1

2 ‖ṽ2
x‖

1
2 ‖F‖L1

≤ 1
8

∫∞
0 wṽ2

xdx + C‖F‖
4
3

L1 .

(3.17)

Due to Lemma 2.1 and Lemma 2.3, we can estimate the last three terms on the

right hand of (3.15) as follows, respectively.

| − ∫∞
0

1
2w′ϕxxtṽ

2dx| = | ∫∞0 1
2w′ ϕxxt√

ϕx

√
ϕxṽ2dx|

≤ ε0
8

∫∞
0 ϕxṽ2dx + Ch1(u+)(1 + t)−1− 1

q ,
(3.18)

| ∫∞0 (−w′Φxṽtṽx + 1
2w′ϕtṽ

2
x)dx| ≤ 1

8

∫∞
0 wṽ2

xdx + Cd0(
∫∞
0 wṽ2

t dx +
∫∞
0 wṽ2

xdx),
(3.19)∫∞

0 w′ϕtṽṽxxdx ≤ ε2

∫∞
0 wṽ2

xxdx + Ch1(u+)
∫∞
0 Φxṽ2dx, (3.20)

whereε0, ε are suitably small positive constant.

Substituting (3.16)-(3.20) into (3.15) and making use of (3.1), (3.6) obtain

d
dt

∫∞
0

1
2w(ṽ2 + ṽ2

x)dx + ν
∫∞
0 Φxṽ2dx + 3

4

∫∞
0 wṽ2

xdx

≤ C(N(T ) + h1(u+))
∫∞
0 Φxṽ2dx + ε1

8

∫∞
0 ϕxṽ2dx + Ch1(u+)(1 + t)−1− 1

q

+C‖F‖
4
3

L1 + ε2

∫∞
0 wṽ2

xxdx + Cd0(
∫∞
0 wṽ2

t dx +
∫∞
0 wṽ2

xdx),
(3.21)

whereν is a positive constant. Noticing (3.5), (3.6) and the fact

‖vx‖2 = ‖wxṽ + wṽx‖2 ≤ C(‖
√

Φxṽ‖2 + ‖ṽx‖2)

by takingN(T ) + d0 suitably small and integrating (3.21) with respect tot over

[0, t], we get the desired inequality (3.7).

Thus the proof of Lemma 3.4 is completed.
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Lemma3.5 — Under the assumption of Proposition 3.2, it holds

‖vx(t)‖2
1 +

∫ t
0 ‖vxx(τ)‖2dτ

≤ C(‖v0‖2
2 +

∫ t
0 (‖F‖

4
3

L1 + ‖F‖2)dτ + d0 + d0

∫∞
0 ‖vt‖2dτ).

(3.22)

PROOF: Multiplying (2.6)1 by−vxx and integrating the result over[0,∞), we

get
d
dt

∫∞
0

1
2(v2

x + v2
xx)dx +

∫∞
0 v2

xxdx

= − ∫∞
0 Fvxxdx +

∫∞
0 vxx(f(v + Φ)− f(Φ))xdx.

(3.23)

We estimate each term on the right hand side of (3.23) as

| − ∫∞
0 Fvxxdx| ≤ 1

8‖vxx‖2 + C‖F‖2, (3.24)

∫∞
0 vxx(f(v + Φ)− f(Φ))xdx ≤ 1

8‖vxx‖2 + C(‖√Φxv‖2 + ‖vx‖2). (3.25)

Substituting (3.24) and (3.25) into (3.23), we obtain

d
dt

∫∞
0

1
2(v2

x + v2
xx)dx + 3

4

∫∞
0 v2

xxdx ≤ C(‖F‖2 + ‖√Φxv‖2 + ‖vx‖2).
(3.26)

Integrating (3.26) with respect tot over[0, t] and combining the result with the

estimate (3.7), we can complete the proof of Lemma 3.5.

Lemma3.6 — Under the assumption of Proposition 3.2, it holds

‖v(t)‖2
2 +

∫ t
0 (‖√Φxv(τ)‖2 + ‖vx(τ)‖2

1dτ

≤ C(‖v0‖2
2 + h1(u+)

1
6 + d0 + d0

∫ t
0 ‖vt(τ)‖2dτ).

(3.27)

PROOF: Due to Lemma 3.4 and Lemma 3.5, we obtain

‖v(t)‖2
2 +

∫ t
0 (‖√Φxv(τ)‖2 + ‖vx(τ)‖2

1)dτ

≤ C(‖v0‖2
2 +

∫ t
0 (‖F‖

4
3

L1 + ‖F‖2)dτ + d0 + d0

∫∞
0 ‖vt‖2dτ).

