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In this paper, we consider a more general class of rational functionsr(s(z)) of degreemn, where

s(z) is a polynomial of degreem and prove some sharp results concerning to Bernstein type

inequalities for rational functions.
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1. INTRODUCTION

Let Pn denote the space of complex polynomials of degree at mostn andT := {z : |z| = 1}. we

denote byD− the region inside T and byD+ the region outside T. IfP ∈ Pn, then concerning the

estimate of|P ′(z)| on the unit circleT , we have the following well known result which relates the

norm of a polynomial to that of its derivative due to Bernstein [9].

max
z∈T

|P ′(z)| ≤ n max
z∈T

|P (z)|. (1.1)

The inequality (1.1) is sharp and equality holds for polynomials having all zeros at the origin.

The inequality (1.1) was improved by Malik [6]. In fact he proved:

If P ∈ Pn andQ(z) = znP (1
z̄ ), then

max
z∈T

|P ′(z)|+ max
z∈T

|Q′(z)| ≤ n max
z∈T

|P (z)|. (1.2)

If we consider the class of polynomialsP ∈ Pn having no zero inD−, then the bounds in

inequality (1.1) can be considerably improved. In fact, Erdös conjectured and later Lax [4] verified

that if P (z) does not vanish inD−, then (1.1) can be replaced by

max
z∈T

|P ′(z)| ≤ n

2
max
z∈T

|P (z)|. (1.3)

DOI:



338 IDREES QASIM AND A. LIMAN

Turán [10] reversed the hypothesis of the result proved by Erdös-Lax and showed that ifP ∈ Pn

andP (z) 6= 0 in D+, then

max
z∈T

|P ′(z)| ≥ n

2
max
z∈T

|P (z)|. (1.4)

In 1988, Mohapatra, O’Hara and Rodrigues [7] proved that, ifz1, z2, ..., z2n are any2n equally

spaced points onT listed in order, sayzk = ue
kπi
n , whereu ∈ T andk = 1, 2, ..., 2n, then for

P ∈ Pn

max
z∈T

|P ′(z)| ≤ n

2
[max
k odd

|P (zk)|+ max
k even

|P (zk)|]. (1.5)

2. RATIONAL FUNCTIONS

Let α1, α2, ..., αn ben given points inD+. Consider the following space of rational functions with

prescribed poles and with finite limit at infinity.

Rn =
{

p(z)
w(z)

: p ∈ Pn

}
,

where

w(z) =
n∏

j=1

(z − αj).

The inequalities of Bernstein and Erdös-lax have been extended to the rational functions ([2], [5])

by replacing the polynomialp(z) by a rational functionr(z) andzn by Blaschke productB(z) defined

by

B(z) =
w∗(z)
w(z)

=
znw(1

z̄ )
w(z)

=
n∏

j=1

1− ᾱjz

z − αj
.

Besides other things they proved, for anyr ∈ Rn

|r′(z)| ≤ |B′(z)|||r||. (2.1)

Furthermore, the inequality (2.1) is sharp and the equality holds ifr(z) = αB(z) with α ∈ T . If

we assumer ∈ Rn does not vanish inD−, then forz ∈ T , the inequality (2.1) can be strengthened to

|r′(z)| ≤ 1
2
|B′(z)|||r||. (2.2)

The inequality is sharp and equality holds ifr(z) = αB(z)+β with α, β ∈ T . Also, if r(z) does

not vanish inD+, then

|r′(z)| ≥ 1
2
|B′(z)|||r||. (2.3)
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In this paper we consider a more general class of rational functionsr(s(z)), defined by

(ros)(z) = r(s(z)) =
p(s(z))
w(s(z))

,

where s(z) is a polynomial of degreem and r(z) is a rational function of degreen, so that

r(s(z)) ∈ Rmn, and

w(s(z)) =
mn∏

j=1

(z − aj).

