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This paper is concerned with the study of an initial boundary value problem

for a nonlinear second order pseudoparabolic equation arising in the unidi-

rectional flow of a thermodynamic compatible third grade fluid. We establish

some apriori bounds for the solution and prove its existence.
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1. INTRODUCTION

The analysis of the flow of an incompressible non-Newtonian fluid has drawn much

attention in the recent years. This is because of relevance of the applications of the
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non Newtonian fluids in industry and engineering. Examples of the non-Newtonian

fluids include multi-grade oils, paints, food products, inks, glues, soaps, mud, cer-

tain polymers etc. The observed flow of the non-Newtonian fluids are markedly dif-

ferent from that of its Newtonian counterpart. The relationships between the shear

stress and the flow field in the non-Newtonian fluids are more complicated in com-

parison to the Newtonian fluids. The governing equations of the non-Newtonian

fluids are higher order and much nonlinear than equations of the Newtonain flu-

ids. Besides all these challenges, several recent investigators [1-7], [14-16] have

even carried out the analysis on various types of flows in the non-Newtonain fluid

mechanics. Generally, the non-Newtonian fluids are classified under the three cat-

egories known as the differential type, rate type and integral type. A simplest

subclass of the differential type fluid is called the second grade. This subclass can

describe the normal stress effects and is not able to predict the shear thinning and

shear thickening characteristics in the steady flows with rigid boundaries. The third

grade fluids although can explain such features.

In this paper, we deal with an initial boundary value problem for a nonlinear

second order equation. Such nonlinear equation appears when unidirectional flow

of a third grade fluid is considered in a thermodynamic sense. The fluid is consid-

ered between the two non-porous plates. To obtain some a priori estimates for the

solution of probelm (10)-(13) stated below, we apply the energy estimate method

inspired from functional analysis, see for example [9-13]. The technique of de-

riving such a priori estimate is based on a conveniently chosen multiplier. From

the resulted energy estimate, it is possible to establish the solvability of the posed

problem.

2. STATEMENT OF THE PROBLEM

Let us examine the flow of an incompressible and homogeneous third grad fluid

between two parallel stationary plates distanth apart. Thex∗ and y∗ axes are

chosen along and perpondicular to the channel walls. The flow is governed by the

following equations

divV = 0, (1)
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ρ
dV

dt∗
= −pI + divS, (2)

whereV is the velocity,ρ the fluid density,d/dt the material derivative,p the

pressure,I an identity tensor and an extra stress tensorS in a thermodynamic third

grade fluid is described by the following expression [8]

S =
(
µ + ξ(trA2

1)
)

A1 + α1A2 + α2A
2
1, (3)

with µ ≥ 0, ξ ≥ 0, |α1 + α2| ≤
√

24µξ,

A1 = (∇V ) + (∇V )T ∗ , A2 =
dA1

dt∗
+ A1((∇V ) + (∇V )T ∗A1. (4)

Here we referµ as the dynamic viscosity of fluid,tr the trace,T ∗ the matrix

transpose,αi(i = 1, 2) andξ the material parameters andAi(i = 1, 2) the first two

Rivlin-Ericksen tensors.

We define the velocity field as

V = (u∗(y∗, t∗), 0, 0). (5)

Now equation(1) is identically satisfied and equations(2)− (5) in absence of

modified pressure gradient yield

ρ
∂u∗

∂t∗
= µ

∂2u∗

∂y∗2
+ α1

∂3u∗

∂y∗2∂t∗
+ ξ

(
∂u∗

∂y∗

)2 ∂2u∗

∂y∗2
. (6)

The appropriate boundary and initial conditions are

u∗(0, t∗) = u∗(h, t∗) = 0, (7)

u∗(y∗, 0) = g(y∗). (8)

To explore the analysis in dimensionless form, we introduce the following vari-

ables {
u = u∗

U0
, η = U0y∗

ν , t = U2
0 t∗
ν

α = α1U2
0

ρν2 , β = 6ξU4
0

ρν3 ,
(9)
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whereU0 is the characteristic velocity andν the kenematic viscosity. The non-

dimensional problem can be written as




ut = uηη + αuηηt + βu2
ηuηη

u(η, 0) = σ(η),
u(l, t) = 0, u(0, t) = 0,

(10)

whereσ(η) = g/U0 andl = U0h/ν.

