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Here it is proved that ifQ(x1, . . . , xn) is a positive definite quadratic form which is reduced

in the sense of Korkine and Zolotareff and has outer coefficientsB1, . . . , Bn satisfyingB1 ≥
1, Bn ≤ 1 andB1 · · ·Bn = 1, then its inhomogeneous minimum is at mostn/4 for n ≤ 7. This

result implies a positive answer to a question of Shapira and Weiss for stable lattices and thereby

provides another proof of Minkowski’s Conjecture on the product ofn real non-homogeneous

linear forms inn variables forn ≤ 7. Our result is an analogue of Woods’ Conjecture which has

been proved forn ≤ 9. The analogous problem whenB1 < 1 is also investigated.
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1. INTRODUCTION

Let

Q(x1, . . . , xn) = B1(x1 + b21x2 + · · ·+ bn1xn)2 + B2(x2 + b32x3 + · · ·+ bn2xn)2

+ · · ·+ Bnx2
n

(1.1)

be a positive definite quadratic form with real coefficients. The homogeneous minimum ofQ is

defined as

λ(Q) = inf
(u1,...,un)∈Zn\{0}

Q(u1, . . . , un).

The inhomogeneous minimum ofQ is defined as

µ(Q) = sup
(x1,...,xn)∈Rn

inf
(u1,...,un)∈Zn

Q(x1 − u1, . . . , xn − un).
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The formQ is said to be reduced in the sense of Korkine and Zolotaroff (or K-Z reduced) if for each

i, 1 ≤ i ≤ n, Bi is the homogeneous minimum for the form

Bi(xi + bi+1,ixi+1 + · · ·+ bnixn)2 + Bi+1(xi+1 + bi+2,i+1xi+2 + · · · )2 + · · ·+ Bnx2
n.

Equivalently, a latticeL in Rn is called K-Z reduced ifL has a basis of the form

(A1, 0, 0, . . . , 0), (a2,1, A2, 0, . . . , 0), . . . , (an,1, an,2, . . . , an,n−1, An),

whereA1, A2, . . . , An are all positive, and further for eachi = 1, 2, . . . , n any two points of the

lattice inRn−i+1 with basis

(Ai, 0, 0, . . . , 0), (ai+1,i, Ai+1, 0, . . . , 0), . . . , (an,i, an,i+1, . . . , an,n−1, An)

are at a distance at leastAi apart.

(A positive definite quadratic formQ can be written asQ(x1, . . . , xn) = Q(X) = X ′B′BX,

whereB is a non singular matrix and the lattice corresponding to it isL = BZn.)

Conjecture (Woods) [13]— For a K-Z reduced formQ, if B1B2 · · ·Bn = 1 andBi 6 B1 for

eachi thenµ(Q) ≤ n
4 .

Equivalently, if a K-Z reduced latticeL hasA1A2 · · ·An = 1 andAi 6 A1 for eachi, then any

closed sphere inRn of radius
√

n/2 contains a point ofL.

This conjecture has been proved forn ≤ 9. (See Woods [12, 13, 14], Hans-Gillet al. [6,7]

and Kathuria and Raka [8] ). It is known that for any givenn, a proof of well known conjecture

on the product ofn non-homogeneous linear forms inn variables, usually attributed to Minkowski

follows from a proof of Woods’ Conjecture for allm ≤ n. The proof uses the results of Birch and

Swinnerton-Dyer [1] and of McMullen [10]. For a history of Minkowski’s conjecture see Gruber [5].

A lattice Λ (not necessarily K-Z reduced) is said to be a covering lattice for a setS if Rn ⊆⋃

A∈Λ

(S + A); equivalently if every translate ofS contains a point ofΛ. The covering radius of a

latticeΛ is defined as the smallest real numberλ such thatΛ is a covering lattice forλSn, whereSn

is the closed unit sphere| X |≤ 1.

In geometric language one can state Minkowski’s conjecture as

Conjecture (Minkowski): Any latticeΛ of determinant1 in Rn is a covering lattice for the set

S : |x1x2 · · ·xn| ≤ 1
2n

.
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In an effort to prove Minkowski’s Conjecture, Shapira and Weiss [11] have proposed another

approach by which it is enough to prove Minkowski’s Conjecture for stable lattices. A latticeΛ of

determinant1 is calledstable if any subgroup ofΛ is of covolume at least1.

Shapira and Weiss [11] showed that if all stable lattices inRn have covering radius at most
√

n/2,

then Minkowski’s Conjecture is true in dimensionn (see Corollary 5.1 of [11]).

Shapira and Weiss [11] further proved that forn ≤ 7 covering radius of any stable lattice inRn

is at most
√

n
2 , using the results of locally extremal lattices due to Dutour-Sikiric [3] and Dutour-

Sikiric et al. [4]. It is clear that a stable K-Z reduced lattice satisfiesA1 ≥ 1, A1A2 ≥ 1, . . .,

A1A2 · · ·An−1 ≥ 1. In a lecture delivered in our department, Barak Weiss asked the following

question:

If a K-Z reduced latticeL hasA1A2 · · ·Ai ≥ 1 for i = 1, 2, . . . , n andA1A2 · · ·An = 1, then

does any closed sphere inRn of radius
√

n/2 contain a point ofL?

In Section 3, we show that forn ≤ 7, this question has a positive answer and thereby provide

another proof of Minkowski’s Conjecture forn ≤ 7. In fact we prove the result under a weaker

hypothesis.

Theorem1 — For n ≤ 7, if a K-Z reduced latticeL hasA1 ≥ 1, An ≤ 1 andA1A2 · · ·An = 1,

then any closed sphere inRn of radius
√

n/2 contains a point ofL.

In Section 4, we investigate the upper bounds on covering radii of K-Z reduced lattices under the

conditionA1 < 1. We prove

Theorem2 — For eachn ≥ 2, there exist K-Z reduced latticesL of determinant1 havingA1 < 1

andAn > 1 whose covering radius is>
√

n/2.

Theorem3 — For n = 3, 4 the covering radius ofL is ≤ √
n/2, whereL is any K-Z reduced

lattice of determinant1 with A1 < 1 andAn ≤ 1. For n ≥ 8, there exist K-Z reduced latticesL of

determinant1 havingA1 < 1 andAn ≤ 1 whose covering radius is>
√

n/2.

Under the hypothesis of Theorem 3 one can easily get some partial results forn = 5, 6, 7. For

example, one can show that forn = 5 if A1 < 1 andA5 ≤ 1 and if any one ofA2, A3, A4 is ≤ 1,

then the covering radius of the lattice is≤ √
5/2.
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2. PRELIMINARY LEMMAS

For a unit sphereSn with centerO in Rn, let ∆(Sn) be the critical determinant ofSn, defined as

∆(Sn) = inf{d(Λ) : Λ has no point other thanO in the interior ofSn}.

