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1. INTRODUCTION

Consider the initial-boundary value problem of the generalized Benjamin-Bona-
Mahony equation as follows:

.
up + f(u)y = Upg + Uggr, >0, t>0

u(z,t)|z=0 =u_, t>0

(1.1)
u_, =20
u(z,t)|e=0 = uo(z) =
Uy, T — OO0,
whereu are constant satisfying_ < u and f satisfies:
fecC?
0)=f'(0)=0, f"(0 0
J(0) = 10) =0, f(0) > 1)

f(u) >0, ueu_,0).

We also assume the initial datg satisfies the compatibility condition:
u(0) = u—. (1.3)

The equation of typél.1); is related to the well-known BBM equation, which
was advocated by Benjamin-Bona-Mahony [1] as a model in the study of unidi-
rectional long waves of small amplitudes in water. It has been used to account
adequately for observable phenomena such as the interaction of solitary waves and
dissipationless, undular shocks. In recent years, the generalized BBM equation has
been the subject of numerous investigations.(A complete literature in this direction
is beyond the scope of this paper, however, we want to mention [2-6, 8-12]. For the
corresponding results on some related models such as the scalar conservation law,
the Korteweg-de Vries-Burgers equation, the Navier-Stokes equations, the psedo-
parabolic equation etc., see [7, 13-28] and the references cited therein.) In the
case of the convex flux functions, the Cauchy problems, the initial boundary value
problems and the large time behaviors of solutions to the initial value problem for
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various generalized BBM equation have been studied, cf. [3, 6-9]. Under certain
assumptions both? and L™ rates of decay of the solutions to these problems were
established, cf. [4, 5, 10-12].

When the flux function is non-convex, the problem becomes complex and dif-
ficult. Recently, Hasimoto-Matsumura [13] investigated the large time behavior of
the solution to the initial-boundary value problem in the half-space for scalar Burg-
ers equation without convexity. Motivated by thé-weighted energy method in
[13], our present paper is devoted to studying the existence and the asymptotic be-
havior of global solutions of the generalized BBM equation (1.1) with non-convex
flux function. Under the conditions that

u- <uy <0 and f(uy) < f(u) for u € [u_,uy) (1.4)

andu_ < 0 < u., respectively (the function in both cases is as shown in the figure
below), using ar.?-weighted energy method as in [13], we prove that solutions for
the initial-boundary value problem (1.1) exist and converge time-asymptotically to
a stationary wave and the superposition of a stationary wave and a rarefaction wave.

Notations: Hereafter, we denote several generic positive constants depending

ona,b,... by Cyy, . or simply byC. LP = LP(R*)(1 < p < co) denotes the
usual Lebesgue space &t = (0, oo) with its norm

£l ([ If@Pdn)>1<p <o, [fli= = sup £

reERT

H™P(m > 0,1 < p < +o0) denotes the usual Sobolev space with the norm

I £ o= (37 1 021 1)

=0



326 HUIPING CUI
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SetH™ = H™?2. For simplicity, we writ€]| - || gm = || ||m @and|| - | z2 = || - ||-

For brevity, || f(-,¢)|| and||f(-, )|, are denoted by f(¢)|| and|| f(¢)]|m, respec-
tively. Let 7 be a positive constant and 1& be a Banach spac€;*([0,7]; B)
denotes the space d@-valuedk-times continuously differentiable functions on
[0, 7] and L%(]0, T); B) denotes the space &f-valuedL? functions on[0, 7. We
also denote byi} = H}(R™) the space of functiong € H! with f(0) = 0, as a
subspace of/}(R*).

2. MAIN RESULTS

In this section, we present our main results. Corresponding to the gases

uy < 0andu_ < 0 < ug, we divide this section into two cases. Throughout
this section, we always assume the condition (1.2) and (1.3) hold. By the condition
(1.2) and the properties of continuous function, there exist positive constants
such that

f"(u) >v >0 for |u| <r, and f(u)>v for u € [u_,—r]. (2.1)
Casel : Converge Asymptotically to a Stationary Wave

Whenu satisfy the condition (1.4), we will prove that the solutions converge
time-asymptotically to a stationary wayéz) for the problem (1.1). Here(x) is
the following boundary value problem of the ordinary differential equation:

f(¢)x :¢II7 x>0

$(0) = u—, ¢(+00) = uy.