Let T > 0, Ω = (0, l), and

Q = Ω× (0, T ) =
{
(η, t) ∈ R2 : η ∈ Ω, 0 < t < T

}
,

we consider the following nonlinear mixed problem

Lu = ut − uηη − αuηηt − βu2
ηuηη = f(η, t), (11)

`u = u(η, 0) = σ(η), (12)

u(l, t) = 0, u(0, t) = 0, (13)

wheref(η, t), andσ(η) are given functions andα andβ are positive constants

For the investigation of this problem, we introduce the following function

spaces.

Let L2(Q) be the Hilbert space of square integrable functions having the fi-

nite norm‖u‖2
L2(Q) =

∫
Q u2dη, and the associated inner product(u, v)L2(Q) =∫

Q uvdη. AndH1(Ω) is the Hilbert space with inner product(u, v)H1(Ω) =
∫
Ω uvdη+∫

Ω uηvηdη, and equipped with the norm‖u‖2
L2(Ω) + ‖uη‖2

L2(Ω) .

We establish apriori bound and prove the existence of a solution of the problem

(11)-(13). LetLu = F , whereL = (L, `), andF = ({, σ) be the operator equation

corresponding to problem (11)-(13). The operatorL with domain of definition

D(L) =
{
u ∈ L2(Q)/ ut, uη, uηη, uηηt ∈ L2(Q)

}
, satisfying conditions (13),

acts fromE to F defined as follows. The Banach spaceE consists of all functions

u(η, t) with the finite norm

‖u‖2
E = sup

0≤τ≤T
‖u(η, τ)‖2

H1(Ω) + ‖uη‖2
L2(Q) . (14)
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The Hilbert spaceF consists of the vector valued functionsF = (f, σ) with

the norm

‖F‖2
F = ‖f‖2

L2(Q) + ‖σ‖2
L2(Ω) . (15)

We assume that the data functionσ satisfies the conditions of the form (13),

σ(0) = σ(l) = 0. (16)

We first establish a priori estimate for the solution of problem (11)-(13).

3. A PRIORI BOUND FOR THESOLUTION

Theorem3.1 — For any functionu ∈ D(L), there exists a positive constantc

independent ofu such that

sup
0≤τ≤T

‖u(η, τ)‖2
H1(Ω) + ‖uη‖2

L2(Q)

≤ c
(
‖f‖2

L2(Q) + ‖σ‖2
H1(Ω)

)
, (17)

where

c = γeγT , γ =
max(α+1

2 , β
12 , 1)

min(1
3 , α)

. (18)

PROOF : For the equation (11) andQτ = Ω× (0, τ), we have

(Lu, u)L2(Qτ ) = (ut, u)L2(Qτ ) − (uηη, u)L2(Qτ )

−(αuηηt, u)L2(Qτ ) − (βu2
ηuηη, u)L2(Qτ ). (19)

By using conditions (12) and (13), the right-hand side of (19) can be evaluated
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as follows

(ut, u)L2(Qτ ) =
1
2
‖u(η, τ)‖2

L2(Ω) −
1
2
‖σ‖2

L2(Ω) , (20)

−(uηη, u)L2(Qτ ) =
1
2
‖uη‖2

L2(Qτ ) , (21)

−(αuηηt, u)L2(Qτ ) =
α

2
‖uη(η, τ)‖2

L2(Ω) −
α

2
‖ση‖2

L2(Ω) , (22)

−(βu2
ηuηη, u)L2(Qτ ) = −β

3

τ∫

0

u3
ηu |l0 dt +

β

3

∫

Qτ

u4
ηdηdt. (23)

