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In this paper, we consider a more general class of rational functias)) of degreenn, where
s(z) is a polynomial of degreen and prove some sharp results concerning to Bernstein type
inequalities for rational functions.
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1. INTRODUCTION

Let P,, denote the space of complex polynomials of degree at mestd7" := {z : |z| = 1}. we
denote byD_ the region inside T and bjp. the region outside T. IP € P,, then concerning the
estimate of P’(z)| on the unit circleT’, we have the following well known result which relates the
norm of a polynomial to that of its derivative due to Bernstein [9].
P(2)| < P(z)]|. 1.1
max |P'(2)] < nmax|P(2)] (L1)

The inequality (1.1) is sharp and equality holds for polynomials having all zeros at the origin.

The inequality (1.1) was improved by Malik [6]. In fact he proved:

If P € P, andQ(z) = z"P(%), then
/ /
< . .
max | P'(z)| + max |Q'(2)| < nmax |P(z)] (1.2)

If we consider the class of polynomialB € P, having no zero inD_, then the bounds in
inequality (1.1) can be considerably improved. In fact,@srdonjectured and later Lax [4] verified
that if P(z) does not vanish ib_, then (1.1) can be replaced by

/ n
< — . .
max |P'(z)] < 5 max|P(2)] (1.3)
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Turan [10] reversed the hypothesis of the result proved byp&itdx and showed thati? € P,
andP(z) # 0in D4, then

n
P > = P(2)|. 1.4
max |P'(2)| > 3 max |P(2)| (L4)

In 1988, Mohapatra, O’Hara and Rodrigues [7] proved that; ,its, ..., 2o, are any2n equally
spaced points off” listed in order, say;, = ue%, whereu € T andk = 1,2, ...,2n, then for
PeP,

/ n
< — . .
max |P'(z)] < 5 [max|P(z)] + max |P(z)]] (1.5)

2. RATIONAL FUNCTIONS

Let a1, s, ..., a, ben given points inD, . Consider the following space of rational functions with
prescribed poles and with finite limit at infinity.

- (2eren)

where

n

w(z) = H(z — o).

j=1
The inequalities of Bernstein and Exstax have been extended to the rational functions ([2], [5])

by replacing the polynomiai(z) by a rational function(z) andz" by Blaschke produds(z) defined

by

Besides other things they proved, for ang R,

r'(2)] < [B'(2)][|r]]- (2.1)
Furthermore, the inequality (2.1) is sharp and the equality holdgif = a3(z) with o € T'. If
we assume € R,, does not vanish ib_, then forz € T, the inequality (2.1) can be strengthened to

7' (2)] < %!B’(Z)H!?“H- (2.2)

The inequality is sharp and equality holds {£) = aB(z) + S with «, 5 € T'. Also, if r(z) does
not vanish inD, , then
1
') = 5Bl (2.3)
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In this paper we consider a more general class of rational functigi(s)), defined by

p(s(2))
w(s(2))’

where s(z) is a polynomial of degreen andr(z) is a rational function of degree, so that

(ros)(z) = r(s(z)) =

r(s(z)) € Rmn, and

mn

w(s(z)) = [[(z — a)).

j=1

Bloy = w6ED _wCd) 17 (o)

wis(z))  w(s(z)) 25\ z-q

Thereby prove the following results which in turn generalizes the above inequalities.

3. MAIN RESULTS

From now on, we shall always assume that all peles, ..., amy, Of r(s(z)) liein D. For the case
when all poles are ith_, we can obtain analogous results with suitable modification.

Theoreml — If r(s(z)) € Ry andz € T', then

2

B(2) <X B(z) — A
B er(s(a) — ¢ 0 6(BE) - A = 22 S et 222
k=1
wherecy, = cx () is defined folk = 1,2, 3, ..., mn by
—1 — ’%”2 —1
= 3.2
k ]2 |tk - aj‘g ( )
Furthermore, forz € T'
2B'(2) <X |B(z) = AP
B 2 —n | (33)

k=1
wheret, k =1,2,3,...,mn are defined as in Lemma 1 (to be mentioned later).

Corollary 1 — Letc, andt (fork = 1,2, 3, ..., mn) be defined as in Theorem 1.uf, us, ..., umn
are the roots oB(z) = —\ anddy, is defined ag;, with t; replaced byuy, fork = 1,2,...,mn. If

min |s(z)| = m’ (3.4)
zeT
and all zeros 0f(z) liein TU D_, then forz € T
1
2mm/

[r'(s(2))] <

|B’(z)]{ max |r(s(tg))] + max |r(s(uk))|} (3.5)

1<k<mn 1<k<mn
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The inequality is sharp and equality holds fdg(z)) = uB(z) with u € T', wheres(z) = z™.
Corollary 1 immediately yields the following generalization of inequality (2.1).

