BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS

Idrees Qasim and A. Liman

Department of Mathematics, National Institute of Technology Srinagar 190 006, India e-mails: idreesf3@gmail.com, abliman@rediffmail.com

(Received 27 November 2013; accepted 11 August 2014)

In this paper, we consider a more general class of rational functions r(s(z)) of degree mn, where s(z) is a polynomial of degree m and prove some sharp results concerning to Bernstein type inequalities for rational functions.

Key words: Rational function; polynomials; inequalities; poles; zeros.

1. Introduction

Let P_n denote the space of complex polynomials of degree at most n and $T := \{z : |z| = 1\}$. we denote by D_- the region inside T and by D_+ the region outside T. If $P \in P_n$, then concerning the estimate of |P'(z)| on the unit circle T, we have the following well known result which relates the norm of a polynomial to that of its derivative due to Bernstein [9].

$$\max_{z \in T} |P'(z)| \le n \max_{z \in T} |P(z)|. \tag{1.1}$$

The inequality (1.1) is sharp and equality holds for polynomials having all zeros at the origin.

The inequality (1.1) was improved by Malik [6]. In fact he proved:

If
$$P \in P_n$$
 and $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$, then

$$\max_{z \in T} |P'(z)| + \max_{z \in T} |Q'(z)| \le n \max_{z \in T} |P(z)|. \tag{1.2}$$

If we consider the class of polynomials $P \in P_n$ having no zero in D_- , then the bounds in inequality (1.1) can be considerably improved. In fact, Erdös conjectured and later Lax [4] verified that if P(z) does not vanish in D_- , then (1.1) can be replaced by

$$\max_{z \in T} |P'(z)| \le \frac{n}{2} \max_{z \in T} |P(z)|. \tag{1.3}$$

Turán [10] reversed the hypothesis of the result proved by Erdös-Lax and showed that if $P \in P_n$ and $P(z) \neq 0$ in D_+ , then

$$\max_{z \in T} |P'(z)| \ge \frac{n}{2} \max_{z \in T} |P(z)|. \tag{1.4}$$

In 1988, Mohapatra, O'Hara and Rodrigues [7] proved that, if $z_1, z_2, ..., z_{2n}$ are any 2n equally spaced points on T listed in order, say $z_k = ue^{\frac{k\pi i}{n}}$, where $u \in T$ and k = 1, 2, ..., 2n, then for $P \in P_n$

$$\max_{z \in T} |P'(z)| \le \frac{n}{2} [\max_{k \text{ odd}} |P(z_k)| + \max_{k \text{ even}} |P(z_k)|].$$
 (1.5)

2. RATIONAL FUNCTIONS

Let $\alpha_1, \alpha_2, ..., \alpha_n$ be n given points in D_+ . Consider the following space of rational functions with prescribed poles and with finite limit at infinity.

$$R_n = \left\{ \frac{p(z)}{w(z)} : p \in P_n \right\},\,$$

where

$$w(z) = \prod_{j=1}^{n} (z - \alpha_j).$$

The inequalities of Bernstein and Erdös-lax have been extended to the rational functions ([2], [5]) by replacing the polynomial p(z) by a rational function r(z) and z^n by Blaschke product $\mathcal{B}(z)$ defined by

$$\mathcal{B}(z) = \frac{w^*(z)}{w(z)} = \frac{z^n \overline{w(\frac{1}{\overline{z}})}}{w(z)} = \prod_{j=1}^n \frac{1 - \bar{\alpha}_j z}{z - \alpha_j}.$$

Besides other things they proved, for any $r \in R_n$

$$|r'(z)| \le |\mathcal{B}'(z)|||r||.$$
 (2.1)

Furthermore, the inequality (2.1) is sharp and the equality holds if $r(z) = \alpha \mathcal{B}(z)$ with $\alpha \in T$. If we assume $r \in R_n$ does not vanish in D_- , then for $z \in T$, the inequality (2.1) can be strengthened to

$$|r'(z)| \le \frac{1}{2} |\mathcal{B}'(z)| ||r||.$$
 (2.2)