(3.28)
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Now, following the arguments in [13], we estimate the terms‖F‖
4
3

L1 and‖F‖2

on the right hand side of (3.28). By Lemma 2.1 and Lemma 2.3, we have

‖φxϕ‖L1 ≤ C
∫ t
0

ϕ
(1+x)2

dx + C
∫∞
t

ϕ
(1+x)2

dx

≤ C( −ϕ
(1+x) |t0 +

∫ t
0

ϕx

(1+x)dx) + C‖ϕ‖L∞
∫∞
t

dx
(1+x)2

≤ C‖ϕx‖
1
8
L∞‖ϕx‖

7
8
L∞ log(2 + t) + Ch1(u+)

1
8 h1(u+)

7
8 (1 + t)−1

≤ Ch1(u+)
1
8 (1 + t)−

7
8 log(2 + t).

Similarly, we get

‖φϕx‖L1 + ‖ϕxx‖L1 + ‖ϕxxt‖L1 ≤ Ch1(u+)
1
8 (1 + t)−

7
8 log(2 + t),

‖φxϕ‖2 + ‖φϕx‖2 + ‖ϕxx‖2 + ‖ϕxxt‖2 ≤ Ch1(u+)
1
2 (1 + t)−

3
2 .

Hence, from the above estimates and the following inequality

|F (Φ)| ≤ C(|φϕx|+ |φxϕ|+ |ϕxx|+ |ϕxxt|,

it follows that

‖F‖
4
3

L1 ≤ Ch1(u+)
1
6 (1 + t)−

7
6 log(2 + t), (3.29)

‖F‖2 ≤ Ch1(u+)
1
2 (1 + t)−

3
2 . (3.30)

Substituting (3.29) and (3.30) into (3.28) obtains the desired estimate (3.27).

Lemma3.7 — Under the assumption of Proposition 3.3, it holds

‖vx(t)‖2 +
∫ t
0 ‖vt(τ)‖2dτ +

∫ t
0 ‖vxt(τ)‖2dτ ≤ C(‖v0‖2

1 + d
1
6
0 ). (3.31)

PROOF : Multiplying (2.6)1 by vt and integrating the result over[0,∞), we

have
d
dt

∫∞
0

1
2v2

xdx +
∫∞
0 v2

xtdx +
∫∞
0 v2

t dx

= − ∫∞
0 vt(f(v + Φ)− f(Φ))xdx +

∫∞
0 Fvtdx.

(3.32)
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The first term on the right hand side of (3.32) can be estimated as

| − ∫∞
0 vt(f(v + Φ)− f(Φ))xdx| ≤ ∫∞

0 C(|vx|+ |v|Φx)|vt|dx

≤ 1
4‖vt‖2 + C(‖vx‖2 + ‖√Φxv‖2).

(3.33)
By (3.30), we estimate the second term on the right hand side of (3.32) as

| ∫∞0 Fvtdx| ≤ 1
4‖vt‖2 + ‖F‖2

≤ 1
4‖vt‖2 + Ch1(u+)

1
2 (1 + t)−

3
2 .

(3.34)

Substituting (3.33) and (3.34) into (3.32), we have

d
dt

∫∞
0

1
2v2

xdx +
∫∞
0 v2

xtdx +
∫∞
0 v2

t dx

≤ C(‖vx‖2 + ‖√Φxv‖2 + h1(u+)
1
2 (1 + t)−

3
2 .

(3.35)

Integrating (3.35) with respect tot over[0, t] and combining the result with the

estimate (3.27), we obtain (3.31) for sufficiently small‖v0‖2
H2+d0. This completes

the proof of Lemma 3.7.

Now putting the estimates (3.27) and (3.31) together, we can get (3.2). This

completes the proof of Proposition 3.3.

In what follows, we prove Theorem 2.4.

PROOF: To prove that the problem (2.6) has a unique global solutionv(x, t) ∈
X(0,∞), we only need to verified the a priori estimate (3.1) holds, once we have

Proposition 3.2, we can take a suitably small constantη such that

Cη ≤ δ2

2
.

By Proposition 3.2, we have

‖v(t)‖2
2 ≤ C‖v0‖2

2 ≤ Cη ≤ δ2

2
.

This shows that the a priori assumption (3.1) is reasonable. So we have proved

that (2.6) has a unique global solution.
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In what follows, we shall provelim
t→∞ sup

x∈R+

|∂iv(x,t)
∂xi | = 0 (i = 0, 1).

Putg(t) = ‖vx(t)‖2. Then the inequality (3.2) yieldsg ∈ L1(0,∞) and dg
dt ∈

L1(0,∞), from which it follows that lim
t→∞ ‖vx(t)‖2 = lim

t→∞ g(t) = 0. Therefore,

by applying the Sobolev’s inequality, we get

sup
x∈R+

|v(x, t)| ≤ 2
1
2 ‖v(t)‖ 1

2 ‖vx(t)‖ 1
2 → 0 (t →∞),

sup
x∈R+

|vx(x, t)| ≤ 2
1
2 ‖vx(t)‖ 1

2 ‖vxx(t)‖ 1
2 → 0 (t →∞).

Thus the proof of Theorem 2.4 is completed.
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