(2.2)
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For the properties of the solutiai{z) to the boundary value problem (2.2), we
have the following lemma, which is proved in the same way as in [2,7,14].

Lemma2.1 — Assume (1.2) and (1.4). Then the boundary value problem (2.2)
has a unique solution € C3(]0, 00)) satisfying

u_ < ¢(x) <0, ¢g(x) >0, x>0
|p(z) —uy| < Ch(@W)(1+2z)7t, >0
0k p(x)| < Ch(a)(1+2)"2 (k=1,2), >0
for the casef’(u+) = 0 and
u- < ¢(z) <ug, ¢g(xz)>0, >0
[¢(x) — uy| < Ch(a) exp (—|f'(uq)]z), >0
056 (2)| < Ch(a) exp (=|f'(us)|2) (k=1,2), >0
for the casef’(uy) < 0, whereC'is a constanty = u, — u_, h is a function ofu
satisfying ™ h(i) = 0.
Setu(z,t) = ¢(z) + v(z,t), wheregp = ¢(z) is the stationary solution ob-
tained in Lemma 2.1, then the problem (1.1) can be reformulated as

ve + (f(¢+v) = f(9))z = Voo + Vazt, ©>0,8>0
v(0,t) =0, t>0 (2.3)
v(z,0) = vo(x) :=uo(x) — ¢(x), = > 0.

For the existing of the weak solutions, the interested reader is referred to [28-
30] and the references cited therein. We want to seek the solution of (2.3) in Banach
space:

X(0,7) = {vlv € C([0,T); H3) N C'([0,T}; HY)},

where0 < T < oo.

Our main result in the case (1.4) can be stated as follows.
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Theorem2.2— (Asymptotics to the Stationary Wave) Assume (1.2), (1.3), (1.4)
andv, € H?. If there exists a positive constantsuch thatvo||%,. + k(@) < n,
then the problem (2.3) has a unique global solutioa X (0, co) satisfying

. 0'v(z, 1)
lim sup |——F—=
t—“)OxGR+ 8.1'1

=0 (i=0,1).

Here,h = h(a) sketch the strength of the stationary wave. The constasit
used to sketch the smallness of the stationary wave and the initial perturbation to
control the growth of the solutioan.

Case2 : Converge Asymptotically to Superposition of a Stationary Wave and
a Rarefaction Wave

Under the conditioni— < 0 < uy, we expect that the asymptotic state of the
solution of (1.1) is the linear superposition of the corresponding stationary solution
¢ connectingu_ to 0 and the rarefaction wave!? connecting) to u,. Next, we
give the definition ofp and . The stationary solutiomw connectingu_ to 0
for (1.1) is defined by Lemma 2.1 in whiah, = 0. The rarefaction wavet
connecting0 to « for (1.1) is defined by the restriction a@f® on the half line
()]0, Wherey is the solution of the following Riemann problem for the
Burgers equation:

u+ f(u)y, =0, —co<z<oo t>0
0, >0
u(z,0) =
Uy, = <0.
Under the condition (2.1))" is exactly given by
0, <0
WRE) =4 (f)7N(E), 0<a < flup)t
wy, x> f(wpt.

Because of the non-smoothness/dt, as in the previous paper [2,13-15], we
first make a smooth approximation of the rarefaction waffe Let w(x, ) be the
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unigue smooth solution of the Cauchy problem:
wy +ww, =0, —co<xr<oo, t>0
w(x,0) = wip(zr) = wy - kq fox(l +y?)ldy =1, ¢q> %,
wherek, f0°°(1 + y?)~%dy = 1. We define the smooth approximation,off by
v =p(z,t) = (f) " (w(@,1))]z>0.
Then as in [14,15], we have the following lemma {ar