Let γn be the Hermite’s constant i.e.γn is the smallest real number such that for any positive definite

quadratic formQ in n variables of determinantD, there exist integersu1, u2, . . . , un not all zero

satisfying

Q(u1, u2, . . . , un) ≤ γnD1/n.

It is well known that∆2(Sn) = γ−n
n .

Let L be a lattice inRn reduced in the sense of Korkine and Zolotareff. LetA1, A2, . . . , An be

defined as in Section 1. We state below some preliminary lemmas. Lemmas 1 and 2 are due to Woods

[12] and Lemma 3 is due to Korkine and Zolotareff [9]. In Lemma 4, the casen = 3 is a classical

result of Gauss;n = 4 and5 are due to Korkine and Zolotareff [9] whilen = 6 and7 are due to

Blichfeldt [2].

Lemma1 — If 2∆(Sn+1)An
1 ≥ d(L), then any closed sphere of radius

R = A1{1− (An
1∆(Sn+1)/d(L))2}1/2

in Rn contains a point ofL.

Lemma2 — For a fixed integeri with 1 6 i 6 n− 1, denote byL1 the lattice inRi with reduced

basis

(A1, 0, 0, . . . , 0), (a2,1, A2, 0, . . . , 0), . . . , (ai,1, ai,2, . . . , ai,i−1, Ai)

and denote byL2 the lattice inRn−i with the reduced basis

(Ai+1, 0, 0, . . . , 0), (ai+2,i+1, Ai+2, 0, . . . , 0), . . . , (an,i+1, an,i+2, . . . , an,n−1, An)

If any sphere inRi of radiusr1 contains a point ofL1 and if any sphere inRn−i of radiusr2 contains

a point ofL2 then any sphere inRn of radius(r2
1 + r2

2)
1/2 contains a point ofL.

Lemma3 — For all relevanti, A2
i+1 ≥ 3

4A2
i andA2

i+2 ≥ 2
3A2

i .

Lemma4 — ∆(Sn) = 1/
√

2, 1/2, 1/2
√

2,
√

3/8 and1/8 i.e. γn = 21/3, 41/4, 81/5, (64
3 )1/6

and641/7 for n = 3, 4, 5, 6 and 7 respectively.

For positive real numbersX1, . . . , Xk we observe that

X1 + · · ·+ Xk ≤ (k − 1) + X1 · · ·Xk if either all Xi ≤ 1 or all Xi ≥ 1. (2.1)
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Lemma5 — LetX1, . . . , Xn be positive real numbers, satisfyingX1X2 · · ·Xn = 1. Let

xi =| Xi − 1 |, α =
∑

3≤i≤n
Xi≤1

xi.

Then the following hold

(i) If Xi ≥ 1 for i = 1, 3, 4, . . . , n then

S1 = 4X1 − 2X2
1

X2
+ X3 + · · ·+ Xn ≤ n.

(ii) If X1 ≥ 1 and α ≤ x1 < 0.45, then again S1 ≤ n.

(iii) If Xi ≥ 1 for i = 1, 3, 5, 6, . . . , n, and Xi ≤ 4 for i ≥ 5, then we have

S2 = 4X1 − 2X2
1

X2
+ 4X3 − 2X2

3
X4

+ X5 + · · ·+ Xn ≤ n.

(iv) If Xi ≥ 1 for i = 1, 3, 5, 7, 8, . . . , n, and Xi ≤ 23/2 for i ≥ 7, then we have

S3 = 4X1 − 2X2
1

X2
+ 4X3 − 2X2

3
X4

+ 4X5 − 2X2
5

X6
+ X7 + · · ·+ Xn ≤ n.

PROOF : UsingX1X2 · · ·Xn = 1 and (2.1) we find thatS1 = 4X1 − 2X3
1X3 · · ·Xn +X3 +

· · ·+Xn. WhenXi ≥ 1 for i = 1, 3, 4, . . . , n, S1 is a decreasing function of each ofXi, so replacing

each of these by1 we getS1 ≤ n. This proves (i).

Let β =
∑

3≤i≤n
Xi≥1

xi. ThenS1 ≤ 4X1 − 2X3
1 (1 − α)(1 + β) + n − 2 − α + β. As the coefficient

of β namely1 − 2X3
1 (1 − α) is negative for0 ≤ α < 0.5 andβ ≥ 0, we can replaceβ by 0 to get

S1 ≤ 4X1−2X3
1 (1−α)+n−2−α. Further the coefficient ofα namely2X3

1 −1 is positive, so we

can replaceα by x1 to getS1 ≤ 3x1− 2(1+x1)3(1−x1)+n+2 which is at mostn for x1 ≤ 0.45.

This proves (ii).

Applying A.M-G.M inequality and usingX1X2 · · ·Xn = 1 we getS2 ≤ 4X1 + 4X3 + X5 +

· · · + Xn − 4(X3
1X3

3X5 · · ·Xn)
1
2 . Right side is a decreasing function of each ofX5, . . . , Xn, so

replacing each of these by1 we getS2 ≤ 4X1 + 4X3 + n− 4− 4(X3
1X3

3 )
1
2 which is at mostn for

X1 ≥ 1, X3 ≥ 1. This proves (iii); the proof of (iv) is similar.

Lemma6 — LetXi be positive real numbers for1 ≤ i ≤ m satisfying

X1 ≥ 1, X1X2 · · ·Xm = 1. Let

xi =| Xi − 1 |, γ =
∑

4≤i≤m
Xi≤1

xi and δ =
∑

4≤i≤m
Xi≥1

xi.



292 LEETIKA KATHURIA et al.

Suppose that either

(i) Xi ≥ 1 for each i , 4 ≤ i ≤ m or

(ii) γ ≤ x1 ≤ 0.5 or

(iii) δ ≥ 2γ and γ ≤ 2x1 with x1 ≤ 0.226

then

4X1 −X4
1X4 · · ·Xm + X4 + · · ·+ Xm ≤ m,

The simple proof similar to that given in Lemmas 8 and 10 of [6] is omitted.

3. PROOF OFTHEOREM 1

Let L be a lattice satisfying the hypothesis of Theorem 1. Suppose that there exists a closed sphere

of radius
√

n/2 in Rn that contains no point ofL. We shall get a contradiction. WriteA = A2
1, B =

A2
2, C = A2

3, . . .. So we haveABCD · · · = 1. Also we shall writea = |A − 1|, b = |B − 1|,
c = |C − 1|, . . ..

We give some examples of inequalities that arise. Letn = 7 andLi , 1 6 i 6 4, be lattices

in R1 with basis (Ai) andL5 be a lattice inR3 with basis(A5, 0, 0), (a6,5, A6, 0), (a7,5, a7,6, A7).

