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For large values of the wavenumberk in the direction of cylinder, there is

only one trapped wave. We construct asymptotics of these trapped modes

and their frequencies ask → ∞ in the case of one submerged cylinder into

a plane water layer by means of reducing the initial problem to three integral

equations on the boundaries and then solving them using a method suggested

by Zhevandrov and Merzon (Amer. Math. Soc. Translations(2) 208, 235-284

(2003)).
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1. INTRODUCTION

It is well-known that submerged horizontal cylinders can serve as waveguides for

water waves. The first result in this direction was obtained by Ursell [10] for a

cylinder of circular cross-section. Later it was discovered that horizontal “bumps”

on the bottom can also trap waves (see [2, 5]). In [2], Bonnet-Ben Dhia and Joly

proved that for large values of the wavenumberk in the direction of the ridge, there

is only one trapped mode. In [7] we have constructed explicitly this trapped mode

for large values ofk in the case of a ridge and also indicated the formula for the

frequency in the case of one submerged cylinder. In [8] we obtained this trapped

mode for large values ofk in the case of one or two submerged cylinders.

In the present paper we construct the trapped mode for large values of the fre-

quency in the case of submerged cylinder into a plane water layer. The problem of

the ridge of small height was treated in [11], where a close analogy of the prob-

lem of water waves and small perturbations of the one-dimensional Schrödinger

equation is established. The latter problem was studied by a number of authors

(we mention, for example, [6, 9, 3], and, in the context of water waves, [4]). In

our case, a technique similar to that of [11] yields the desired result. We note that

in contrast to [11] the asymptotics turns out to be exponential, i.e., the distance of

the trapped wave frequency to the cut-off frequency is exponentially small ink.

This fact seemingly could have rendered the problem quite complicated from the

point of view of asymptotic expansions, but, since in fact we construct an exact

convergent expansion, no additional difficulties arise.

2. MATHEMATICAL FORMULATION AND MAIN RESULTS

The geometry of the problem is as follows: we assume thatΓC = {x = x(t), y =
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Figure 1:

y(t), t ∈ [−π, π]} with smoothx(t) andy(t),

x′2 + y′2 6= 0, (1)

andmax y(t) = y(0), y′′(0) < 0, x′(0) > 0; wherey is the vertical coordinate,x is

the horizontal coordinate orthogonal toy, ΓC describes curve bounding her cross-

section, similarly,ΓD = {(x,−h0) : x ∈ R} andΓD describes the bottom of the

ocean. We assume thatΓC andΓD do not intersect,i.e., at leasty(t) + h0 ≥ d > 0.

ΓF = {(x, 0) : x ∈ R} is the free surface. The water layerΩ is the domain exterior

to ΓC andΓD and lying belowΓF (see Fig. 1).

Looking for the velocity potential in the formexp{i(ωt − kz)}Φ(x, y), ω is

the frequency, we come to the problem

Φy = λΦ, y = 0, (2)

Φxx + Φyy − k2Φ = 0 in Ω, (3)

∂Φ/∂~nC = 0 on ΓC , (4)

Φy = 0 on ΓD, (5)
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for the functionΦ; hereλ = ω2/g, g is the aceleration of gravity. Solutions of this

problem from the Sobolev spaceH1(Ω) are called trapped waves and exist only

for certain values ofλ (the eigenparameter) fork fixed. It is known that essential

spectrum of (2)–(5) coincides with the interval[k tanh kh0,∞). There exists only

one eigenvalueλ below the essential spectrum for large values ofk. Our goal is to

construct an asymptotics of this frequency. Our main result is as follows.

Theorem1 — The unique eigenvalueλ(k) of (2)–(5) has the form

λ = k tanh kh0 − β2, (6)

where

β = k

(√
2π

|y′′(0)|e
2y(0)kx′(0)(1 + O(k−1))

)
. (7)

In the next section we construct the corresponding eigenfunction.

3. REDUCTION TO INTEGRAL EQUATIONS AND THEIR SOLUTION

We reduce (2)–(5) to three integral equations onΓF , ΓC and ΓD for the func-

tions ϕ = Φ|y=0, θ = Φ|ΓC
andα = Φ|ΓD

. To this end, we consider the re-

gion Ω \ Bρ(ξ, η), whereBρ(ξ, η) = {(x, y) :
√

(x− ξ)2 + η2 < ρ} is the

disk of radiusρ with center in(ξ, η), and we apply the Green formula toΦ(ξ, η)
and ((−1/2π)K0(kr)) in Ω \ Bρ, wherer =