Lemma2.3 — Assume thaf € C?, f” > 0, f(0) = f'(0) = 0 andu > 0,
theny satisfying

o+ flp)z =0, x,t>0

©(0,t) =0, t>0

p(,0) = po(x) = (f") " (wo(z, 1)) =

and
(i) 0=u_ <p(x,t) <ug,pz(z,t) >0 fort >0,z >0;
(i) foranyp (1 <p < o0), there exists a consta@, , such that

lez (DI, < Cpgh(uy)(L+1)7PF,

—1

_p—_pP—2
lpza(Ip < Cpghlu)(1+18)77 20,

_p—4p—1
[ zat ()5, < Cpgh(us)(14+1)7P" 20,

3p—1

H‘Pmmtt(ﬂ“ﬁp < Cp7qh(u+)(1 + t)_p_TQ

(iii) there exists a constaudt, such that
2 _1-L
122 ()] < Cha(uy)(1 +¢) T,

Bt (1)1 < © -1-3
|0l < Chauy)(1 46777,
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whereh; is a function ofu_. satisfying hmo hi(ug) = 0;
Ut —

(iv) tlim sup |p(z,t) — pF(x,t)| = 0.
T zeRt
Set

O(x,t) = Pp(x) + p(z,1). (2.4)
Substituting (2.4) int@1.1); , we have
o + f(q))x —®py — Pyt = _F(Qba (10)7 (25)
whereF (¢, p) = —(f'(¢+¢) — '(¢))px — (f' (9 +¢) — f'(#)) Pz + zz + Prat.

Letv(z,t) = u(x,t) — ®(x,t) = u(x,t) — ¢(z) — p(x,t), then the problem
(1.1) is reformulated in the form

v+ (f(P+v) = f(P))r — Vg — Vgt = F(d,0), >0, t>0
v(0,£) =0, t>0 (2.6)

v(x,0) = vo(x) :=up(x) — ¢p(x) — p(z,0), =>0.

Our main result in the case. < 0 < u4 can be stated as follows.

Theorem2.4— (Asymptotic to Superposition of a Stationary Wave and a Rar-
efaction Wave) Assume (1.2), (1.8), < 0 < u, < r andvy € H?. Then, there
exists a positive constantsuch that, i vg||3,> +do < 7, then the initial-boundary
value problem (2.6) has a unique global solutior X (0, co) satisfying

Ov(z,t
lim sup 2850 Z o = 0,1),
t—»oo$€R+ 81’7’

wherer is defined by (2.1)ly = max{h(—u_), h1(uy)}, h andh, are defined by
Lemma 2.1 and Lemma 2.3, respectively.

3. THE PROOF OFMAIN RESULTS

In this section, we will prove our main results. For brevity, we only prove Theorem
2.4 in details. Theorem 2.2 can be proved in the same way as the proof of Theorem
2.4.
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The proof of Theorem 2.4 combines the local existence results with the a priori
estimates. We now state the local existence result as follows.

Proposition3.1 — (Local Existence) Under the assumptions of Theorem 2.4,
the problem (2.3) has a unique solutiofx, t) € X (0, ty), wheret, depends only
on ||vo|| g2-

Similar to [10], we can prove Proposition 3.1 by a standard iterative method,
we omit the proof of Proposition 3.1. To extend the local solutipn ¢) obtained
in globally, we need the a priori estimate as follows.

Proposition3.2 — (@ Priori Estimate) Suppose that{z,t) € X(0,7) is a
solution of the problem (2.6) for some positive constantith

N(T) = sup |lv(®)||3<6% 0<d<1. (3.1)
t€[0,T]

If ||vol|3,2 + do is sufficiently small, then it holds

1
@113 + fo (Voo (DI + [[oa (7)1} + lee(D)[})dr < C(llwoll3 + ),
(3.2)
whereC' is a positive constant independentiaf

We shall prove Proposition 3.2 by di?-weighted energy method. Because
the flux functionf is not convex, we can not use the standafeenergy method
directly to derive the a priori estimate ofandv,. in (3.2). We now give a simple
explanation. Since andu.. is sufficiently small in thea Priori estimate (3.2), the
linear problem of (2.3) with.; = 0 (accordingly,®(x,t) = ¢(x)) can be taken
as:

v+ (f'(9)0)e = Vox + Vamt, ©>0,6>0

v(0,£) =0, >0 (3.3)
v(x,0) = vo(x), > 0,09 € H>.