Corollary2 — If r(s(z)) € Ry, and all zeros o§(z) lie in T'U D_, then
P (s() < —[B'(2)llIr ()], (3.6)

wherem/ is defined by equation (3.4) afid(s)|| = max,er |r(s(2))].

The inequality is sharp in the sense that equality is obtained wisn)) = uB(z) withu € T,
wheres(z) = z™.

As a generalization of inequality (1.2), we prove:
Theorem2 — If r(s(z)) € R, and all zeros ok(z) liein T'U D_ thenforz € T,

|B'(2)|

mm/’

[ (s(2))] + Ir'(s(2))] < [l ()l (3.7)

wherer*(s(z)) = B(2)r(s(2)).
Also equality holds for(s(z)) = uB(z) withu € T, wheres(z) = 2™.
We next present the following generalization of inequality (2.2).

Theorem3 — Letr(s(z)) € Ry be such that(s(z)) # 0in D_ and all zeros ofs(z) lie in
TUD_.If

: !
min [s(z)| = ',

then forz € T, we have
1

2mm/

[ (s(2))] < B ()l (s)Il- (3-8)

The inequality is sharp and equality holds for the rational functions of the fafsz)) =
aB(z) + B with o, § € T wheres(z) = 2™.

Theorem4 — Letr(s(z)) € Ry, andr(s(z)) # 0in DT If

e [s(2)] = M, (39)
then forz € T', we have
6N 2 gz {18 = =) (o)), (3.10)

wheremn’ andmn are respectively number of zeros and poles(efz)).
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The inequality is sharp and equality holds for rational functions of the fiais(z)) = aB(z)+ 5
with o, B € T where s(z) = 2™.

If »(s(2)) has exactlynn zeros them = n’ and we get the following generalization of inequality
(2.3).
Corollary 3 — Letr(s(z)) € Ry, andr(s(z)) # 0in DT, If

_ /
max |s(z)| = M
andr(s(z)) has exactlynn zeros, then for € T, we have
/ 1 /
> . .
(s 2 5B/ R)Ir(s(2)] (3.11)

The inequality is sharp and equality holds for rational functions of the faitzr)) = aB(z) + 5

with o, 8 € T where s(z) = 2™.
4. LEMMAS

For the proofs of these Theorems we need the following lemmas.
The first two lemmas are due to Li, Mohapatra and Rodrigues [5].

Lemmal — Suppose\ € T'. Then the equatio®3(z) = X has exactlynn simple roots, say
t1,t9, ..., tmn and all lie on the unit circl€’. Moreover

th (tr) laj|? —
Z |t;:— aj|2 fork=1,2,3,..,mn. (4.1)

Lemma2 — If |u| = |v| = 1, then

(u —v)?* = —uv|u — v|>. (4.2)

Next lemma is due to Aziz and Dawood [1].

Lemma3 — If p(z) is a polynomial of degree, having all zeros irf" U D_, then

> i . .
min |p'(2)| = nmin|p(z)| (4.3)

The inequality is sharp and equality holds for polynomials having all zeros at the origin.

Lemmad — If z € T, then

2B'(2) _ 3 la? =1 _ 1B(2). (4.4)
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PrRoOF: We have

B(z) = w*(s(z)) H 1—ajz

wis(z) LT
This gives
2B'(2) <~ [ —za; I
B(z) 7],:1 1—ajz z—a;

Hence forz € T', we have

Sincelaj| > 1V 1 < j < mn, it follows from above thafg(’—i‘i) is real and positive. Therefore

for z € T, we have
2B'(2)
B(z)

2B'(z) _
B(z)

This completes the proof of Lemma 4.

= |B'(2)].

Lemma5 — Letr(s(z)) € Ryy,. If all zeros ofr(s(z)) lie in T'U D*, then forz € T and
r(s(z)) #0
/
Re<z("(8(z)))> < %\B’(z)|. (4.5)
PROOF: If p(z) hasn' zeros and(z) hasm zeros, them(s(z)) hasmn’ zeros. Leby, bo, ..., by
be the zeros gf(s(z)), mn’ < mn. