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For large values of the wavenumbeiin the direction of cylinder, there is

only one trapped wave. We construct asymptotics of these trapped modes
and their frequencies d&s— oo in the case of one submerged cylinder into

a plane water layer by means of reducing the initial problem to three integral
equations on the boundaries and then solving them using a method suggested
by Zhevandrov and Merzoimer. Math. Soc. Translatiorf2) 208 235-284
(2003)).
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1. INTRODUCTION

It is well-known that submerged horizontal cylinders can serve as waveguides for
water waves. The first result in this direction was obtained by Ursell [10] for a
cylinder of circular cross-section. Later it was discovered that horizontal “bumps”
on the bottom can also trap waves (see [2, 5]). In [2], Bonnet-Ben Dhia and Joly
proved that for large values of the wavenumbén the direction of the ridge, there

is only one trapped mode. In [7] we have constructed explicitly this trapped mode
for large values of: in the case of a ridge and also indicated the formula for the
frequency in the case of one submerged cylinder. In [8] we obtained this trapped
mode for large values df in the case of one or two submerged cylinders.

In the present paper we construct the trapped mode for large values of the fre-
guency in the case of submerged cylinder into a plane water layer. The problem of
the ridge of small height was treated in [11], where a close analogy of the prob-
lem of water waves and small perturbations of the one-dimensionab@aoler
equation is established. The latter problem was studied by a number of authors
(we mention, for example, [6, 9, 3], and, in the context of water waves, [4]). In
our case, a technique similar to that of [11] yields the desired result. We note that
in contrast to [11] the asymptotics turns out to be exponential, i.e., the distance of
the trapped wave frequency to the cut-off frequency is exponentially smaéll in
This fact seemingly could have rendered the problem quite complicated from the
point of view of asymptotic expansions, but, since in fact we construct an exact
convergent expansion, no additional difficulties arise.

2. MATHEMATICAL FORMULATION AND MAIN RESULTS

The geometry of the problem is as follows: we assumelthat {z = z(t),y =
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y(t),t € [—m,m]} with smoothz(t) andy(t),

x/2_’_y/2 7&0’

(1)

andmax y(t) = y(0),y”(0) < 0,2'(0) > 0; wherey is the vertical coordinate; is
the horizontal coordinate orthogonalygol'~ describes curve bounding her cross-
section, similarly'p = {(z, —ho) : € R} andI'p describes the bottom of the
ocean. We assume that andI'p do not intersect,i.e., at leagtt) + ho > d > 0.

I'r = {(z,0) : z € R} is the free surface. The water layeis the domain exterior

toI'c andI'p and lying belowl ' (see Fig. 1).

Looking for the velocity potential in the forraxp{i(wt — kz)}®(z,y), w IS

the frequency, we come to the problem

o, = A\, y =0,
Pyy + Oy — K*® =0 in
0P /07ic =0 on I¢,
@, =0 on I'p,

(2)
3)
(4)
(5)



200 ANA MAGNOLIA MARIN et al.

for the function®; here\ = w?/g, g is the aceleration of gravity. Solutions of this
problem from the Sobolev spadé, (Q2) are called trapped waves and exist only
for certain values ol (the eigenparameter) farfixed. It is known that essential
spectrum of (2)—(5) coincides with the interJaltanh khg, co). There exists only
one eigenvalue below the essential spectrum for large values.ddur goal is to
construct an asymptotics of this frequency. Our main result is as follows.

Theoreml — The unique eigenvalug(k) of (2)—(5) has the form

A = ktanh khg — 52, (6)

B=k (\/ ‘yfg)‘e%(”%’(oxl + 0<k-1>>) : (7)

In the next section we construct the corresponding eigenfunction.

where

3. REDUCTION TO INTEGRAL EQUATIONS AND THEIR SOLUTION

We reduce (2)—(5) to three integral equationsign I'c andI'p for the func-
tions¢ = ®|y—0, # = ®|r, anda = P|r,,. To this end, we consider the re-
gion 2\ By(&,7), where By(&,n) = {(z,y) : /(x =& +n? < p}is the
disk of radiusp with center in(¢,n), and we apply the Green formula (¢, n)
and ((—1/2m)Ko(kr)) in Q\ B,, wherer = /(z — £)2 + 7% and K, is the
Macdonald function (so that-1/27) Ky (kr) is the fundamental solution of the
operatorA — k?).
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Making p — 0, we obtain

B(e,n) = A/Km/oc— 7 + )p(z)d

/""Kéwm@()
N CEricT

k[ K0 =97+ ) — n)?)
7 ) ) - 02+ WD) )P

[y () (2(t) = &) — 2" (t)(y(t) — m)]O(t)dt

kKGO T (o + 1))
7 ) 0Pt (ho 02

% (ho + n)o(x)dz,

(& m) €.