Letv € C([0,T); H3) N C([0,T]; H') be a solution of (3.3). Multiply (3.3)
by v and integrate the resulting equation with respeat twer (0, co). Then from
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the integration by parts, we have

4= 1(2;2 +v2)dx + L /OO 1" (¢)pev?da + /OO v2dz = 0. (3.4)

dt J, 2 2 Jo 0

If we note ¢, > 0, the estimate of (3.4) works well in the cagé > 0,

but not in the case that is not convex becausg’ changes its sign. In order to
overcome the above difficulty, we try to apply a weighted energy method as in
[13], where in order to show the asymptotic stability of solutions for non-convex
Burgers equation, a weight functienis manipulated as a function of the solution
¢ for (2.2). Here we choose the same weight functioas in [13] byw = w(u) =
f(u) + dg(u), whereg(u) = —u*™ + 2™, § > 0 andm > 1 are constant. Now

we state the following lemma about the weight function.

Lemma3.3 — (Weight Function) Under the condition (1.2), if we taksuffi-
ciently small andn sufficiently large, then it holds

%(f"(u)w(u) — fww"(u)) >0, w(u) >0 for ue [u_,r|.

Motivated by the argument in [13], we introduce a new unknown funatiby
v(z,t) = w(®(z,t))o(z, 1), (3.5)

where®(z,t) = ¢(z) + ¢(x,t), w = f+ g is the weight function in Lemma 3.3.
We note thatw is well defined by Lemma 3.3, that is, smooth and satisfied

v<w(®(z,1) <C, C1 < (2)(®)<Cy >0, t>0 (3.6)
for some positive constans, C; andCs.

Next, we proceed to prove Proposition 3.2. The proof of Proposition 3.2 can
be obtained by a series of lemmas.

Lemma3.4 — Under the assumption of Proposition 3.2, the following estimate
is valid:
@3 + fo (IVBz0(7)|2 + |oz(7)[|2)dr

4 9]
< C(lwoll + [ IIF(IE dr + do + € [l vze(T)]ldT + do [ [lve(7)]2)dr,
(3.7)
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wheree is a sufficiently small positive constant.

PROOF: Substituting (3.5) intq2.6); and multiplying the resulting equation
by v, we obtain after integrating it ovéd, co) that

Jo~ w(@)p)evdz + [77(f(2 + w(®)D) — f(2))obda

—fooo(w( V) g 0dz — fo V) gat0dr = fo Fodz.

(3.8)

We rewrite the second term on the left hand side of (3.8) as
S (@ + w(®)D) — f(P)),bda
= — [0 (f(® 4+ w(P)D) — f(P)) Ve da
= [ ([T f(s)ds — f(® + wi)wD)Dyda
+ Jo" = (f(@ +wd) — f(P) — f(P)wD)Dyda
=: I3+ 14.
We further rewritels andi, by the Taylor’'s formula as

I3 = [;° 3w f1(® + wd)i?Ppda

([T f(s)ds — f(@ + wi)wd + %f’((I) + wo)w?s?) B, da

By
_ ool /f/( )(I) o d$+f0 |UDCI) v
Ii =[5 hwf" (®)5®dz
+ [T S (F(@+wd) — (@) — f/(D)wd — § ["(@)w?0?),du
— [ Lw f(@)®, 5% + [5° O(|5])®,52dx.
Hence, we have
Jo2(F(@ + w(®)D) — f(®)).Dda

— [ L(wf" 4w f1)( @)D, 02dx + [ O(|5])@, 5% da.
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We also rewrite the third term on the left hand side of (3.8) as

— fo 0)gzVdx = fooo(wf)g — %w’q)mf)z — %w”@ifﬁ)dx

(3.10)
=: [T woide + I5 + .