The inequality is sharp and equality holds if $r(z) = \alpha \mathcal{B}(z) + \beta$ with $\alpha, \beta \in T$. Also, if r(z) does not vanish in D_+ , then

$$|r'(z)| \ge \frac{1}{2} |\mathcal{B}'(z)| ||r||.$$
 (2.3)

In this paper we consider a more general class of rational functions r(s(z)), defined by

$$(ros)(z) = r(s(z)) = \frac{p(s(z))}{w(s(z))},$$

where s(z) is a polynomial of degree m and r(z) is a rational function of degree n, so that $r(s(z)) \in R_{mn}$, and

$$w(s(z)) = \prod_{j=1}^{mn} (z - a_j).$$

Hence, Balachke product is given by

$$B(z) = \frac{w^*(s(z))}{w(s(z))} = \frac{\overline{w(s(\frac{1}{\bar{z}}))}}{w(s(z))} = \prod_{i=1}^{mn} \left(\frac{1 - \bar{a}_j z}{z - a_j}\right).$$

Thereby prove the following results which in turn generalizes the above inequalities.

3. Main Results

From now on, we shall always assume that all poles $a_1, a_2, ..., a_{mn}$ of r(s(z)) lie in D_+ . For the case when all poles are in D_- , we can obtain analogous results with suitable modification.

Theorem 1 — If $r(s(z)) \in R_{mn}$ and $z \in T$, then

$$B'(z)r(s(z)) - s'(z)r'(s(z))[B(z) - \lambda] = \frac{B(z)}{z} \sum_{k=1}^{mn} c_k r(s(t_k)) \left| \frac{B(z) - \lambda}{z - t_k} \right|^2,$$
 (3.1)

where $c_k = c_k(\lambda)$ is defined for k = 1, 2, 3, ..., mn by

$$c_k^{-1} = \sum_{j=1}^{mn} \frac{|a_j|^2 - 1}{|t_k - a_j|^2}.$$
(3.2)

Furthermore, for $z \in T$

$$\frac{zB'(z)}{B(z)} = \sum_{k=1}^{mn} c_k \left| \frac{B(z) - \lambda}{z - t_k} \right|^2, \tag{3.3}$$

where t_k , k = 1, 2, 3, ..., mn are defined as in Lemma 1 (to be mentioned later).

Corollary 1 — Let c_k and t_k (for k=1,2,3,...,mn) be defined as in Theorem 1. If $u_1,u_2,...,u_{mn}$ are the roots of $B(z)=-\lambda$ and d_k is defined as c_k with t_k replaced by u_k , for k=1,2,...,mn. If

$$\min_{z \in T} |s(z)| = m' \tag{3.4}$$

and all zeros of s(z) lie in $T \cup D_-$, then for $z \in T$

$$|r'(s(z))| \le \frac{1}{2mm'} |B'(z)| \left\{ \max_{1 \le k \le mn} |r(s(t_k))| + \max_{1 \le k \le mn} |r(s(u_k))| \right\}.$$
(3.5)

The inequality is sharp and equality holds for r(s(z)) = uB(z) with $u \in T$, where $s(z) = z^m$.

Corollary 1 immediately yields the following generalization of inequality (2.1).

Corollary 2 — If $r(s(z)) \in R_{mn}$ and all zeros of s(z) lie in $T \cup D_-$, then

$$|r'(s(z))| \le \frac{1}{mm'} |B'(z)| ||r(s)||,$$
 (3.6)

where m' is defined by equation (3.4) and $||r(s)|| = \max_{z \in T} |r(s(z))|$.

The inequality is sharp in the sense that equality is obtained when r(s(z)) = uB(z) with $u \in T$, where $s(z) = z^m$.

As a generalization of inequality (1.2), we prove:

Theorem 2 — If $r(s(z)) \in R_{mn}$ and all zeros of s(z) lie in $T \cup D_{-}$ then for $z \in T$,

$$|r^{*'}(s(z))| + |r'(s(z))| \le \frac{|B'(z)|}{mm'} ||r(s)||, \tag{3.7}$$

where $r^*(s(z)) = B(z)\overline{r(s(\frac{1}{\overline{z}}))}$.

Also equality holds for r(s(z)) = uB(z) with $u \in T$, where $s(z) = z^m$.

We next present the following generalization of inequality (2.2).