Hence, Balachke product is given by

B(z) =
w∗(s(z))
w(s(z))

=
w(s(1

z̄ ))
w(s(z))

=
mn∏

j=1

(
1− ājz

z − aj

)
.

Thereby prove the following results which in turn generalizes the above inequalities.

3. MAIN RESULTS

From now on, we shall always assume that all polesa1, a2, ..., amn of r(s(z)) lie in D+. For the case

when all poles are inD−, we can obtain analogous results with suitable modification.

Theorem1 — If r(s(z)) ∈ Rmn andz ∈ T , then

B′(z)r(s(z))− s′(z)r′(s(z))[B(z)− λ] =
B(z)

z

mn∑

k=1

ckr(s(tk))
∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

, (3.1)

whereck = ck(λ) is defined fork = 1, 2, 3, ..., mn by

c−1
k =

mn∑

j=1

|aj |2 − 1
|tk − aj |2 . (3.2)

Furthermore, forz ∈ T

zB′(z)
B(z)

=
mn∑

k=1

ck

∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

, (3.3)

wheretk, k = 1, 2, 3, ..., mn are defined as in Lemma 1 (to be mentioned later).

Corollary1 — Letck andtk (for k = 1, 2, 3, ...,mn) be defined as in Theorem 1. Ifu1, u2, ..., umn

are the roots ofB(z) = −λ anddk is defined asck with tk replaced byuk, for k = 1, 2, ..., mn. If

min
z∈T

|s(z)| = m′ (3.4)

and all zeros ofs(z) lie in T ∪D−, then forz ∈ T

|r′(s(z))| ≤ 1
2mm′ |B′(z)|

{
max

1≤k≤mn
|r(s(tk))|+ max

1≤k≤mn
|r(s(uk))|

}
. (3.5)
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The inequality is sharp and equality holds forr(s(z)) = uB(z) with u ∈ T , wheres(z) = zm.

Corollary 1 immediately yields the following generalization of inequality (2.1).

Corollary 2 — If r(s(z)) ∈ Rmn and all zeros ofs(z) lie in T ∪D−, then

|r′(s(z))| ≤ 1
mm′ |B′(z)|||r(s)||, (3.6)

wherem′ is defined by equation (3.4) and||r(s)|| = maxz∈T |r(s(z))|.

The inequality is sharp in the sense that equality is obtained whenr(s(z)) = uB(z) with u ∈ T ,

wheres(z) = zm.

As a generalization of inequality (1.2), we prove:

Theorem2 — If r(s(z)) ∈ Rmn and all zeros ofs(z) lie in T ∪D− then forz ∈ T ,

|r∗′(s(z))|+ |r′(s(z))| ≤ |B′(z)|
mm′ ||r(s)||, (3.7)

wherer∗(s(z)) = B(z)r(s(1
z̄ )).

Also equality holds forr(s(z)) = uB(z) with u ∈ T , wheres(z) = zm.

We next present the following generalization of inequality (2.2).

Theorem3 — Let r(s(z)) ∈ Rmn be such thatr(s(z)) 6= 0 in D− and all zeros ofs(z) lie in

T ∪D−. If

min
z∈T

|s(z)| = m′,

then forz ∈ T , we have

|r′(s(z))| ≤ 1
2mm′ |B′(z)|||r(s)||. (3.8)

The inequality is sharp and equality holds for the rational functions of the formr(s(z)) =

αB(z) + β with α, β ∈ T wheres(z) = zm.

Theorem4 — Let r(s(z)) ∈ Rmn andr(s(z)) 6= 0 in D+. If

max
z∈T

|s(z)| = M ′, (3.9)

then forz ∈ T , we have

|r′(s(z))| ≥ 1
2mM ′

{
|B′(z)| −m(n− n′)

}
|r(s(z))|, (3.10)

wheremn′ andmn are respectively number of zeros and poles ofr(s(z)).
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The inequality is sharp and equality holds for rational functions of the formr(s(z)) = αB(z)+β

with α, β ∈ T where s(z) = zm.