Now, recalling the relatio®; + f(®), — Pyy — Post = —F(¢, ) ande, =
f(¢), we further rewritel5 as

Iy = [2(—30/ f(®)D, — Lw'py — Lw'F + Jw' ppu)?de, (3.11)
andlyz as
Is = — ;7 50" (dx + u + (D) — f(d + ¢))Ds07d
= —3 Jo W' f(@)®,0%dx — 5 [T w0 (f(9) — f()+ p) + pu)dx

= — [o7 5w f(®) @, 0%dx + [ O(|@| + | e |) But?da.
(3.12)

Substituting (3.11) and (3.12) into (3.10), we have
—fo 0) gz 0dx:
= fooo—%(W”erw’f’)( VB, i2dz + [ O(p| + |u))Bui?dz (3.13)
+ Jo~ (—3w'ent® + i — G F5 + ju' ppp ) da.
We also rewrite the fourth term on the left hand side of (3.8) as
— Jo (w(®)0)gpvdr = —(w(®)0) 0[5 + f5 (w(P)0) T d
= f&"(w’sot@ Wby Tpde = — [0 (W' o + Wi ) Tppda
=~ Jy W ad + [ 0 Bbide + f [ Jwiide — [ bl g3
(3.14)
Combining (3.8)-(3.14), we have
& )0 w@ + 0)de + [§° §(wf” —w" [)(®)@,0%dx + [° wigde
= [[C(Fo + w' F*)de — [ 3w pand®da — [ O(|0] + || + |¢a])0? Ppda

+ Jo (' @00, + %wl%ﬁg)dl‘ +Jo Werdtde.
(3.15)
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Using the Sobolev’s inequality and Lemma 2.3 easily gets

| Jo~ O8] + || + lea]) 2o0%da| < C(N(T) + ha(uy)) fy Pot?da.
(3.16)
By the Sobolev’s inequality and Young's inequality, one obtains

~ - - ~nl~ 1
| [(Fo+ Yw'Fo?)de| < C [5°|0||Flde < C||5]|2|02]|2 | F || 1
\ (3.17)
< L[ witde + C|F|3,.

Due to Lemma 2.1 and Lemma 2.3, we can estimate the last three terms on the
right hand of (3.15) as follows, respectively.

‘ - ooo %WImet{ﬂdx’ = |fooo %w/% 90x62dx’

. s (3.18)
< 2 [T @pv*dr + Chy(ug ) (14+t)" 4,

| o7 (—w' @, 0,0, + 2w 2)da| < & [5° witde + Odo( [;° wide + [ widz),
(3.19)
Jo~ w'pittppde < g [ w2, dr 4+ Chy(uy) I o, 0%dz, (3.20)

wheregg, € are suitably small positive constant.
Substituting (3.16)-(3.20) into (3.15) and making use of (3.1), (3.6) obtain
4 oo aw(? + 02 de + v )7 @07 dr + 2 [ wild

< CN(T) + h(uy)) fy @o5%de + 3 [7° putde + Chi(uy)(1+1) 7

4
+C||F3, 4 €2 [y~ wii,de + Cdo( [y° wiide + [;° wiida),
(3.21)
wherev is a positive constant. Noticing (3.5), (3.6) and the fact

lvall® = we + wie|* < Cllv/@o* + [17]1?)

by taking N (T') + dy suitably small and integrating (3.21) with respect tover
[0,t], we get the desired inequality (3.7).

Thus the proof of Lemma 3.4 is completed.
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Lemma3.5 — Under the assumption of Proposition 3.2, it holds

vz ()3 + [ lvea (7)1 2dT

.\ (3.22)
t 3z 00

< C(l[woll3 + [LUFN, + |FIP)dr + do + do f7° [[oe]?dr).

PrROOF: Multiplying (2.6); by —v,, and integrating the result ovf, c), we
get

i o7 30l + ol de + 57 02 da

(3.23)
= — Jo Fugedz + [ vaa(f(v + @) — f(D))oda.
We estimate each term on the right hand side of (3.23) as
| = J5° Fosada] < llvaall? + CFI1, (3.24)

S va(F (0 + @) = F(®))ade < Logall? + CUNBL0l? + [[oa]?).  (3.25)

Substituting (3.24) and (3.25) into (3.23), we obtain

4[> L2 +02)dr + 3 [0 v2de < CUIFI2 + V80l + [los]1?).
(3.26)
Integrating (3.26) with respect taover [0, t| and combining the result with the
estimate (3.7), we can complete the proof of Lemma 3.5.