Theorem 3 — Let $r(s(z)) \in R_{mn}$ be such that $r(s(z)) \neq 0$ in D_- and all zeros of s(z) lie in $T \cup D_-$. If

$$\min_{z \in T} |s(z)| = m',$$

then for $z \in T$, we have

$$|r'(s(z))| \le \frac{1}{2mm'}|B'(z)|||r(s)||.$$
 (3.8)

The inequality is sharp and equality holds for the rational functions of the form $r(s(z)) = \alpha B(z) + \beta$ with $\alpha, \beta \in T$ where $s(z) = z^m$.

Theorem 4 — Let $r(s(z)) \in R_{mn}$ and $r(s(z)) \neq 0$ in D^+ . If

$$\max_{z \in T} |s(z)| = M',\tag{3.9}$$

then for $z \in T$, we have

$$|r'(s(z))| \ge \frac{1}{2mM'} \Big\{ |B'(z)| - m(n-n') \Big\} |r(s(z))|,$$
 (3.10)

where mn' and mn are respectively number of zeros and poles of r(s(z)).

The inequality is sharp and equality holds for rational functions of the form $r(s(z)) = \alpha B(z) + \beta$ with $\alpha, \beta \in T$ where $s(z) = z^m$.

If r(s(z)) has exactly mn zeros then n=n' and we get the following generalization of inequality (2.3).

Corollary 3 — Let $r(s(z)) \in R_{mn}$ and $r(s(z)) \neq 0$ in D^+ . If

$$\max_{z \in T} |s(z)| = M'$$

and r(s(z)) has exactly mn zeros, then for $z \in T$, we have

$$|r'(s(z))| \ge \frac{1}{2mM'} |B'(z)|r(s(z))|.$$
 (3.11)

The inequality is sharp and equality holds for rational functions of the form $r(s(z)) = \alpha B(z) + \beta$ with α , $\beta \in T$ where $s(z) = z^m$.

4. LEMMAS

For the proofs of these Theorems we need the following lemmas.

The first two lemmas are due to Li, Mohapatra and Rodrigues [5].

Lemma 1 — Suppose $\lambda \in T$. Then the equation $B(z) = \lambda$ has exactly mn simple roots, say $t_1, t_2, ..., t_{mn}$ and all lie on the unit circle T. Moreover

$$\frac{t_k B'(t_k)}{\lambda} = \sum_{j=1}^{mn} \frac{|a_j|^2 - 1}{|t_k - a_j|^2} \quad for \ k = 1, 2, 3, ..., mn.$$
(4.1)

Lemma 2 — If |u| = |v| = 1, then

$$(u-v)^2 = -uv|u-v|^2. (4.2)$$

Next lemma is due to Aziz and Dawood [1].

Lemma 3 — If p(z) is a polynomial of degree n, having all zeros in $T \cup D_-$, then

$$\min_{z \in T} |p'(z)| \ge n \min_{z \in T} |p(z)|. \tag{4.3}$$

The inequality is sharp and equality holds for polynomials having all zeros at the origin.

Lemma 4 — If $z \in T$, then

$$\frac{zB'(z)}{B(z)} = \sum_{i=1}^{mn} \frac{|a_j|^2 - 1}{|z - a_j|^2} = |B'(z)|. \tag{4.4}$$

PROOF: We have

$$B(z) = \frac{w^*(s(z))}{w(s(z))} = \prod_{j=1}^{mn} \frac{1 - \bar{a}_j z}{z - a_j}.$$

This gives

$$\frac{zB'(z)}{B(z)} = \sum_{j=1}^{mn} \left\{ \frac{-z\bar{a}_j}{1 - \bar{a}_j z} - \frac{z}{z - a_j} \right\}.$$

Hence for $z \in T$, we have

$$\frac{zB'(z)}{B(z)} = \sum_{j=1}^{mn} \frac{|a_j|^2 - 1}{|z - a_j|^2}.$$

Since $|a_j| > 1 \ \forall \ 1 \le j \le mn$, it follows from above that $\frac{zB'(z)}{B(z)}$ is real and positive. Therefore for $z \in T$, we have

$$\frac{zB'(z)}{B(z)} = \left| \frac{zB'(z)}{B(z)} \right| = |B'(z)|.$$

This completes the proof of Lemma 4.