Equality (23) implies that

−(βu2
ηuηη, u)L2(Qτ ) =

β

3
‖uη‖4

L4(Qτ ) . (24)

Substituting (20)-(22) and (24) into (19), we obtain

1
2
‖u(η, τ)‖2

L2(Ω) + ‖uη‖2
L2(Qτ ) +

α

2
‖uη(η, τ)‖2

L2(Ω) +
β

3
‖uη‖4

L4(Qτ )

=
1
2
‖σ‖2

L2(Ω) +
α

2
‖ση‖2

L2(Ω) + (Lu, u)L2(Qτ ). (25)

If we discard the fourth term on the left-hand side of (25) and apply Cauchyε

inequality, we get

‖u(η, τ)‖2
H1(Ω) + ‖uη‖2

L2(Qτ )

≤ γ
(
‖σ‖2

H1(Ω) + ‖f‖2
L2(Qτ ) + ‖u‖2

L2(Qτ )

)

≤ γ
(
‖σ‖2

H1(Ω) + ‖f‖2
L2(Qτ ) + ‖u‖2

H1(Qτ )

)
, (26)

where

γ =
max(α

2 , 1
2)

min(1
3 , α

2 )
.

Application of Gronwall’s lemma [14] to the inequality (26), implies that

‖u(η, τ)‖2
H1(Ω) + ‖uη‖2

L2(Q)

≤ γeγT
(
‖f‖2

L2(Q) + ‖σ‖2
H1(Ω)

)
. (27)
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As the right-hand side of the above inequality (27) is independent ofτ , we take

the least upper bound in its left-hand side with respect toτ from 0 to T , to obtain

the desired inequality

sup
0≤τ≤T

‖u(η, τ)‖2
H1(Ω) + ‖uη‖2

L2(Q)

≤ γeγT
(
‖f‖2

L2(Q) + ‖σ‖2
H1(Ω)

)
. (28)

Let R(L) be the range of the operatorL. However, since we do not have any

information aboutR(L), except thatR(L)⊂ F , we must extendL, so that estimate

(28) holds for the extension and its range is the whole spaceF. We first state the

following proposition.

Proposition3.2 — The operatorL : E → F admits a closureL.

PROOF : The proof is similar to that in [13].

Let L be the closure of this operator, with domain of definitionD( L).

We define a strong solution of problem (10)-(13) as the solution of the operator

equation:Lu = (f, σ) for all u ∈ D( L).

The apriori estimate (17) can be extended to strong solutions, i.e., we have the

estimate

sup
0≤τ≤T

‖u(η, τ)‖2
L2(Ω) + ‖uη‖2

L2(Q)

≤ c2
(
‖f‖2

L2(Q) + ‖σ‖2
L2(Ω)

)
, ∀u ∈ D(L). (29)

It can be deduced from the a priori estimate estimate (29) that the rangeR(L)
of the operatorL is closed inF and is equals to the closureR(L) of R(L), that is

R(L) = R(L).
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4. EXISTENCE OFSOLUTION

Theorem4.1 — For all F = (f, σ) ∈ F, there exists a unique strong solution

u = L
−1F = L−∞F of the problem (11)-(13).

PROOF : From the fact thatR(L) = R(L), we deduce that to prove the exis-

tence of the strong solution, it is sufficient to show the range of the operatorL is

everywhere dense in the spaceF, that isL is injective. To this end, we first prove

the following proposition.

Proposition4.2 — LetD0(L) be the set of allu ∈ D(L) vanishing in a neigh-

bourhood oft = 0. If for φ ∈ L2(Q) and for allu ∈ D0(L), we have

(Lu, φ)L2(Q) = 0, (30)

then the functionφ vanishes almost everywhere inQ.

PROOF(of proposition 4.2) : Assume that (30) holds for anyu ∈ D0(L). Using

this fact, it can be expressed in a particular form. First define the functionσ by the

formula

σ(η, t) =

T∫

t

φ(η, s)ds. (31)

Let ∂u/∂t be a solution of the equation

ut(η, t) = σ(η, t). (32)

And let

u(η, t) =





0 0 ≤ t ≤ z
t∫

z
usds z ≤ t ≤ T.