√
(x− ξ)2 + η2 and K0 is the

Macdonald function (so that(−1/2π)K0(kr) is the fundamental solution of the

operator∆− k2).
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Makingρ → 0, we obtain

Φ(ξ, η) =
λ

2π

∞∫

−∞
K0(k

√
(x− ξ)2 + η2)ϕ(x)dx

+
kη

2π

∞∫

−∞

K ′
0(k

√
(x− ξ)2 + η2)√

(x− ξ)2 + η2
ϕ(x)dx

− k

2π

π∫

−π

K ′
0(k

√
(x(t)− ξ)2 + (y(t)− η)2)√

(x(t)− ξ)2 + (y(t)− η)2

×[y′(t)(x(t)− ξ)− x′(t)(y(t)− η)]θ(t)dt

− k

2π

∞∫

−∞

K ′
0(k

√
(x− ξ)2 + (h0 + η)2)√

(x− ξ)2 + (h0 + η)2

×(h0 + η)α(x)dx,

(ξ, η) ∈ Ω. (8)

Passing in equation (8) to the limit whenη → 0−; ξ → x(t), η → y(t); and

η → −h0, we obtain the following integral equations

πϕ(ξ) = λ

∞∫

−∞
K0(k|x− ξ|)ϕ(x)dx

−k

π∫

−π

K ′
0(k

√
(x(t)− ξ)2 + y(t)2)√

(x(t)− ξ)2 + y(t)2

×[y′(t)(x(t)− ξ)− x′(t)y(t)]θ(t)dt

−k

∞∫

−∞

K ′
0(k

√
(x− ξ)2 + h2

0)√
(x− ξ)2 + h2

0

× h0α(x)dx, (9)
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πθ(t) = λ

∞∫

−∞
K0(k

√
(x− x(t))2 + y(t)2)ϕ(x)dx

+ky(t)

∞∫

−∞

K ′
0(k

√
(x− x(t))2 + y(t)2)√

(x− x(t))2 + y(t)2
ϕ(x)dx

−k

π∫

−π

K ′
0(k

√
(x(t1)− x(t))2 + (y(t1)− y(t))2)√

(x(t1)− x(t))2 + (y(t1)− y(t))2

×[y′(t1)(x(t1)− x(t))− x′(t1)(y(t1)− y(t))]θ(t1)dt1

−k

∞∫

−∞

K ′
0(k

√
(x− x(t))2 + (h0 + y(t))2)√

(x− x(t))2 + (h0 + y(t))2

×(h0 + y(t))α(x)dx, (10)

πα(ι) = λ

∞∫

−∞
K0(k

√
(x− ι)2 + h2

0)ϕ(x)dx

−kh0

∞∫

−∞

K ′
0(k

√
(x− ι)2 + h2

0)√
(x− ι)2 + h2

0

ϕ(x)dx

−k

π∫

−π

K ′
0(k

√
(x(t1)− ι)2 + (y(t1) + h0)2)√

(x(t1)− ι)2 + (y(t1) + h0)2

×[y′(t1)(x(t1)− ι)− x′(t1)(y(t1) + h0)]θ(t1)dt1 (11)

In order to apply the technique of [11] to (9) it is necessary to pass to the

Fourier transform̃ϕ of the functionϕ,

Fξ→p[ϕ(ξ)](p) ≡ ϕ̃(p) =

∞∫

−∞
eipξϕ(ξ)dξ.
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We use the formulas (see [1])

K ′
0(z) = −K1(z), Fξ→p[K0(k|ξ|)](p) =

π√
k2 + p2

,

Fξ→p

[
K1(k

√
ξ2 + h2

0)√
ξ2 + h2

0

]
(p) =

π

kh0
e−h0

√
k2+p2

,

Fξ→p

[
K0(k

√
ξ2 + h2

0)
]

(p) =
π√

k2 + p2
e−h0

√
k2+p2

. (12)

Passing to the Fourier transform̃ϕ of the functionϕ and using (12), we come

to the following system for̃ϕ(p), θ(t) andα(t):

(
1− λ

τ(p)

)
ϕ̃(p) =

π∫

−π

eipx(t)+y(t)τ(p)

(
x′(t)− ipy′(t)

τ(p)

)
θ(t)dt

+e−h0τ(p)α̃(p), (13)

θ(t) =
1
2π

∞∫

−∞
e−ip′x(t)+y(t)τ(p′)

(
1 +

λ

τ(p′)

)
ϕ̃(p′)dp′

−k

π

π∫

−π

K ′
0(k

√
%(t1, t))√

%(t1, t)
σ1(t1, t)θ(t1)dt1

+
1
2π

∞∫

−∞
e−ipx(t)−(h0+y(t))τ(p)α̃(p)dp, (14)