Applying Lemma 2 repeatedly and using Lemma 1, we see that if2∆(S4)A3
5 > A5A6A7 then any

closed 7-sphere of radius

(
1
4
A2

1 +
1
4
A2

2 +
1
4
A2

3 +
1
4
A2

4 + A2
5 −

A8
5∆(S4)2

A2
5A

2
6A

2
7

)1/2

contains a point ofL. By our supposition this radius exceeds1
2

√
7. Since∆(S4) = 1/2 and

A1A2 · · ·A7 = 1, this results in the conditional inequality:

if E2 > FG thenA + B + C + D + 4E −E4ABCD > 7. (3.1)

We call this inequality ( 1, 1, 1, 1, 3), since it corresponds to the ordered partition ( 1, 1, 1,

1, 3) of 7 for the purpose of applying Lemma 2. Similarly the conditional inequality(1, 1, 1, 1, 2)

corresponding to the ordered partition(1, 1, 1, 1, 2) of n = 6 is

if 2E ≥ F then A + B + C + D + 4E − 2E2

F
> 6. (3.2)

Since4E − 2E2/F ≤ 2F , the second inequality in (3.2) gives

A + B + C + D + 2F > 6. (3.3)
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One may remark here that the condition2E ≥ F is necessary only if we want to use inequality

(3.2), but it is not necessary if we want to use the weaker inequality (3.3). This is so because if

2E < F , using the partition(1, 1) in place of(2) for the relevant part, we get the upper boundE +F

which is clearly less than2F . We shall call inequalities of type (3.3) as weak inequalities and indicate

it by the subscriptw for example the inequality (3.3) is denoted by(1, 1, 1, 1, 2)w. More examples of

weak inequalities are (3.4)-(3.13).

In general, if(λ1, λ2, . . . , λs) is an ordered partition ofn, then the conditional inequality aris-

ing from it, by using Lemmas 1 and 2, is also denoted by(λ1, λ2, . . . , λs). If the conditions in an

inequality(λ1, λ2, . . . , λs) are satisfied then we say that(λ1, λ2, . . . , λs) holds.

For eachn, n ≤ 7, we discuss2n−2 cases that arise depending upon whetherAi > 1 or Ai ≤ 1

for 2 ≤ i ≤ n − 1. We list the cases and the inequalities used in the tables. If the case does not

follow immediately from the inequalities, we also list relevant lemma from which it follows or the

proposition where it is discussed. In three cases, where the list of inequalities is long, we list only the

proposition in which the proof is given (Propositions 1, 4, 5). Sometimes, in these propositions, we

have used the software Mathematica (7.0) to show thatf(x, y) < 0 wheref(x, y) is some function

by plotting its graph in given ranges of the variables.

Lemma7 — Let Yi = A2
j+i for some fixedj, 0 ≤ j ≤ n − 3 and for1 ≤ i ≤ n, the subscript

j + i being taken modulon. Let

yi =| Yi − 1 |, η =
∑

4≤i≤n
Yi≤1

yi.

Then all the cases in whichY1 ≥ 1, Y2 > 1, Y3 ≤ 1 andη ≤ y1 do not arise.

PROOF : Here we have, by Lemma 3,y1 ≤ 1
2 andy2 ≤ 1

3 .

If Y1 ≥ Y2, then the inequality(1, . . . , 1︸ ︷︷ ︸
j

, 3, 1, . . . , 1) holds i.e.

4Y1 − Y 4
1 Y4 · · ·Yn + Y4 + · · · + Yn > n, which is not true by Lemma 6(ii) withXi = Yi for all

i, 1 ≤ i ≤ n andγ = η.

If Y1 ≤ Y2, we use the inequality(1, . . . , 1︸ ︷︷ ︸
j

, 1, 2, 1, . . . , 1) which givesY1+4Y2−2Y 3
2 Y4 · · ·Yn+

Y4 + · · · + Yn > n which is not true by Lemma 5(ii) withX1 = Y2, Xi = Yi+1 for 1 ≤ i ≤ n − 1,

Xn = Y1 andα = η.
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3.2 n = 6

The proof of Theorem 1 forn = 6 follows from the inequalities listed in Table 5 and Proposition 1.

Table 5

Case A B C D E F Inequalities Lemma/Proposition

1 ≥ > > > > ≤ (1, 1, 1, 1, 2) Lemma 5(i)

2 ≥ > > > ≤ ≤ (1, 1, 1, 3) Lemma 6(i)

3 ≥ > > ≤ > ≤ (1, 1, 2, 2) Lemma 5(iii)

4 ≥ > > ≤ ≤ ≤ Proposition 1

5 ≥ > ≤ > > ≤ (1, 2, 1, 2) Lemma 5(iii)

6 ≥ > ≤ > ≤ ≤ (1, 2, 2, 1)w Lemma 7 withY1 = A

(3, 1, 1, 1), (1, 2, 1, 1, 1)

7 ≥ > ≤ ≤ > ≤ (1, 2, 1, 2)w Lemma 7 withY1 = A

(3, 1, 1, 1), (1, 2, 1, 1, 1)

8 ≥ > ≤ ≤ ≤ ≤ (1, 2, 1, 1, 1)w Lemma 7 withY1 = A

(3, 1, 1, 1), (1, 2, 1, 1, 1)

9 ≥ ≤ > > > ≤ (2, 1, 1, 2) Lemma 5(iii)

10 ≥ ≤ > > ≤ ≤ (2, 1, 2, 1)w Lemma 7 withY1 = C

(1, 1, 3, 1), (1, 1, 1, 2, 1)

11 ≥ ≤ > ≤ > ≤ (2, 2, 2)w

12 ≥ ≤ > ≤ ≤ ≤ (2, 2, 1, 1)w

13 ≥ ≤ ≤ > > ≤ (2, 1, 1, 2)w Lemma 7 withY1 = D

(1, 1, 1, 3), (1, 1, 1, 1, 2),

14 ≥ ≤ ≤ > ≤ ≤ (2, 1, 2, 1)w

15 ≥ ≤ ≤ ≤ > ≤ (2, 1, 1, 2)w

16 ≥ ≤ ≤ ≤ ≤ ≤ (2, 1, 1, 1, 1)w

Proposition1 — Case (4) i. e.A ≥ 1, B > 1, C > 1, D ≤ 1, E ≤ 1, F ≤ 1 does not arise.

PROOF : Recall thata = |A − 1|, . . . , f = |F − 1|. Here by Lemma 3,a ≤ 1, b ≤ 0.5, c ≤ 1
3

andF ≥ 4B
9 . Using weak inequalities(1, 1, 2, 2)w, (2, 2, 2)w, (1, 1, 2, 1, 1)w and(2, 2, 1, 1)w we get

a + b− 2d− 2f > 0, (3.4)

2b− 2d− 2f > 0, (3.5)
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a + b− 2d− e− f > 0, (3.6)

2b− 2d− e− f > 0. (3.7)

Thereforef < a+b
2 , f < b, e + f < a + b and e + f < 2b.

Claim (i): B > C

SupposeB ≤ C. Thereforef < b ≤ c. Apply the inequality(1, 1, 3, 1) to getA + B + 4C −
C4FAB + F > 6, which is not true by Lemma 6(ii) forγ = f ≤ c = x1 andc ≤ 1

3 .