(33)

It follows from above that

φ(η, t) = −utt(η, t). (34)
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We have the following result:

Lemma4.3 — The functionu defined by (32) and (33) has derivatives with

resect tot up to the second order belonging toL2(Qz),whereQz = Ω× (z, T ).

PROOF : For the proof, the reader should refer to [11].

To complete the proof of proposition 4.2, we replaceφ((η, t) in (30) by its

representation (34). We have

−(ut, utt)L2(Q) + (uηη, utt)L2(Q) + (αuηηt, utt)L2(Q)

+(βu2
ηuηη, utt)L2(Q) = 0. (35)

Invoking relations (32), (33) and the boundary conditions (13), and carrying

out appropriate integrations by part of each term of (35), we obtain

−(ut, utt)L2(Q) =
1
2
‖ut(η, z)‖2

L2(Ω) , (36)

(uηη, utt)L2(Q) = ‖utη‖2
L2(Qz) , (37)

(αuηηt, utt)L2(Q) = α

∫

Q
uηηtuttdηdt = α

T∫

z

uηtutt |l0 dt− α

∫

Qz

uηtuttηdηdt

= −α

l∫

0

u2
ηt |Tz dη + α

∫

Qz

uηtuttηdηdt. (38)

Equality (38) gives

(αuηηt, utt)L2(Q) =
α

2
‖utη(η, z)‖2

L2(Ω) , (39)

(βu2
ηuηη, utt)L2(Q) = β

∫

Q
u2

ηuηηuttdηdt

= β

T∫

z

u3
ηutt |l0 dt− β

∫

Qz

u3
ηuttηdxdt

−2β

∫

Qz

u2
ηuηηuttdηdt. (40)
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It follows from (40) that

(βu2
ηuηη, utt)L2(Q) = −β

3

∫

Qz

u3
ηuttηdηdt

= −β

3

l∫

0

u3
ηutη |Tz dη + β

∫

Qz

u2
ηu

2
tηdηdt

= β

∫

Qz

u2
ηu

2
tηdηdt. (41)

Substitution of (36), (37), (39) and (41) into (35), yields

1
2
‖ut(η, z)‖2

L2(Ω) + ‖utη‖2
L2(Qz) +

α

2
‖utη(η, z)‖2

L2(Ω)

+β

∫

Qz

u2
ηu

2
tηdηdt = 0. (42)

It follows from (42) thatφ(η, t) = 0 almost everywhere inQz. Proceeding in

this way step by step, we prove thatφ(η, t) = 0 almost everywhere inQ. Therefore,

the proof of Proposition 4.2 is complete.

Now consider the general case.

Theorem4.4 — The rangeR(L) of the operatorL coincides with the whole

spaceF.

PROOF : Assume that for someG = (ϕ, g0) ∈ {R(L)}⊥ ,

(Lu,G)F = (Lu, ϕ)L2(Q) + (`u, g0)L2(Ω) = 0, (43)

We must show thatG ≡ 0.

Puttingu ∈ D0(L) in (43), we obtain

(Lu, ϕ)L2(Q) = 0, u ∈ D0(L).

Hence, Proposition 4.2 implies thatϕ = 0. Thus (43) takes the form

(`u, g0)L2(Ω) = 0, ∀u ∈ D(L). (44)
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As the range of the trace operator` is everywhere dense in the Hilbert space

L2(Ω), then relation (44) implies thatg0 = 0. Hence,G ≡ 0, and thusR(L) = 0.

Remark: The same analysis can be done to treat the problem





Lu = ut − uηη − αuηηt − βu2
ηuηη = f(η, t)

u(η, 0) = 0,

u(0, t) = 1, u(l, t) → 0 whenl →∞

which reduces to Stokes’ first problem.
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