Lemma3.6 — Under the assumption of Proposition 3.2, it holds

@113+ Jo (IVBrv ()12 + llva(r) 1 dr

(3.27)
< C(llwoll3 + ha(us)s +do + do Ji loe(r)]2d7).
PrRoOFE Due to Lemma 3.4 and Lemma 3.5, we obtain
o)1+ Jo (IVBzv(r)]1 + lJva(7)[13)dr 5.28)
3.28

4 o0
< Cllvoll3 + [S(IFNZ: + [ FI?)dr + do + do [3° ||ve|dr).
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4
Now, following the arguments in [13], we estimate the teffh¥|?, and||F||
on the right hand side of (3.28). By Lemma 2.1 and Lemma 2.3, we have

ol < C fy igedr + C [ ipde

< C( 1+x) ‘0 + fO 1+x)dw) + CH()OHLOO ft 1+g;

1 7
< Cllpa|lfoe HsoxllLoolog@ +1) + Ch (us ) S hy (ug )3 (1 + )71
< Chy(uy)s(1+1) Slog(2 +1).
Similarly, we get

1 _7
Izl + el + [ @aatllr < Cha(ug )5 (1 41)"slog(2 + 1),

1 _3
[6zl” + l¢0zll? + l0zall® + lozatl® < Chaluy)z(1+1)72.
Hence, from the above estimates and the following inequality
|F(<I>)| S C(|¢‘P:}c| + |¢x‘;0’ + |‘p:mc| + |mezt|7

it follows that
4
IF(12, < Chi(uy)s(1+ ) 6log(2 + 1), (3.29)
IFI? < Cha(uy)3 (1 +1)"2. (3.30)
Substituting (3.29) and (3.30) into (3.28) obtains the desired estimate (3.27).

Lemma3.7 — Under the assumption of Proposition 3.3, it holds

1
loe ()12 + fy lve(m)1%dr + [y [oae(r)1Pdr < C(lleol} +d§).  (3:31)

PROOF: Multiplying (2.6); by v, and integrating the result ové, co), we

have
& Jo7 gudde + 57 vkde + [ vida
(3.32)
= — [Pu(f(v+ @) — f(®))edz + [ Foida.
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The first term on the right hand side of (3.32) can be estimated as
= [T o f(w+ @) = f(@))adz| < [ C(|val + [0]@2)|v|da

< gllvel? + C(lloall® + IvV@0]?).
(3.33)
By (3.30), we estimate the second term on the right hand side of (3.32) as

| Jo° Foda| < flloe]® + | F)1?

) \ (3.34)
< fllvel? + Cha(ug )2 (1 +4) 2.
Substituting (3.33) and (3.34) into (3.32), we have
o guide + [T vide + [T vida
(3.35)

< O(|[vall? + [[VB0l|2 + hi(ug)Z (1 + )72

Integrating (3.35) with respect taver |0, t| and combining the result with the
estimate (3.27), we obtain (3.31) for sufficiently smial||%,. +do. This completes
the proof of Lemma 3.7.

Now putting the estimates (3.27) and (3.31) together, we can get (3.2). This
completes the proof of Proposition 3.3.

In what follows, we prove Theorem 2.4.

PROOF: To prove that the problem (2.6) has a unique global solutiant) €
X (0, 00), we only need to verified the a priori estimate (3.1) holds, once we have
Proposition 3.2, we can take a suitably small constesuch that

2

)
< —.
C77_2

By Proposition 3.2, we have
2

4]
lo(®)]13 < Cllwol3 < Cn < 5

This shows that the a priori assumption (3.1) is reasonable. So we have proved
that (2.6) has a unique global solution.
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In what follows, we shall prov?im sup \%] =0 (i=0,1).
T xeRt
Putg(t) = |Ju.(t)||*. Then the inequality (3.2) yieldg € L'(0,00) and% ¢
L(0,00), from which it follows that lim lv.(®)|? = Jim g(t) = 0. Therefore,
by applying the Sobolev’s inequality, we get

1 1 1
sup |v(z, 1) < 22[ju(t)||2[Jva(t)][2 — 0 (T — o0),
TzERT

1 1 1
sup |vz(z,t)| < 22[jvg(t)]|2[[vza(t)[|2 — 0 (T — o0).
z€RT

Thus the proof of Theorem 2.4 is completed.
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