Claim (ii): e + f > b, d ≤ a
2 , d ≤ b

2 .

Supposee+f ≤ b. AsB > C by claim (i), therefore(1, 3, 1, 1) holds i. e.A+4B−B4EFA+

E + F > 6, which is not true by Lemma 6(ii) withγ = e + f ≤ b = x1 ≤ 0.5. Now (3.6) and (3.7)

gived ≤ a
2 , d ≤ b

2 .

Claim (iii): b < 0.226

Supposeb ≥ 0.226. We first prove thatB4FA > 2. If A ≥ B, B4FA ≥ B5F > (1+b)5(1−b) > 2

for b ≥ 0.226. If A ≤ B, B4FA > (1 + b)4(1 + a)(1 − a+b
2 ) = φ(a), say. The second derivative

of φ(a) is negative, its minimum occurs at end point ofa, henceφ(a) ≥ min{φ(0), φ(b)} > 2 for

0.226 ≤ b ≤ 0.5. Now apply(1, 4, 1) to getA+4B− 1
2B5FA+F > 6. AsB5A ≥ B5 ≥ (1.226)5 >

2, the left side is a decreasing function ofF , so we replaceF by 4B
9 to getA + 40B

9 − 1
2

4
9B6A > 6,

which is not true for1.226 ≤ B ≤ 1.5 and1 ≤ A ≤ 2. This gives a contradiction.

Final contradiction

Apply (1, 2, 2, 1) with A.M.-G.M. inequality to getA + 4B + 4D + F − 4
√

B3D3AF > 6, i.e.

4 + a + 4b− 4d− f − 4
√

(1 + b)3(1− d)3(1 + a)(1− f) > 0.

Left side is an increasing function off .

If a > b, replace f by b − d from (3.5) to get ψ(d) = 4 + a + 3b − 3d − 4√
(1 + b)3(1− d)3(1 + a)(1− b + d) > 0. As ψ′′(d) > 0, and0 ≤ d ≤ b

2 , we haveψ(d) ≤
max{ψ(0), ψ( b

2)} which is less than0 for 0 ≤ a ≤ 1 and0 < b ≤ min{0.226, a}. This gives a

contradiction.

If a ≤ b, replacef by a+b
2 − d from (3.4) and proceed as above using0 ≤ d ≤ a

2 , 0 ≤ a ≤ b and

0 < b ≤ 0.226 to arrive at a contradiction.
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3.3 n = 7

The proof of Theorem 1 forn = 7 follows from the inequalities listed in Table 6 and Propositions

2-5.

Table 6

Case A B C D E F G Inequalities Lemma/Proposition

1 ≥ > > > > > ≤ (1, 1, 1, 1, 1, 2) Lemma 5(i)

2 ≥ > > > > ≤ ≤ (1, 1, 1, 1, 3) Lemma 6(i)

3 ≥ > > > ≤ > ≤ (1, 1, 1, 2, 2) Lemma 5(iii)

4 ≥ > > > ≤ ≤ ≤ Proposition 4

5 ≥ ≥ ≥ ≤ ≥ ≥ ≤ (1, 1, 2, 1, 2) Lemma 5(iii)

6 ≥ > > ≤ > ≤ ≤ (2, 2, 3), (1, 1, 2, 3), (1, 3, 3) Proposition 2

7 ≥ > > ≤ ≤ > ≤ (2, 3, 2), (1, 1, 3, 2) Proposition 2

(1, 2, 2, 2)w, (1, 3, 1, 1, 1)

8 ≥ > > ≤ ≤ ≤ ≤ Proposition 5

9 ≥ > ≤ > > > ≤ (1, 2, 1, 1, 2) Lemma 5(iii)

10 ≥ > ≤ > > ≤ ≤ (1, 2, 1, 3), (3, 1, . . . , 1) Proposition 3

(2, 1, 2, 1, 1)w, (1, 1, 3, 1, 1)

11 ≥ > ≤ > ≤ > ≤ (1, 2, 2, 2) Lemma 5(iv)

12 ≥ > ≤ > ≤ ≤ ≤ (1, 2, 2, 1, 1)w Lemma 7,Y1 = A

(3, 1, 1, 1, 1), (1, 2, 1, . . . , 1)

13 ≥ > ≤ ≤ > > ≤ (1, 3, 1, 2), (3, 1, . . . , 1) Proposition 3

(2, 1, 1, 2, 1)w, (1, 1, 1, 1, 3)

14 ≥ > ≤ ≤ > ≤ ≤ (1, 2, 1, 2, 1)w Lemma 7,Y1 = A

(3, 1, 1, 1, 1), (1, 2, 1, . . . , 1)

15 ≥ > ≤ ≤ ≤ > ≤ (1, 2, 1, 1, 2)w Lemma 7,Y1 = A

(3, 1, 1, 1, 1), (1, 2, 1, . . . , 1)

16 ≥ > ≤ ≤ ≤ ≤ ≤ (1, 2, 1, . . . , 1)w Lemma 7,Y1 = A

(3, 1, 1, 1, 1), (1, 2, 1, . . . , 1)

17 ≥ ≤ > > > > ≤ (2, 1, 1, 1, 2) Lemma 5(iii)
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Case A B C D E F G Inequalities Lemma/Proposition

18 ≥ ≤ > > > ≤ ≤ (2, 2, 3), (2, 1, 1, 3) Proposition 2

(2, 2, 1, 2)w, (1, 1, 1, 3, 1)

19 ≥ ≤ > > ≤ > ≤ (2, 1, 2, 2)

20 ≥ ≤ > > ≤ ≤ ≤ (2, 2, 1, 2)w, (1, 1, 1, 3, 1) Lemma 6(ii)

21 ≥ ≤ > ≤ > > ≤ (2, 2, 1, 2) Lemma 5(iv)

22 ≥ ≤ > ≤ > ≤ ≤ (2, 2, 2, 1)w

23 ≥ ≤ > ≤ ≤ > ≤ (2, 2, 1, 2)w

24 ≥ ≤ > ≤ ≤ ≤ ≤ (2, 2, 1, 1, 1)w

25 ≥ ≤ ≤ > > > ≤ (3, 2, 2), (3, 1, 1, 2), (3, 1, 3) Proposition 2

26 ≥ ≤ ≤ > > ≤ ≤ (2, 1, 1, 2, 1)w Lemma 7,Y1 = D

(1, 1, 1, 3, 1), (1, . . . , 1, 2, 1)

27 ≥ ≤ ≤ > ≤ > ≤ (2, 1, 2, 2)w

28 ≥ ≤ ≤ > ≤ ≤ ≤ (2, 1, 2, 1, 1)w

29 ≥ ≤ ≤ ≤ > > ≤ (2, 1, 1, 1, 2)w Lemma 7,Y1 = E

(1, 1, 1, 1, 3), (1, . . . , 1, 2)

30 ≥ ≤ ≤ ≤ > ≤ ≤ (2, 1, 1, 2, 1)w

31 ≥ ≤ ≤ ≤ ≤ > ≤ (2, 1, 1, 1, 2)w

32 ≥ ≤ ≤ ≤ ≤ ≤ ≤ (2, 1, 1, 1, 1, 1)w

Proposition2 — Cases 6, 7, 18 and 25 do not arise.

PROOF : We illustrate the proof of Case 6 whereA ≥ 1, B > 1, C > 1, D ≤ 1, E > 1,

F ≤ 1, G ≤ 1.

Subcase (i): A ≥ B. Here(2, 2, 3) holds i.e.2B + 4C − 2C2

D + 4E−E4ABCD > 7. Applying

A.M.-G.M. inequality to C2

D + E4ABCD and noting thatC
2

D > C, we get2B + 3C + 4E −
2(E4C3AB)

1
2 > 7. As A ≥ B, we can replaceA by B to get2B + 3C + 4E − 2(E4C3B2)

1
2 > 7.

Left side of this inequality is a decreasing function ofC, therefore we can replaceC by 1 to get

2B + 4E − 2E2B > 4 which is clearly not true forB > 1, E > 1.

Subcase (ii): A < B,B < E4C3. The inequality(1, 1, 2, 3) with A.M.-G.M givesA + B +

3C + 4E − 2(E4ABC3)
1
2 > 7. Left side is a decreasing function ofA as1 ≤ A < B, so we can

replaceA by 1 to getB + 3C + 4E − 2(E4BC3)
1
2 > 6. Further left side is a decreasing function

of B for B < E4C3, therefore we can replaceB by 1 to get3C + 4E − 2(E4C3)
1
2 > 5 which is

clearly not true forE > 1 andC > 1.
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Subcase (iii): A < B, B ≥ E4C3. This givesB ≥ C. Therefore(1, 3, 3) holds, which using

A.M.-G.M. inequality givesA + 4B + 4E − 2B2E2
√

A > 7. Left side is a decreasing function of

A for 1 ≤ A < B, so replacingA by 1 we get2B + 2E − B2E2 > 3 which is clearly not true for

B > 1 andE > 1.

In Case 25, we distinguish the subcasesD ≥ E; D < E,E < A4F 3 andD < E, E ≥ A4F 3

and proceed as in Case 6.

In Case 7, we distinguish the subcasesA ≥ B; A < B,B < C4F 3 andA < B, B ≥ C4F 3

and proceed as in Case 6 except in Subcase (iii) where we use the weak inequality(1, 2, 2, 2)w to get

e + g < a
2 + c < b

2 + b
4 < b. Then use(1, 3, 1, 1, 1) and apply Lemma 6(ii) withγ = e + g < x1 =

b ≤ 0.5 to get a contradiction.

In Case 18, we distinguish the subcasesC ≥ D; C < D,D < E4B3 andC < D,D ≥ E4B3

and proceed as in Case 6 except in Subcase (iii) where we use the weak inequality(2, 2, 1, 2)w to get

b + g < c
2 + e < d

2 + d
4 < d. Then use(1, 1, 1, 3, 1) and apply Lemma 6(ii) withγ = b + g < x1 =

d ≤ 0.5 to get a contradiction.

Proposition3 — Cases 10 and 13 do not arise.

PROOF : We illustrate the proof of Case 10 whereA ≥ 1, B > 1, C ≤ 1, D > 1, E > 1, F ≤
1, G ≤ 1.

Subcase (i): max(A,D) < E4B3. Here we apply(1, 2, 1, 3) and getA + 3B + D + 4E −
2(E4ADB3)

1
2 > 7. Left side is a symmetric function ofA andD. Suppose, therefore without loss

of generality thatA ≤ D. Now left side is a decreasing function ofA, so we can replaceA by 1 to

get3B +D+4E−2(E4DB3)
1
2 > 6. Further left side is a decreasing function ofD for D < E4B3,

so we can replaceD by 1 to get3B + 4E − 2(E4B3)
1
2 > 5 which is clearly not true forB > 1 and

E > 1.

Subcase (ii): max(A,D) ≥ E4B3. If max(A,D) = A, we geta ≥ 4e + 3b ≥ b, therefore

(3, 1, 1, 1, 1) holds which gives4A− A4DEFG + D + E + F + G > 7. Also the weak inequality

(2, 1, 2, 1, 1) gives2b−c+2e−f−g > 0 which further givesf+g < 2b+2e ≤ a. Apply Lemma 6(ii)

with γ = f + g < x1 = a ≤ 0.5 to get a contradiction. Ifmax(A, D) = D, we getd ≥ 4e + 3b ≥ e,

therefore(1, 1, 3, 1, 1) holds which givesA + B + C + 4D −D4GABC + G > 7. Also the weak

inequality(2, 1, 2, 1, 1) gives2b − c + 2e − f − g > 0 which further givesc + g < 2b + 2e ≤ d.

Apply Lemma 6(ii) withγ = c + g < x1 = d ≤ 0.5 to get a contradiction.

In Case 13, we distinguish the subcasesmax(A,E) < B4F 3 and max(A,E) ≥ B4F 3 and
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proceed as in Case 10.

Proposition4 — Case 4 whereA ≥ 1, B > 1, C > 1, D > 1, E ≤ 1, F ≤ 1, G ≤ 1 does not

arise.

PROOF : As γ7 = 64
1
7 by Lemma 4, we getA ≤ 64

1
7 < 1.82. Also, we have, by Lemma

3, b ≤ 1, c ≤ 0.5, d ≤ 1
3 . Using weak inequalities(1, 1, 1, 2, 2)w, (2, 2, 1, 2)w, (1, 2, 2, 2)w,

(1, 1, 2, 2, 1)w, (2, 2, 2, 1)w and(1, 1, 2, 1, 2)w we get

a + b + c− 2e− 2g > 0, (3.8)

2b + 2d− e− 2g > 0, (3.9)

a + 2c− 2e− 2g > 0, (3.10)

a + b + 2d− 2f − g > 0, (3.11)

2b + 2d− 2f − g > 0, (3.12)

a + b + 2d− e− 2g > 0. (3.13)

Claim (i) : D4ABC < 2 and henceD4 < 2, EFG > 1
2 .

SupposeD4ABC ≥ 2. Then the inequality(1, 1, 1, 4) holds which gives

φ(A,B, C,D) = A + B + C + 4D − 1
2
D5ABC > 7. (3.14)

The coefficient ofC in φ namely1− 1
2D5AB may be positive or negative, therefore the maximum

can occur at the end points ofC. Henceφ(A,B, C,D) ≤ max{φ(A,B, 1, D), φ(A,B, 1.5, D)}.
Similarly the maximum can occur at end points ofA andB. Thereforeφ(A,B, C,D) ≤
max{φ(1, 1, 1, D), φ(1, 1, 1.5, D), φ(1, 2, 1, D), φ(1, 2, 1.5, D), φ(1.82, 1, 1, D),

φ(1.82, 1, 1.5, D), φ(1.82, 2, 1, D), φ(1.82, 2, 1.5, D)}. This can be easily seen to be less than7 for

1 < D ≤ 4
3 . This gives a contradiction to (3.14), thereforeD4ABC < 2.

As ABC > 1 andEFG = 1
ABCD > D3

2 , we get the other results in the claim.

Claim (ii) : A ≤ √
2.

SupposeA2 ≥ 2, thenA4EFG ≥ 4× 0.5 = 2. Then the inequality(4, 1, 1, 1) holds which gives

φ(A, y) = 4A− 1
2A5y + 2 + y > 7, wherey = EFG ≥ 0.5. This is not true forA ≥ 1.

Claim (iii) : g > 2d.
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Supposeg ≤ 2d. The inequality(1, 1, 1, 3, 1) holds i. e.A+B +C +4D−D4GABC +G > 7.

This is not true by Lemma 6(iii) asγ = g ≤ a+b+c
2 = δ

2 from (3.8) andx1 = d < 2
1
4 − 1 < 0.226.

Henceg > 2d.

Claim (iv) : d < 0.1.

Supposed ≥ 0.1. Then from (3.8) and Claim (iii),D4ABC ≥ (1 + d)4(1 + a + b + c) >

(1 + d)4(1 + 2g) > (1 + d)4(1 + 4d) > 2 for d ≥ 0.1. This contradicts Claim (i).

Claim (v): b > 0.145.

Supposeb ≤ 0.145. Apply (1, 2, 2, 2) with A.M.-G.M. inequality to getA + 4B + 4D + 4F −
6BDF 3

√
A > 7, i.e.

6 + a + 4b + 4d− 4f − 6(1 + b)(1 + d)(1− f)(1 + a)
1
3 > 0. (3.15)

Left side is an increasing function off .

If a > b, we get from (3.12) and Claim (iii) thatf < b. Therefore we can replacef by b in

equation (3.15) to getψ1(d) = 6 + a + 4d − 6(1 + b)(1 + d)(1 − b)(1 + a)
1
3 > 0. As ψ1(d) is a

decreasing function ofd we can replaced by 0 to get6 + a− 6(1 + b)(1− b)(1 + a)
1
3 > 0. which is

not true fora > b and0 < b ≤ 0.145. This gives a contradiction.

If a ≤ b, we get from (3.11) and Claim (iii) thatf < a+b
2 . Therefore we can replacef by a+b

2 in

equation (3.15) to getψ2(d) = 6−a+2b+4d−6(1+ b)(1+d)(1− a+b
2 )(1+a)

1
3 > 0. Asψ2(d) is

a decreasing function ofd we can replaced by 0 to get6−a+2b−6(1+b)(1− a+b
2 )(1+a)

1
3 > 0,

which is not true for0 < b ≤ 0.145 and0 ≤ a ≤ b. This gives a contradiction.

Claim (vi) : B ≤ √
2, in factB ≤ 1.3196 if A ≥ B.

We haveB4FGA ≥ B4 · 12 ·A ≥
{

B5/2 > 2 if B > 1.3196 and A ≥ B

B4/2 > 2 if B >
√

2 and A < B.
Then the inequality

(1, 4, 1, 1) holds which givesA + 4B − 1
2B5Az + 1 + z > 7 wherez = FG ≥ 1

2 . As the coefficient

of z is negative, we can replacez by 1
2 to getφ(A,B) = A + 4B − 1

4B5A + 1 + 1
2 > 7. This is not

true in both the casesA ≥ B > 1.3196 as well as inB >
√

2, A < B. Hence the claim.

Claim (vii) : c < 0.203.

Supposec ≥ 0.203.

Case (i): a ≥ b.

We have from (3.9) and Claim (iv) thatg < b + d < b + 0.1. Also 0.145 < b ≤ 0.3196 here.
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ThereforeC4GAB > C4(1− b− 0.1)(1 + b)2 > 2, as(1− b− 0.1)(1 + b)2 attains its minimum at

the end points ofb. Then the inequality(2, 4, 1) holds which gives2B + 4C − 1
2C5GAB + G > 7.

We can replaceA by B andG by 1− b−0.1 to get4c+ b−0.1− 1
2(1+ c)5(1− b−0.1)(1+ b)2 > 0

which is not true for0.145 < b ≤ 0.3196 andc ≥ 0.203.

Case (ii): a < b.

From (3.13) and Claim (iii), we have2d < g < a+b
2 + d which givesd < a+b

2 . Also d < 0.1.

Here we use

g <

{
a+b
2 + a+b

2 if a + b ≤ 0.2
a+b
2 + 0.1 if a + b ≥ 0.2.

If a + b ≤ 0.2, C4GAB > (1.203)4(1− a− b)(1 + a + b) > 2 for c ≥ 0.203.

If a+ b ≥ 0.2, i. e. a ≥ max{0, 0.2− b}, one finds thatC4GAB > (1.203)4(1− a+b
2 −0.1)(1+

a)(1 + b) = ψ(a), say. The second derivativeψ′′(a) is negative, soψ(a) ≥ min{ψ(max(0, 0.2 −
b)), ψ(b)} > 2 for 0.145 < b ≤ √

2 − 1. HenceC4GAB > 2 in both the cases. Therefore the

inequality(1, 1, 4, 1) holds i.e.

φ(g) = a + b + 4c− g − 1
2
(1 + c)5(1− g)(1 + a)(1 + b) > 0.

φ(g) is an increasing function ofg. If a + b ≤ 0.2, φ(g) < 4c− 1
2(1 + c)5(1− a− b)(1 + a + b) <

4c− 1
2(1 + c)5(1− 0.2)(1 + 0.2) < 0, for c ≥ 0.203.

If a+b ≥ 0.2, φ(g) < a+b
2 −0.1+4c− 1

2(1+c)5(1− a+b
2 −0.1)(1+a)(1+b) = ψ(c), say. One

finds thatψ(c) is a decreasing function ofc, thereforeψ(c) ≤ ψ(0.203) = a+b
2 − 0.1 + 4(0.203) −

1
2(1.203)5(1− a+b

2 − 0.1)(1 + a)(1 + b) which is atmost0 for 0.145 < b ≤ √
2− 1 and0 ≤ a < b.

This gives a contradiction in both the cases. Hencec < 0.203.

Claim (viii) : A > B.

SupposeA ≤ B. The inequality(1, 2, 2, 1, 1) with A.M.-G.M. givesA + 4B + 4D + F + G−
4
√

B3D3AFG > 7. Left side is a decreasing function ofF as
√

G ≥ G ≥ 1
2 . ReplacingF by

1− a+b
2 − d + g

2 , from (3.11), we get

φ(g) = 4 + a + 4b + 4d− a+b
2 − d + g

2 − g − 4
√

(1 + b)3
√

(1 + d)3

×
√

(1 + a)(1− g)
√

1− a+b
2 − d + g

2 > 0.
(3.16)

The second derivativeφ′′(g) is positive and0 ≤ g < a
2 + c < a

2 + 0.203 from (3.10) and Claim

(vii). Thereforeφ(g) ≤ max{φ(0), φ(a
2 + 0.203)}. Let φ(0) = ψ1(d) andφ(a

2 + 0.203) = ψ2(d).
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One finds thatψ′′1(d) > 0 andψ′′2(d) > 0 and0 < d < 0.1. Thereforeψi(d) ≤ max{ψi(0), ψi(0.1)}
for i = 1, 2. Now one finds thatψ1(0) = 4 + a + 4b− a+b

2 − 4
√

(1 + b)3
√

(1 + a)
√

1− a+b
2 < 0,

ψ1(0.1) = 4 + a + 4b + 4(0.1)− a+b
2 − 0.1− 4

√
(1 + b)3

√
(1.1)3

√
(1 + a)

√
1− a+b

2 − 0.1 < 0,

ψ2(0) = 4+a+4b−a+b
2 −a

4−0.203
2 −4

√
(1 + b)3

√
(1 + a)

√
(1− a

2 − 0.203)
√

1− a+b
2 + a

4 + 0.203
2 <

0, ψ2(0.1) = 4+a+4b+4(0.1)−a+b
2 −0.1−a

4−0.203
2 −4

√
(1 + b)3

√
(1.1)3

√
(1 + a)(1− a

2 − 0.203)×√
1− a+b

2 − 0.1 + a
4 + 0.203

2 < 0 for 0 ≤ a ≤ b and0.145 < b ≤ √
2−1. This gives a contradiction.

Claim (ix) : A > 1.32.

SupposeA ≤ 1.32. Working as in Claim (viii) and replacingF by 1 − b − d + g
2 , from (3.12),

we get instead of (3.16)

φ(g) = 4 + a + 4b + 4d− b− d + g
2 − g − 4

√
(1 + b)3

√
(1 + d)3

√
(1 + a)

×√1− g
√

1− b− d + g
2 > 0.

(3.17)

The second derivativeφ′′(g) is positive and0 ≤ g < a
2 + c < a

2 + 0.203 from (3.10) and

Claim (vii). Thereforeφ(g) ≤ max{φ(0), φ(a
2 + 0.203)}. Let φ(0) = ψ1(d) andφ(a

2 + 0.203) =

ψ2(d). One finds thatψ′′1(d) > 0 andψ′′2(d) > 0 and0 < d < 0.1. Now one finds thatψi(d) ≤
max{ψi(0), ψi(0.1)} < 0 for i = 1, 2 and0.145 < b < a ≤ 0.32. This gives a contradiction.

Final Contradiction

We are left withA > 1.32, B ≤ 1.3196 andC < 1.203. ThereforeA2 > BC, so the inequality

(3, 3, 1) holds. After applying A.M.-G.M. inequality we get4A + 4D + G − 2A2D2
√

G − 7 > 0.

Left side of this inequality is a quadratic in
√

G. SinceA4D4 − 4A− 4D + 7 > 0, we have

√
G < A2D2 − (A4D4 − 4A− 4D + 7)

1
2 = α (say). (3.18)

Using AM-GM inequality in(1, 2, 2, 2), we getA + 4B + 4D + 4F − 6BDFA
1
3 > 7 which gives

F < (A + 4B + 4D − 7)(6BDA
1
3 − 4)−1. Substituting this upper bound ofF in the inequality

(2, 2, 2, 1), we get

G > 7− 2B − 2D − 2F > 7− 2B − 2D − 2(A + 4B + 4D − 7)

6BDA
1
3 − 4

= β (say). (3.19)

From (3.18) and (3.19) we haveβ < α2. On simplifying we get

φ(B) = A4D4 − 2A + B −D + A+4B+4D−7

6BDA
1
3−4

−A2D2{A4D4 − 4A− 4D + 7} 1
2 > 0. (3.20)
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One can see thatφ(B) is an increasing function ofB. From Claim (vi), we haveB ≤ 1.3196.

Thereforeφ(B) ≤ A4D4−2A+1.3196−D+A+4(1.3196)+4D−7

6(1.3196)DA
1
3−4

−A2D2{A4D4−4A−4D+7} 1
2 < 0

for 1.32 < A ≤ √
2 and1 < D < 1.1. This contradicts (3.20). Hence the result.

Proposition5 — Case 8 whereA ≥ 1, B > 1, C > 1, D ≤ 1, E ≤ 1, F ≤ 1, G ≤ 1 does not

arise.

PROOF : As in Proposition 4,A < 1.82. Also, we have, by Lemma 3,b ≤ 0.5, c ≤ 1
3 .

Using weak inequalities(1, 1, 2, 2, 1)w, (2, 2, 2, 1)w, (1, 1, 2, 1, 2)w, (2, 2, 1, 2)w, (1, 1, 2, 1, 1, 1)w

and(2, 2, 1, 1, 1)w we get

a + b− 2d− 2f − g > 0, (3.21)

2b− 2d− 2f − g > 0, (3.22)

a + b− 2d− e− 2g > 0, (3.23)

2b− 2d− e− 2g > 0, (3.24)

a + b− 2d− e− f − g > 0, (3.25)

2b− 2d− e− f − g > 0. (3.26)

Claim (i) : B > C

SupposeB ≤ C ≤ 4
3 . The inequality(1, 1, 3, 1, 1) holds which gives

1 + a + b + 4c− (1 + c)4(1− f)(1− g)(1 + a)(1 + b)− f − g > 0. (3.27)

Left side of (3.27) is an increasing function off .

If A > B, we use (3.22) to getf < b− g
2 . Replacef by b− g

2 to getφ1(g) = 1 + a + 4c− (1 +

c)4(1−b+ g
2)(1−g)(1+a)(1+b)− g

2 > 0. The second derivative ofφ1(g) is positive and0 ≤ g < b

from (3.24). Thereforeφ1(g) ≤ max{φ1(0), φ1(b)}. Now sincec ≥ b, we getφ1(0) ≤ 1 + a + 4b−
(1+b)4(1−b)(1+a)(1+b) < 0 andφ1(b) ≤ 1+a+4b−(1+b)4(1− b

2)(1−b)(1+a)(1+b)− b
2 < 0

for 0 < b ≤ 1
3 andb < a < 0.82. This gives a contradiction.