α̃(p) = e−h0τ(p)

(
1 +

λ

τ(p)

)
ϕ̃(p)

+

π∫

−π

e−ipx(t1)−(y(t1)+h0)τ(p)

(
ip

τ(p)
y′(t1) + x′(t1)

)

θ(t1)dt1, (15)
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where

τ(p) :=
√

k2 + p2,

%(t1, t) := (x(t1)− x(t))2 + (y(t1)− y(t))2,

σ(t1, t) := y′(t1)(x(t1)− x(t))− x′(t1)(y(t1)− y(t)). (16)

Rewrite system (13)–(15) as

(
1− λ

τ(p)

)
ϕ̃(p) = (M̂1θ)(p) + (M̂2α̃)(p), (17)

[(1− M̂5)θ](t) = (M̂3ϕ̃)(t) + (M̂4α̃)(t), (18)

α̃(p) = (M̂6ϕ̃)(p) + (M̂7θ)(p). (19)

where

(M̂1θ)(p) =

π∫

−π

M1(p, t)θ(t)dt,

(M̂2α̃)(p) = e−h0τ α̃(p),

(M̂3ϕ̃)(t) =

∞∫

−∞
M3(p′, t)ϕ̃(p′)dp′,

(M̂4α̃)(t) =

∞∫

−∞
M4(p, t)α̃(p)dp,

(M̂5θ)(t) =

π∫

−π

M5(t1, t)θ(t1)dt1,

(M̂6ϕ̃)(p) = e−h0τ(p)

(
1 +

λ

τ(p)

)
ϕ̃(p),

(M̂7θ)(p) =

π∫

−π

M7(p, t1)θ(t1)dt1,
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with

M1(p, t) = eipx(t)+y(t)τ(p)

(
x′(t)− ipy′(t)

τ(p)

)
, (20)

M2(p) = e−h0τ(p),

M3(p′, t) =
1
2π

e−ip′x(t)+y(t)τ(p′)
(

1 +
λ

τ(p′)

)
,

M4(p, t) =
1
2π

e−ipx(t)−(h0+y(t))τ(p),

M5(t1, t) = −k

π

K ′
0(k

√
%(t1, t))√

%(t1, t)
σ(t1, t),

M6(p) =
1
2π

e−h0τ(p)

(
1 +

λ

τ(p)

)
,

M7(p, t1) = e−ipx(t1)−(y(t1)+h0)τ(p)

(
ip

τ(p)
y′(t1) + x′(t1)

)
,

Consider equations (18), (19). It is not hard to see, using the asymptotics of

K1(z) for small and largez, that the operatorM̂5 in (18) is bounded by const

k−1/2. In fact, the following lemma holds.

Lemma1 — We have∣∣∣∣∣∣

π∫

−π

M5(t1, t)θ(t1) dt1

∣∣∣∣∣∣
≤ Ck−1/2‖θ‖,

whereC is a constant and‖θ‖ = supt∈[−π,π] |θ(t)|.

PROOF : For a givenδ > 0, we divide the interval of integration in two do-

mains,k|t1 − t| < δ andk|t1 − t| > δ. In the first domain we use the asymp-

totics K ′
0(z) ∼ 1

z , and in the second, the asymptoticsK ′
0(z) ∼ √

π
2z e−z. For

k|t− t1| < δ, we have by (20)

|M5(t1, t)| ≤ C1
|σ(t1, t)|
%(t1, t)

.

The numerator here isO((t1 − t)2), and
√

%(t1, t) ≥ c|t1 − t|, c > 0, (21)
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by (1). HenceM5(t1, t) is bounded in this domain. Fork|t1 − t| > δ we have,

again by (1),

|M5(t1, t)| ≤ C2k
1/2e−k

√
%(t1,t) |σ(t1, t)|

(%(t1, t))3/4
.

The last factor is bounded by virtue of (21) and by the same inequality we

obtain

|M5(t1, t)| ≤ C3k
1/2e−ck|t1−t|. (22)

Sincee−k|t1−t| ≥ e−δ = const for|t1 − t| < δ/k, we see that (22) holds for all

t1, t. Now
∣∣∣∣∣∣

π∫

−π

M5(t1, t)θ(t1) dt1

∣∣∣∣∣∣
≤ const

∫ π

−π
k1/2e−ck|t1−t|dt1‖θ‖ ≤ Ck−1/2‖θ‖

as claimed.

We see that‖M̂5‖ ≤ constk−1/2. Hence we can invert the operator(1− M̂5)
using the Neumann series. Moreover,M̂4,7 are exponentially small sinceh0 +
y(t) ≥ d > 0. Solving (18), (19) forθ andα̃, we obtain

θ(t) ={[1− (1− M̂5)−1M̂4M̂7]−1

× (1− M̂5)−1[M̂3 + M̂4M̂6]ϕ̃}(t), (23)

α̃(p) ={[1− M̂7(1− M̂5)−1M̂4]−1

× [M̂6 + M̂7(1− M̂5)−1M̂3]ϕ̃}(p), (24)

where(1− M̂j)−1 =
∞∑

n=0
M̂n

j . Substituting (23), (24) in (13) we finally come to

(
1− λ

τ(p)

)
ϕ̃(p) = [M̂11ϕ̃](p), (25)

where

M̂11 = M̂9M̂3 + M̂10M̂6,
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M̂9 =M̂1[1− (1− M̂5)−1M̂4M̂7]−1(1− M̂5)−1

+ M̂2[1− M̂7(1− M̂5)−1M̂4]−1M̂7(1− M̂5)−1,

M̂10 =M̂1[1− (1− M̂5)−1M̂4M̂7]−1(1− M̂5)−1M̂4

+ M̂2[1− M̂7(1− M̂5)−1M̂4]−1.

We know thatλ is given by (6), whereβ is exponentially small ink, i.e., the

distance of the trapped wave frequency to the cut-off frequency is exponentially

small ink, (see [2]). Hence the first factor in the left-hand side of (25),

L(p) := 1− λ

τ(p)
= 1− k tanh kh0 − β2

√
k2 + p2

, (26)

is exponentially small ink for p = 0. In fact, the roots ofL(p) = 0 which tend to

zero ask →∞, as it is not hard to see, are simple and given by

p = p± = ± i
√

2β√
ε

+ O(ε1/2β3), ε =
1
k
. (27)

SinceL(p) ∼ Const(p2 + β2) for smallp, we see that integral equation (25)

is similar to the integral equation of Section 2 of heuristic considerations of [11]

and our arguments are still valid if we changeϕ̃ in the formϕ̃(p) = A(p)/L(p).
As we shall see (see formula (29) below), thatA(p) is analytic and using the fact

thatM3(p, t), is analytic in a strip containing the real axis, then we can change the

contour of integration in the integral

∞∫

−∞
M3(p, t)

A(p)
L(p)

dp,

to the one shown in Fig. 2.

We have, by the residue theorem,

∞∫

−∞
M3(p, t)

A(p)
L(p)

dp =
∫

γ

M3(p, t)
A(p)
L(p)

dp + 2πi
M3(p+, t)A(p+)

d
dpL(p)|p=p+

. (28)
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Thus (25) transforms into

A(p) = M̂γ
11A(p) + g(p)A(p+), (29)

where

M̂γ
11 = M̂9M̂

γ
3 + M̂10M̂6,

[M̂γ
3 A](t) =

∫

γ

M3(p′, t)
A(p′)
L(p′)

dp′ f3(t) = 2πi
M3(p+, t)

d
dpL(p)|p=p+

,

g(p) = (M̂9f3(t) + M̂10M̂6)(p).

Observe now that the operator̂Mγ
11 is small in ε, ε = 1/k since |L(p)| ≥

const k−2 alongγ andM2(p) is exponentially small. Indeed, on the arc we have

up toO(k−∞)

|L(p)| =
∣∣∣∣∣1−

1√
1 + p2/k2

∣∣∣∣∣ =
a2

2k2
+ O(k−4), (30)

and on the part of the contour which lies on the real axis the minimum of|L(p)| is

attained at the pointsp = ±a, hence, the above estimate still holds.

Rewriting (29) as

[(1− M̂γ
11)A](p) = g(p)A(p+), (31)

we see that(1− M̂γ
11) is invertible and

A(p) = [(1− M̂γ
11)

−1g](p)A(p+). (32)
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Puttingp = p+ in the last equality and dividing byA(p+), we obtain an equa-

tion for β:

1 = [(1− M̂11)−1g](p)|p=p+ . (33)

A standard application of the Laplace method of asymptotic evaluation of inte-

grals to the leading term in (33) yields formula (7). In fact, from the leading term

in (33),

β ∼
√

2π

ε3/2

( π∫

−π

M1(p+, t)M3(p+, t)dt

)
, (34)

with Mj(p+, t1), j = 1, 3, defined in (20). We have

β ∼
√

2
ε3/2

( π∫

−π

e2ky(t)x′(t)dt

)
.

Applying the Laplace method to the last integrals, we obtain (7).
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