Lemma 5 — Let $r(s(z)) \in R_{mn}$. If all zeros of r(s(z)) lie in $T \cup D^+$, then for $z \in T$ and $r(s(z)) \neq 0$

$$Re\left(\frac{z(r(s(z)))'}{r(s(z))}\right) \le \frac{1}{2}|B'(z)|. \tag{4.5}$$

PROOF: If p(z) has n' zeros and s(z) has m zeros, then p(s(z)) has mn' zeros. Let $b_1, b_2, ..., b_{mn'}$ be the zeros of $p(s(z)), mn' \leq mn$. Now

$$r(s(z)) = \frac{p(s(z))}{w(s(z))}.$$

This gives

$$z\frac{(r(s(z)))'}{r(s(z))} = \sum_{i=1}^{mn'} \frac{z}{z - b_i} - \sum_{i=1}^{mn} \frac{z}{z - a_i}.$$
 (4.6)

Since all zeros of p(s(z)) lie in $T \cup D_+$, therefore for $z \in T$ with $z \neq b_k$, we have

$$\left| \frac{z}{z - b_j} \right| \le \left| \frac{z}{z - b_j} - 1 \right|$$
 for $j = 1, 2, 3, ..., mn'$. (4.7)

Using the fact that $Re(z) \leq \frac{1}{2}$ if and only if $|z| \leq |z-1|$, we get from inequality (4.7)

$$Re\left(\frac{z}{z-b_j}\right) \le \frac{1}{2} \text{ for } j=1,2,...,mn'.$$

Hence from equation (4.6), we have

$$Re\left(z\frac{(r(s(z)))'}{r(s(z))}\right) \le \sum_{j=1}^{mn'} \frac{1}{2} - \sum_{j=1}^{mn} Re\left(\frac{z}{z - a_j}\right)$$

$$\le \sum_{j=1}^{mn} Re\left(\frac{1}{2} - \frac{z}{z - a_j}\right)$$

$$= \sum_{j=1}^{mn} \frac{|a_j|^2 - 1}{2|z - a_j|^2}.$$

This with the help of equation (4.4) gives

$$Re\left(z\frac{(r(s(z)))'}{r(s(z))}\right) \le \frac{1}{2}|B'(z)|.$$

This completes the proof of Lemma 5.

Lemma 6 — Let $r(s(z)) \in R_{mn}$. If all zeros of r(s(z)) lie in $T \cup D^-$, then for $z \in T$ and $r(s(z)) \neq 0$, we have

$$Re\left(\frac{z(r(s(z)))'}{r(s(z))}\right) \ge \frac{1}{2}\left\{|B'(z)| - m(n-n')|\right\},$$
 (4.8)

where mn' and mn are respectively the number of zeros and poles of r(s(z)).

PROOF : Suppose all the zeros of r(s(z)) lie in $T \cup D_-$ and $z \in T$ with $z \neq b_j \ \forall \ 1 \leq j \leq mn'$.

Then as in lemma 5, we obtain

$$Re\left(\frac{z}{z-b_j}\right) \ge \frac{1}{2} \text{ for } j=1,2,...,mn'.$$

Using equation (4.6), we get

$$Re\left(z\frac{(r(s(z)))'}{r(s(z))}\right) \ge \sum_{j=1}^{mn'} \frac{1}{2} - \sum_{j=1}^{mn} Re\left(\frac{z}{z - a_j}\right)$$

$$= \sum_{j=1}^{mn} Re\left(\frac{1}{2} - \frac{z}{z - a_j}\right) - \frac{(mn - mn')}{2}$$

$$= \sum_{j=1}^{mn} \frac{|a_j|^2 - 1}{2|z - a_j|^2} - \frac{m}{2}(n - n')$$

$$= \frac{1}{2} \left\{ |B'(z)| - m(n - n') \right\}.$$

This completes the proof of Lemma 6.