If A ≤ B, replacef by a+b
2 − g

2 (from (3.21)) in (3.27) to getφ2(g) = 1 + a+b
2 + 4c −

(1 + c)4(1 − a+b
2 + g

2)(1 − g)(1 + a)(1 + b) − g
2 > 0. From (3.23),0 ≤ g < a+b

2 . Therefore

φ2(g) ≤ max{φ2(0), φ2(a+b
2 )}. Now φ2(0) = 1 + a+b

2 + 4c− (1 + c)4(1− a+b
2 )(1 + a)(1 + b) ≤

1+ a+b
2 +4b−(1+b)4(1− a+b

2 )(1+a)(1+b) < 0 andφ2(a+b
2 ) = 1+ a+b

2 +4c−(1+c)4(1− a+b
2 +

a+b
4 )(1− a+b

2 )(1+a)(1+ b)− a+b
4 < 1+ a+b

4 +4b− (1+ b)4(1− a+b
4 )(1− a+b

2 )(1+a)(1+ b) < 0

for 0 < b ≤ 1
3 and0 ≤ a ≤ b.
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Claim (ii) : B < 1.25

Supposeb ≥ 0.25.

Case(i): A > B We use heref < b− g
2 , g < b and find thatB4FGA > (1+b)4(1− b

2)(1−b)(1+

a) > 2 for a > b ≥ 0.25. Then(1, 4, 1, 1) holds which givesA + 4B + F + G− 0.5B5FGA > 7.

Left side is a decreasing function ofF , so we replaceF by 1 − b + g
2 to getψ1(g) = a + 3b − g

2 −
1
2(1 + b)5((1− b + g

2)(1− g)(1 + a) > 0. As ψ′′1(g) > 0 we getψ1(g) ≤ max{ψ1(0), ψ1(b)} < 0

for 0.25 ≤ b < a < 0.82.

Case(ii) : A ≤ B We use heref < a+b
2 − g

2 , g < a+b
2 and find that thatB4FGA > (1 +

b)4(1− a+b
4 )(1− a+b

2 )(1 + a) > 2 for b ≥ 0.25 and0 ≤ a ≤ b. Working as in case (i), we find that

ψ2(g) = a+3.5b− 0.5a− g
2 − 1

2(1+ b)5((1− a+b
2 + g

2)(1− g)(1+ a) > 0. Asψ′′2(g) > 0, one gets

ψ2(g) ≤ max{ψ2(0), ψ2(a+b
2 )} < 0 for 0.25 ≤ b ≤ 0.5 and0 ≤ a ≤ b. This gives a contradiction.

Claim (iii) : e + f + g > b and henced < a
2 , d < b

2

Supposee + f + g ≤ b. As B > C, we haveB2 > CD. therefore(1, 3, 1, 1, 1) holds i. e.

A + 4B − B4EFGA + E + F + G > 7. Apply Lemma 6(ii) withγ = e + f + g ≤ x1 = b ≤ 0.5

to get a contradiction. Now (3.25) and (3.26) givesd < a
2 andd < b

2 .

Final Contradiction

Case(i): A ≤ B

From (3.21) and (3.23) we have2f + g < a + b − 2d, g < a+b
2 − d. Adding these two we get

f +g < 3(a+b)
4 − 3d

2 . Apply (1, 2, 2, 1, 1) with A.M.-G.M. inequality to getA+4B +4D +F +G−
4
√

B3D3AFG > 7 which gives4+a+4b−4d−(f+g)−4
√

(1 + b)3(1− d)3
√

(1 + a)(1− f − g) >

0 which further impliesθ1(d) = 4+a+4b−4d−3(a+b)
4 +3d

2 −4
√

(1 + b)3(1− d)3
√

(1 + a)(1− 3(a+b)
4 + 3d

2 )

> 0. As θ′′1(d) > 0, and 0 ≤ d < a
2 we haveθ1(d) ≤ max{θ1(0), θ1(a

2 )}. Now θ1(0) =

4 + a + 4b − 3(a+b)
4 − 4

√
(1 + b)3

√
(1 + a)(1− 3(a+b)

4 ) < 0 andθ1(a
2 ) = 4− a + 4b − 3(a+b)

4 +

3a
4 − 4

√
(1 + b)3(1− a

2 )3
√

(1 + a)(1− 3(a+b)
4 + 3a

4 ) < 0 for 0 ≤ a ≤ b < 0.25.

Case(ii): A > B

From (3.22) and (3.24) we have2f+g < 2b−2d, g < b−d. Adding these two we getf+g < 3b
2 − 3d

2 .

Applying (1, 2, 2, 1, 1) with A.M.-G.M. inequality and working as in Case (i) we getθ2(d) = 4+a+

4b−4d− 3b
2 + 3d

2 −4
√

(1 + b)3(1− d)3
√

(1 + a)(1− 3b
2 + 3d

2 ) > 0. Asθ′′2(d) > 0, and0 ≤ d < b
2

we haveθ2(d) ≤ max{θ2(0), θ2( b
2)}. Nowθ2(0) = 4+a+4b−3b

2 −4
√

(1 + b)3
√

(1 + a)(1− 3b
2 ) <

0 andθ2( b
2) = 4 + a + 2b− 3b

2 + 3b
4 − 4

√
(1 + b)3(1− b

2)3
√

(1 + a)(1− 3b
2 + 3b

4 ) < 0 for 0 < b <
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min{a, 0.25} andb < a < 0.82. This gives a contradiction.

Remark: The proof of Case 8 forA ≥ B is much simpler than our earlier proof of the same, see

Proposition 15 of [6].

4. INVESTIGATIONS UNDER THE CONDITIONS A1 < 1

PROOF OFTHEOREM 2 : Let k > 1 be any real number. Consider the reduced latticeLk correspond-

ing to the K-Z reduced form
1
k
x2

1 + x2
2 + · · ·x2

n−1 + kx2
n.

It is clear that the square of the covering radius ofLk is

1
4
(
1
k

+ n− 2 + k) >
n

4
.

PROOF OFTHEOREM 3 : Forn = 3, the only case isA1 < 1, A2 > 1, A3 ≤ 1 and the result follows

from the weak inequality(1, 2)w.

Forn = 4, the cases and the inequalities used to get the result are listed below :

Case A B C D Inequalities Lemma

1 < > > ≤ (1, 3), (1, 1, 2) Lemma 7 withY1 = B

2 < > ≤ ≤ (1, 2, 1)w

3 < ≤ > ≤ (1, 1, 2)w

Let n ≥ 8.

Let k be any real number satisfying(4
3)

1
n−1 < k ≤ 4

3 . Let Lk be the K-Z reduced lattice corre-

sponding to the quadratic form

4
3kn−1

x2
1 + k

{
x2

2 + x2
3 + · · ·+ x2

n−2 + (xn−1 +
1
2
xn)2 +

3
4
x2

n

}
.

Considering the covering of the point(1
2 , 1

2 , · · · , 1
2 , 0, 1

2) we see that square of the covering radius

of Lk is

≥ 1
4

{
4

3kn−1 + k
{
n− 3 + 1

4 + 3
4

}}

= 1
4

{
4

3kn−1 + k(n− 2)
}

= f(k), say.

Sincef(4
3) > n

4 whenn ≥ 8, it follows that fork near4
3 , Lk has the covering radius>

√
n/2.
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