If r(s(z)) has exactlymn zeros thenn = n′ and we get the following generalization of inequality

(2.3).

Corollary 3 — Let r(s(z)) ∈ Rmn andr(s(z)) 6= 0 in D+. If

max
z∈T

|s(z)| = M ′

andr(s(z)) has exactlymn zeros, then forz ∈ T , we have

|r′(s(z))| ≥ 1
2mM ′ |B′(z)|r(s(z))|. (3.11)

The inequality is sharp and equality holds for rational functions of the formr(s(z)) = αB(z) + β

with α, β ∈ T where s(z) = zm.

4. LEMMAS

For the proofs of these Theorems we need the following lemmas.

The first two lemmas are due to Li, Mohapatra and Rodrigues [5].

Lemma1 — Supposeλ ∈ T . Then the equationB(z) = λ has exactlymn simple roots, say

t1, t2, ..., tmn and all lie on the unit circleT . Moreover

tkB
′(tk)
λ

=
mn∑

j=1

|aj |2 − 1
|tk − aj |2 for k = 1, 2, 3, ..., mn. (4.1)

Lemma2 — If |u| = |v| = 1, then

(u− v)2 = −uv|u− v|2. (4.2)

Next lemma is due to Aziz and Dawood [1].

Lemma3 — If p(z) is a polynomial of degreen, having all zeros inT ∪D−, then

min
z∈T

|p′(z)| ≥ n min
z∈T

|p(z)|. (4.3)

The inequality is sharp and equality holds for polynomials having all zeros at the origin.

Lemma4 — If z ∈ T , then

zB′(z)
B(z)

=
mn∑

j=1

|aj |2 − 1
|z − aj |2 = |B′(z)|. (4.4)
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PROOF : We have

B(z) =
w∗(s(z))
w(s(z))

=
mn∏

j=1

1− ājz

z − aj
.

This gives

zB′(z)
B(z)

=
mn∑

j=1

{ −zāj

1− ājz
− z

z − aj

}
.

Hence forz ∈ T , we have

zB′(z)
B(z)

=
mn∑

j=1

|aj |2 − 1
|z − aj |2 .

Since|aj | > 1 ∀ 1 ≤ j ≤ mn, it follows from above thatzB′(z)
B(z) is real and positive. Therefore

for z ∈ T , we have
zB′(z)
B(z)

=
∣∣∣∣
zB′(z)
B(z)

∣∣∣∣ = |B′(z)|.

This completes the proof of Lemma 4.

Lemma5 — Let r(s(z)) ∈ Rmn. If all zeros ofr(s(z)) lie in T ∪ D+, then forz ∈ T and

r(s(z)) 6= 0

Re

(
z(r(s(z)))′

r(s(z))

)
≤ 1

2
|B′(z)|. (4.5)

PROOF: If p(z) hasn′ zeros ands(z) hasm zeros, thenp(s(z)) hasmn′ zeros. Letb1, b2, ..., bmn′

be the zeros ofp(s(z)), mn′ ≤ mn. Now

r(s(z)) =
p(s(z))
w(s(z))

.

This gives

z
(r(s(z)))′

r(s(z))
=

mn′∑

j=1

z

z − bj
−

mn∑

j=1

z

z − aj
. (4.6)

Since all zeros ofp(s(z)) lie in T ∪D+, therefore forz ∈ T with z 6= bk, we have

∣∣∣∣
z

z − bj

∣∣∣∣ ≤
∣∣∣∣

z

z − bj
− 1

∣∣∣∣ for j = 1, 2, 3, ...,mn′. (4.7)

Using the fact thatRe(z) ≤ 1
2 if and only if |z| ≤ |z − 1|, we get from inequality (4.7)

Re

(
z

z − bj

)
≤ 1

2
for j = 1, 2, ...,mn′.
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Hence from equation (4.6), we have

Re

(
z
(r(s(z)))′

r(s(z))

)
≤

mn′∑

j=1

1
2
−

mn∑

j=1

Re

(
z

z − aj

)

≤
mn∑

j=1

Re

(
1
2
− z

z − aj

)

=
mn∑

j=1

|aj |2 − 1
2|z − aj |2 .

This with the help of equation (4.4) gives

Re

(
z
(r(s(z)))′

r(s(z))

)
≤ 1

2
|B′(z)|.

This completes the proof of Lemma 5.

Lemma 6 — Let r(s(z)) ∈ Rmn. If all zeros ofr(s(z)) lie in T ∪ D−, then forz ∈ T and

r(s(z)) 6= 0, we have

Re

(
z(r(s(z)))′

r(s(z))

)
≥ 1

2

{
|B′(z)| −m(n− n′)|

}
, (4.8)

wheremn′ andmn are respectively the number of zeros and poles ofr(s(z)).

PROOF : Suppose all the zeros ofr(s(z)) lie in T ∪D− andz ∈ T with z 6= bj ∀ 1 ≤ j ≤ mn′.

Then as in lemma 5, we obtain

Re

(
z

z − bj

)
≥ 1

2
for j = 1, 2, ...,mn′.

Using equation (4.6), we get

Re

(
z
(r(s(z)))′

r(s(z))

)
≥

mn′∑

j=1

1
2
−

mn∑

j=1

Re

(
z

z − aj

)

=
mn∑

j=1

Re

(
1
2
− z

z − aj

)
− (mn−mn′)

2

=
mn∑

j=1

|aj |2 − 1
2|z − aj |2 −

m

2
(n− n′)

=
1
2

{
|B′(z)| −m(n− n′)

}
.

This completes the proof of Lemma 6.
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5. PROOFS OFTHEOREMS

PROOF OFTHEOREM 1 : Let q(z) = w∗(s(z)) − λ(w(s(z))). Since the solution ofB(z) = λ is

same as polynomial equationw∗(s(z))−λw(s(z)) = 0 which has degree exactlymn, it follows that

it has exactlymn roots counting multiplicities. If these roots are denoted byt1, t2, ..., tmn, then

q(z) = w(s(z))[B(z)− λ] = K
mn∏

k=1

(z − tk).

For r(s(z)) = p(s(z))
w(s(z)) ∈ Rmn, let p(s(z)) = µzmn + ..., then

p(s(z))− µ

K
q(z) ∈ Pmn−1.

The numberst1, t2, ..., tmn are distinct, so by Lagrange interpolation formula we obtain

p(s(z))− µ

K
q(z) =

mn∑

k=1

p(s(tk))q(z)
q′(tk)(z − tk)

.

Dividing both sides byq(z) and differentiating, we get

(
p(s(z))
q(z)

)′
=

mn∑

k=1

q′(tk)(z − tk)(p(s(tk)))′ − p(s(tk))q′(tk)
(q′(tk)(z − tk))2

= −
mn∑

k=1

p(s(tk))
q′(tk)(z − tk)2

. (5.1)

Next recall that,q(z) = w(s(z))[B(z)− λ] andp(s(z)) = w(s(z))r(s(z)).

Henceq′(tk) = w(s(tk))B′(tk) andp(s(tk)) = w(s(tk))r(s(tk)). Moreover, sincetk are the

zeros ofB(z) = λ. Thereforeq(tk) = 0. Using these in equation (5.1), we get

(
r(s(z))

B(z)− λ

)′
= −

mn∑

k=1

r(s(tk))
B′(tk)(z − tk)2

. (5.2)

Which implies

[B(z)− λ](r(s(z)))′ − r(s(z))B′(z)
[B(z)− λ]2

= −
mn∑

k=1

r(s(tk))
B′(tk)(z − tk)2

.

Multiplying both sides by−[B(z)− λ]2, we get

r(s(z))B′(z)− s′(z)r′(s(z))[B(z)− λ] =
mn∑

k=1

r(s(tk))[B(z)− λ]2

B′(tk)(z − tk)2
. (5.3)
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For z ∈ T , |B(z)| = 1 and|λ| = 1. Therefore by virtue of lemma 2, we obtain[B(z) − λ]2 =

−B(z)λ|B(z)− λ|2. Similarly, (z − tk)2 = −ztk|z − tk|2. Hence it follows from equation (5.3)

B′(z)r(s(z))− s′(z)r′(s(z))[B(z)− λ] =
B(z)

z

mn∑

k=1

λr(s(tk))
tkB′(tk)

∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

. (5.4)

Using Lemma (1) and definition ofck, we get

B′(z)r(s(z))− s′(z)r′(s(z))[B(z)− λ] =
B(z)

z

mn∑

k=1

ckr(s(tk))
∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

. (5.5)

Which completely proves Theorem 1.

PROOF OFCOROLLARY 1 : Applying Theorem 1 after replacingλ by−λ, we get

B′(z)r(s(z))− s′(z)r′(s(z))[B(z) + λ] =
B(z)

z

mn∑

k=1

dkr(s(uk))
∣∣∣∣
B(z) + λ

z − uk

∣∣∣∣
2

. (5.6)

Subtract (5.5) and (5.6), we get

zs′(z)r′(s(z))[B(z) + λ−B(z) + λ]
B(z)

=
mn∑

k=1

ckr(s(tk))
∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

−
mn∑

k=1

dkr(s(uk))
∣∣∣∣
B(z) + λ

z − uk

∣∣∣∣
2

.

Hence forz ∈ T , we have

|2s′(z)r′(s(z))| ≤
mn∑

k=1

|ck||r(s(tk))|
∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

+
mn∑

k=1

|dk||r(s(uk))|
∣∣∣∣
B(z) + λ

z − uk

∣∣∣∣
2

≤ max
k
|r(s(tk))|

mn∑

k=1

|ck|
∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2

+ max
k
|r(s(uk))|

mn∑

k=1

|dk|
∣∣∣∣
B(z) + λ

z − uk

∣∣∣∣
2

.

Since bothck anddk are positive by definition, therefore using (3.3) we get

|2s′(z)r′(s(z))| ≤ zB′(z)
B(z)

{
max

1≤k≤n
|r(s(tk))|+ max

1≤k≤n
|r(s(uk))|

}
.

Finally, by virtue of lemma 3 and lemma 4, we obtain

|r′(s(z))| ≤ 1
2mm′ |B′(z)|

{
max

1≤k≤n
|r(s(tk))|+ max

1≤k≤n
|r(s(uk))|

}
,

wherem′ is defined by equation (3.4).

This proves Corollary 1 completely.

PROOF OFTHEOREM 2 : From Theorem 1, we have forz ∈ T

|B′(z)r(s(z))− s′(z)r′(s(z))[B(z)− λ]| =
∣∣∣∣
B(z)

z

mn∑

k=1

ckr(s(tk))
∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2∣∣∣∣
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≤
∣∣∣∣
B(z)

z

∣∣∣∣
mn∑

k=1

|r(s(tk))|
∣∣∣∣ck

∣∣∣∣
B(z)− λ

z − tk

∣∣∣∣
2∣∣∣∣

≤ max
z∈T

|r(s(z))|
∣∣∣∣
zB′(z)
B(z)

∣∣∣∣

= |B′(z)|||r(s)||.

Since right hand side is independent ofλ, therefore we can suitably chooseλ such that

|B′(z)r(s(z))− s′(z)r′(s(z))B(z)|+ |s′(z)r′(s(z))| ≤ |B′(z)|||r(s)||. (5.7)

Next recall that

r∗(s(z)) = B(z)r(s(
1
z̄
)).