5. Proofs of Theorems

PROOF OF THEOREM 1: Let $q(z)=w^*(s(z))-\lambda(w(s(z)))$. Since the solution of $B(z)=\lambda$ is same as polynomial equation $w^*(s(z))-\lambda w(s(z))=0$ which has degree exactly mn, it follows that it has exactly mn roots counting multiplicities. If these roots are denoted by $t_1,t_2,...,t_{mn}$, then

$$q(z) = w(s(z))[B(z) - \lambda] = K \prod_{k=1}^{mn} (z - t_k).$$

For $r(s(z)) = \frac{p(s(z))}{w(s(z))} \in R_{mn}$, let $p(s(z)) = \mu z^{mn} + ...$, then

$$p(s(z)) - \frac{\mu}{K}q(z) \in P_{mn-1}.$$

The numbers $t_1, t_2, ..., t_{mn}$ are distinct, so by Lagrange interpolation formula we obtain

$$p(s(z)) - \frac{\mu}{K}q(z) = \sum_{k=1}^{mn} \frac{p(s(t_k))q(z)}{q'(t_k)(z - t_k)}.$$

Dividing both sides by q(z) and differentiating, we get

$$\left(\frac{p(s(z))}{q(z)}\right)' = \sum_{k=1}^{mn} \frac{q'(t_k)(z - t_k)(p(s(t_k)))' - p(s(t_k))q'(t_k)}{(q'(t_k)(z - t_k))^2}
= -\sum_{k=1}^{mn} \frac{p(s(t_k))}{q'(t_k)(z - t_k)^2}.$$
(5.1)

Next recall that, $q(z) = w(s(z))[B(z) - \lambda]$ and p(s(z)) = w(s(z))r(s(z)).

Hence $q'(t_k) = w(s(t_k))B'(t_k)$ and $p(s(t_k)) = w(s(t_k))r(s(t_k))$. Moreover, since t_k are the zeros of $B(z) = \lambda$. Therefore $q(t_k) = 0$. Using these in equation (5.1), we get

$$\left(\frac{r(s(z))}{B(z) - \lambda}\right)' = -\sum_{k=1}^{mn} \frac{r(s(t_k))}{B'(t_k)(z - t_k)^2}.$$
 (5.2)

Which implies

$$\frac{[B(z) - \lambda](r(s(z)))' - r(s(z))B'(z)}{[B(z) - \lambda]^2} = -\sum_{k=1}^{mn} \frac{r(s(t_k))}{B'(t_k)(z - t_k)^2}.$$

Multiplying both sides by $-[B(z) - \lambda]^2$, we get

$$r(s(z))B'(z) - s'(z)r'(s(z))[B(z) - \lambda] = \sum_{k=1}^{mn} \frac{r(s(t_k))[B(z) - \lambda]^2}{B'(t_k)(z - t_k)^2}.$$
 (5.3)

For $z \in T$, |B(z)| = 1 and $|\lambda| = 1$. Therefore by virtue of lemma 2, we obtain $[B(z) - \lambda]^2 = -B(z)\lambda|B(z) - \lambda|^2$. Similarly, $(z - t_k)^2 = -zt_k|z - t_k|^2$. Hence it follows from equation (5.3)

$$B'(z)r(s(z)) - s'(z)r'(s(z))[B(z) - \lambda] = \frac{B(z)}{z} \sum_{k=1}^{mn} \frac{\lambda r(s(t_k))}{t_k B'(t_k)} \left| \frac{B(z) - \lambda}{z - t_k} \right|^2.$$
 (5.4)

Using Lemma (1) and definition of c_k , we get

$$B'(z)r(s(z)) - s'(z)r'(s(z))[B(z) - \lambda] = \frac{B(z)}{z} \sum_{k=1}^{mn} c_k r(s(t_k)) \left| \frac{B(z) - \lambda}{z - t_k} \right|^2.$$
 (5.5)

Which completely proves Theorem 1.