Passing in equation (8) to the limit when— 0~; ¢ — «(t), n — y(t); and
n — —hg, we obtain the following integral equations

To€) = A / Ko (k| — €]) o) dz

/Kok\/ )2+ y(t)?)
t) 5) +y(t)?

<[y () (z(t) — &) — 2’ (t)y ()]0 (¢)dt

K’ (ky/(x —
0 x 0 )dw,

(x—¢ —i—h2

(8)

(9)

201
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/Jmk¢w—x 24 (1)) (w)da

[ K/ = 2(0)? + y(D?)
V(@ — (1) +y(t)?

[ Kb/l — 2 () + ((8) —y(0))
V) = 207 + (utr) — D)2

+Ey(t)

o(z)dx

X[y (t1) (x(t1) — (1)) — ' (t1) (y(t1) — y())]0(t1)dts

/Kok\/ﬂf—fﬂ + (ho +y(1))*)
V(@ = () + (ho +y(1))?

X (ho +y(t))o(z)dz, (10)

/Kg (z — 02 + h2)p(x)de

K{(k+/(z —1) +h2
wh/ OV ) (@) de

:C—L —l—h2

[ Ky (ky/G(t) = 0 + () + ho)?)
V(@) — )% + (y(t1) + ho)?

X[y (t1) (x(t1) — o) — 2 (t1) (y(t1) + ho)]O(t1)dty  (11)

In order to apply the technique of [11] to (9) it is necessary to pass to the
Fourier transformg of the functionyp,

o0

ﬂm—/ﬂ%@%

— 00

Feplp(©)(p)
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We use the formulas (see [1])

T
k2 + p?
F Kl(k V 52 + h%) (p) _ ie—ho\/m
f—>p /52 + h% kho 9

Ko(z) = —Ki(2), Fep[Ko(kIED](p) =

)

Passing to the Fourier transforgnof the functiony and using (12), we come
to the following system fop(p), 6(t) anda(t):

(1 _ )‘> 5(p) = ]eipx(t)+y(t)f(p) (x’(t) _ ipy/(t)>9(t)dt

) . 7(p)
e hT@g(p), (13)
o) = L [ o (14 2 Yoy
o 7(p')
TK'K/
_k/mgl(tl,t)e(tl)dtl
7T7 Q(tlut)
+2i / o=~ (ho+y()T(0) & (p) dp, (14)
T
- o —hoT(p) A b,
ap) = e L+ 7 )#)

+ / e—ipx(tl)—(y(h)-i-ho)T(p) (Zpy’(tl) + x/(t1)>
. 7(p)

0(t1)dt1, (15)
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o(ti,t) = y'(t)((tr) — 2(t)) — 2’ (1) (y(tr) — y(t))- (16)

Rewrite system (13)—(15) as

(1—721))) B) = (B00)(p) + (Vd)(p). 17)
(1= 300 = (3)(0) + (ha)(), (18)
a(p) = (Mep)(p) + (M:0)(p). (19)

where

(V60)(p) = / My (p, £)0(t)dt,
(Ma)(p) = e ™ a(p)

(VEs3)(t) = / M(p, )@y,
(NLa)(t) = / Ma(p, H)a(p)dp,

(Ms0)(t) = / M (ty,t)0(t1)dty,

(WLs3)(p) = e—h°T<p><1+Ta)))¢<p>,

(NE0)(p) = / M (p, 11)0(t1) .

-
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with
Mipt) = rO+Ore) ( 2 (t) — ipy'(t)) (20)
7(p)
My(p) = e—hoT(P)’
My t) = —emiaru®re) (14 A
’ 2r T(p'))’
1 .
— e~ tpz(t)—(ho+y(t))T(p)
M4(p7 t) 27_(_6 )
K (k ti,t
M5(t1,t) — _ﬁw(;(tht)?
™ Q(tlat)
1 A
M, — _— ,—hot(p) 1 -
o0 = g1+ 55)
Mz(p,ty) = e~ pz(t1)—=(y(t1)+ho)7(p) <ip)y’(,§1) _|_g;’(t1)> ,
T\P

Consider equations (18), (19). It is not hard to see, using the asymptotics of
K (z) for small and largez, that the operatoiV/5 in (18) is bounded by const
k~1/2_In fact, the following lemma holds.

Lemmal — We have

U Ms(t1,1)0(t) dty

™

< Ck~'2)9],

whereC'is a constant anld|| = sup,c[_ 1 [0(¢)|-

PROOF: For a givens > 0, we divide the interval of integration in two do-
mains,k|t; — t| < 0 andk|t; — t| > ¢. In the first domain we use the asymp-
totics K{)(z) ~ 1, and in the second, the asymptotit$(z) ~ /2e . For
klt — t1]| < 6, we have by (20)

|o(t1,1)]

Ms(t1,t)| < C .
Ms (i1, 2)] < Vo(ty,t)

The numerator here 9((¢; — t)?), and

Vol(ti,t) > clty —t, c>0, (21)
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by (1). HenceMs5(t1,t) is bounded in this domain. Fdfit; — ¢t| > ¢ we have,
again by (1),

— o(t t)|
Ms5(t,t)| < C k1/2 k Q(tl,t)L'
‘ 5( 1 )| = 2 € ( (tl’t))?)/

The last factor is bounded by virtue of (21) and by the same inequality we
obtain
|Ms(t1,t)] < Csk'/2ecklti=tl, (22)

Sinceeklt—tl > ¢~ = const for|t; — t| < §/k, we see that (22) holds for all
t1,t. Now

L/ M;5(t1,t)0(t1) dty

™

< const / kV2emeHn—t g 9] < Ck—V2)6)

—T

as claimed.

We see thali M;|| < constk—'/2. Hence we can invert the operatdr— Ms)
using the Neumann series. Moreovéﬂ; are exponentially small since, +
y(t) > d > 0. Solving (18), (19) fo®¥ anda, we obtain

0(t) ={[1 — (1 — M) MyM7]~"
x (1= M)~ [Ms + MyMg|@}¢), (23)

a(p) ={[1 — Mrz(1 — M5)' Ny ~"
x [Mg + M7 (1 — Ms) ™ Ms]@}(p), (24)

where(1 — M;)~! = Y~ MP. Substituting (23), (24) in (13) we finally come to
n=0

(1 - T(Ap))@(p) _ Wdl), (25)

where
Mn = M9M3 + M10M67
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My =M, [1 — (1 — M)~ ' My M7~ (1 — M)t
+ My[1 — M7(1 — Ms) ™ My~ My (1 — M),
Mg =M[1 — (1 — M) ' My M7 =11 — Ms) ™'y
+ My[1 — M7(1 — M)~ My~

We know that\ is given by (6), wheres is exponentially small irk, i.e., the
distance of the trapped wave frequency to the cut-off frequency is exponentially
small ink, (see [2]). Hence the first factor in the left-hand side of (25),

Ao k tanh khg — (32
7(p) VEZ+p2

is exponentially small itk for p = 0. In fact, the roots of.(p) = 0 which tend to
zero ask — oo, as itis not hard to see, are simple and given by

p= pi—i\\;ﬁJrO( 2%, fs:%

(26)

(27)

SinceL(p) ~ Const(p? + (42) for smallp, we see that integral equation (25)
is similar to the integral equation of Section 2 of heuristic considerations of [11]
and our arguments are still valid if we changen the form@(p) = A(p)/L(p).
As we shall see (see formula (29) below), thidp) is analytic and using the fact
that M3(p, t), is analytic in a strip containing the real axis, then we can change the
contour of integration in the integral

A(p)
/ M;3(p,t dp,
L(p)

to the one shown in Fig. 2.

We have, by the residue theorem,

L p %L(pﬂp:m
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Sp
v Rep
—a a
Figure 2:
Thus (25) transforms into
A(p) = M7, A(p) + 9(p)A(p+), (29)
where
Mﬂ = MQM; + Mo Mg,
AP - Ms(p+, )

(VL A1) = / Mol Oyl Jalt) = 2migp

9(p) = (Mo f3(t) + Mo Ms) (p)-
Observe now that the operatﬂ?)]l’f1 is small ine, e = 1/k since|L(p)| >

const k=2 along~y and Ms(p) is exponentially small. Indeed, on the arc we have
up toO (k=)

1 a?
|L(p)| = ‘1 - \/TW =gzt O(k™), (30)

and on the part of the contour which lies on the real axis the minimuh(@f| is
attained at the poinigs = +a, hence, the above estimate still holds.

Rewriting (29) as
[(1 = M) Al(p) = 9(p)Alp+), (31)
we see thafl — M7,) is invertible and

A(p) = [(1 = M7,) " gl(p)Alpy). (32)
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Puttingp = p4 in the last equality and dividing byt (p. ), we obtain an equa-
tion for 3:
1= [(1 = M) gl(p)lp=p. - (33)

A standard application of the Laplace method of asymptotic evaluation of inte-
grals to the leading term in (33) yields formula (7). In fact, from the leading term
in (33),

g~ Y22 ([ 0200800t (34)

with M;(p,t1), j = 1,3, defined in (20). We have

B~ ﬁ ( / e%y(t)x/(t)dt>.

—T

Applying the Laplace method to the last integrals, we obtain (7).
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