So that

(r∗(s(z)))′ = B′(z)r(s(
1
z̄
))− 1

z2
B(z)r′(s(

1
z̄
)).s′(

1
z̄
).

Which implies

∣∣∣∣(r∗(s(z)))′
∣∣∣∣ =

∣∣∣∣B′(z)r(s(
1
z̄
))− 1

z2
B(z)r′(s(

1
z̄
))s′(

1
z̄
)
∣∣∣∣.

Hence forz ∈ T , we have
∣∣∣∣(r∗(s(z)))′

∣∣∣∣ =
∣∣∣∣z

B′(z)
B(z)

r(s(z))− zr′(s(z)).s′(z)
∣∣∣∣.

Using the fact thatzB′(z)
B(z) is real, we get

∣∣∣∣(r∗(s(z)))′
∣∣∣∣ =

∣∣∣∣z
B′(z)
B(z)

r(s(z))− zr′(s(z)).s′(z)
∣∣∣∣

= |B′(z)r(s(z))− r′(s(z))s′(z)B(z)|. (5.8)

Hence we have from inequality (5.7)

|r∗′(s(z))s′(z)|+ |r′(s(z))s′(z)| ≤ |B′(z)|||r(s)||.

Which gives the desired result by use of Lemma 3.

PROOF OFTHEOREM 3 : From equation (4.4), we have

z
B′(z)
B(z)

= |B′(z)| > 0



BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS 347

Hence forz ∈ T , with r(s(z)) 6= 0, we have from (5.8)
∣∣∣∣(r∗(s(z)))′

∣∣∣∣ = |B′(z)r(s(z))− r′(s(z))s′(z)B(z)|

=
∣∣∣∣z

B′(z)
B(z)

r(s(z))− zr′(s(z))s′(z)
∣∣∣∣

= ||B′(z)|r(s(z))− zr′(s(z))s′(z)|

=
∣∣∣∣
zr′(s(z))s′(z)
|B′(z)|r(s(z))

− 1
∣∣∣∣|B′(z)r(s(z))|. (5.9)

From lemma 5, we have

Re

(
zr′(s(z))s′(z)
|B′(z)|r(s(z))

)
≤ 1

2
.

Which further implies
∣∣∣∣
zr′(s(z))s′(z)
|B′(z)|r(s(z))

∣∣∣∣ ≤
∣∣∣∣
zr′(s(z))s′(z)
|B′(z)|r(s(z))

− 1
∣∣∣∣.

Using in (5.9), we get

|(r∗(s(z)))′| ≥
∣∣∣∣
zr′(s(z))s′(z)
|B′(z)|r(s(z))

∣∣∣∣|B′(z)r(s(z))|.

Which further implies

|(r∗(s(z)))′| ≥ |(r(s(z)))′|.
Hence Theorem 2 yields

|(r(s(z)))′| ≤ 1
2
|B′(z)|||r(s)||.

Lemma 3 is thereby allowing us to write

|r′(s(z))| ≤ 1
2mm′ |B′(z)|||r(s(z))||.

This proves the theorem forr(s(z)) 6= 0. Since the above inequality is trivially true for

r(s(z)) = 0.

Therefore we conclude that the theorem is true for allz ∈ T .

PROOF OFTHEOREM 4 : Let r(s(z)) 6= 0. Sincez ∈ T , therefore we have by use of lemma 6
∣∣∣∣
(r(s(z)))′

r(s(z))

∣∣∣∣ ≥ Re

(
z
(r(s(z)))′

r(s(z))

)
≥ 1

2

{
|B′(z)| −m(n− n′)

}
.

Which yields by the use of inequality (1.1)

|r′(s(z))| ≥ 1
2mM ′

{
|B′(z)| −m(n− n′)

}
|r(s(z))| (5.10).

This proves Theorem 4 forr(s(z)) 6= 0. Since inequality (5.10) is trivially true forr(s(z)) = 0.

Therefore Theorem 4 holds for allz ∈ T .
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