PROOF OF COROLLARY 1 : Applying Theorem 1 after replacing λ by $-\lambda$, we get

$$B'(z)r(s(z)) - s'(z)r'(s(z))[B(z) + \lambda] = \frac{B(z)}{z} \sum_{k=1}^{mn} d_k r(s(u_k)) \left| \frac{B(z) + \lambda}{z - u_k} \right|^2.$$
 (5.6)

Subtract (5.5) and (5.6), we get

$$\frac{zs'(z)r'(s(z))[B(z) + \lambda - B(z) + \lambda]}{B(z)} = \sum_{k=1}^{mn} c_k r(s(t_k)) \left| \frac{B(z) - \lambda}{z - t_k} \right|^2 - \sum_{k=1}^{mn} d_k r(s(u_k)) \left| \frac{B(z) + \lambda}{z - u_k} \right|^2.$$

Hence for $z \in T$, we have

$$|2s'(z)r'(s(z))| \leq \sum_{k=1}^{mn} |c_k||r(s(t_k))| \left| \frac{B(z) - \lambda}{z - t_k} \right|^2 + \sum_{k=1}^{mn} |d_k||r(s(u_k))| \left| \frac{B(z) + \lambda}{z - u_k} \right|^2$$

$$\leq \max_k |r(s(t_k))| \sum_{k=1}^{mn} |c_k| \left| \frac{B(z) - \lambda}{z - t_k} \right|^2 + \max_k |r(s(u_k))| \sum_{k=1}^{mn} |d_k| \left| \frac{B(z) + \lambda}{z - u_k} \right|^2.$$

Since both c_k and d_k are positive by definition, therefore using (3.3) we get

$$|2s'(z)r'(s(z))| \le \frac{zB'(z)}{B(z)} \Big\{ \max_{1 \le k \le n} |r(s(t_k))| + \max_{1 \le k \le n} |r(s(u_k))| \Big\}.$$

Finally, by virtue of lemma 3 and lemma 4, we obtain

$$|r'(s(z))| \le \frac{1}{2mm'} |B'(z)| \left\{ \max_{1 \le k \le n} |r(s(t_k))| + \max_{1 \le k \le n} |r(s(u_k))| \right\},$$

where m' is defined by equation (3.4).

This proves Corollary 1 completely.

PROOF OF THEOREM 2 : From Theorem 1, we have for $z \in T$

$$|B'(z)r(s(z)) - s'(z)r'(s(z))[B(z) - \lambda]| = \left| \frac{B(z)}{z} \sum_{k=1}^{mn} c_k r(s(t_k)) \left| \frac{B(z) - \lambda}{z - t_k} \right|^2 \right|$$

$$\leq \left| \frac{B(z)}{z} \right| \sum_{k=1}^{mn} |r(s(t_k))| \left| c_k \left| \frac{B(z) - \lambda}{z - t_k} \right|^2 \right|$$

$$\leq \max_{z \in T} |r(s(z))| \left| \frac{zB'(z)}{B(z)} \right|$$

$$= |B'(z)| ||r(s)||.$$

Since right hand side is independent of λ , therefore we can suitably choose λ such that

$$|B'(z)r(s(z)) - s'(z)r'(s(z))B(z)| + |s'(z)r'(s(z))| \le |B'(z)|||r(s)||. \tag{5.7}$$

Next recall that

$$r^*(s(z)) = B(z)\overline{r(s(\frac{1}{z}))}.$$

So that

$$(r^*(s(z)))' = B'(z)\overline{r(s(\frac{1}{\bar{z}}))} - \frac{1}{z^2}B(z)\overline{r'(s(\frac{1}{\bar{z}})).s'(\frac{1}{\bar{z}})}.$$

Which implies

$$\left| (r^*(s(z)))' \right| = \left| B'(z) \overline{r(s(\frac{1}{\overline{z}}))} - \frac{1}{z^2} B(z) \overline{r'(s(\frac{1}{\overline{z}})) s'(\frac{1}{\overline{z}})} \right|.$$

Hence for $z \in T$, we have

$$\left| (r^*(s(z)))' \right| = \left| z \frac{B'(z)}{B(z)} \overline{r(s(z))} - \overline{zr'(s(z))} \cdot s'(z) \right|.$$

Using the fact that $\frac{zB'(z)}{B(z)}$ is real, we get

$$\left| (r^*(s(z)))' \right| = \left| z \frac{B'(z)}{B(z)} r(s(z)) - z r'(s(z)) . s'(z) \right|$$

$$= |B'(z) r(s(z)) - r'(s(z)) s'(z) B(z)|. \tag{5.8}$$

Hence we have from inequality (5.7)

$$|r^{*'}(s(z))s'(z)| + |r'(s(z))s'(z)| \le |B'(z)|||r(s)||.$$

Which gives the desired result by use of Lemma 3.

PROOF OF THEOREM 3: From equation (4.4), we have

$$z\frac{B'(z)}{B(z)} = |B'(z)| > 0$$

Hence for $z \in T$, with $r(s(z)) \neq 0$, we have from (5.8)

$$\left| (r^*(s(z)))' \right| = |B'(z)r(s(z)) - r'(s(z))s'(z)B(z)|
= \left| z \frac{B'(z)}{B(z)} r(s(z)) - z r'(s(z))s'(z) \right|
= |B'(z)|r(s(z)) - z r'(s(z))s'(z)|
= \left| \frac{z r'(s(z))s'(z)}{|B'(z)|r(s(z))} - 1 \right| |B'(z)r(s(z))|.$$
(5.9)

From lemma 5, we have

$$Re\left(\frac{zr'(s(z))s'(z)}{|B'(z)|r(s(z))}\right) \le \frac{1}{2}.$$

Which further implies

$$\left|\frac{zr'(s(z))s'(z)}{|B'(z)|r(s(z))}\right| \le \left|\frac{zr'(s(z))s'(z)}{|B'(z)|r(s(z))} - 1\right|.$$

Using in (5.9), we get

$$|(r^*(s(z)))'| \ge \left| \frac{zr'(s(z))s'(z)}{|B'(z)|r(s(z))|} \right| |B'(z)r(s(z))|.$$

Which further implies

$$|(r^*(s(z)))'| \ge |(r(s(z)))'|.$$

Hence Theorem 2 yields

$$|(r(s(z)))'| \le \frac{1}{2}|B'(z)|||r(s)||.$$

Lemma 3 is thereby allowing us to write

$$|r'(s(z))| \le \frac{1}{2mm'}|B'(z)|||r(s(z))||.$$

This proves the theorem for $r(s(z)) \neq 0$. Since the above inequality is trivially true for r(s(z)) = 0.

Therefore we conclude that the theorem is true for all $z \in T$.

PROOF OF THEOREM 4: Let $r(s(z)) \neq 0$. Since $z \in T$, therefore we have by use of lemma 6

$$\left|\frac{(r(s(z)))'}{r(s(z))}\right| \ge Re\left(z\frac{(r(s(z)))'}{r(s(z))}\right) \ge \frac{1}{2}\left\{|B'(z)| - m(n-n')\right\}.$$

Which yields by the use of inequality (1.1)

$$|r'(s(z))| \ge \frac{1}{2mM'} \left\{ |B'(z)| - m(n-n') \right\} |r(s(z))| \tag{5.10}.$$

This proves Theorem 4 for $r(s(z)) \neq 0$. Since inequality (5.10) is trivially true for r(s(z)) = 0. Therefore Theorem 4 holds for all $z \in T$.

REFERENCES

- 1. A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, *J. Approx. Theory*, **54** (1988), 119-122.
- 2. P. Borwein and T. Erdelyi, Sharp extension of Bernstein inequalities to rational spaces, *Mathematika*, **43** (1996), 413-423.
- 3. C. Frappier, Q. I. Rahman and St. Derivatives of polynomials, Approx. Theory, 66 (1991), 29-35.
- 4. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, *Bull. Amer. Math. Soc.* (N.S), **50** (1944), 509-513.
- 5. Xin Li, R. N. Mohapatra and R. S. Rodgriguez, Bernstein inequalities for rational functions with prescribed poles, *J. London Math. Soc.*, **51** (1995), 523-531.
- 6. M. A. Malik, On the derivative of the polynomial, J. London Math. Soc., (1969), 57-60.
- 7. R. N. Mohapatra, P. J. O'Hara and R. S. Rodrigues, Simple proofs of Bernstein type inequalities, *Proc. Amer. Math. Soc.*, **102** (1988), 629-632.
- 8. Q. I. Rahman, *Application of functional analysis to extremal problems for polynomials* (Presses University, Montreal, 1967).
- 9. A. C. Schaffer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, *Bull. Amer. Math. Soc.*, **47** (1941), 565-579.
- 10. P. Turán, Uber die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.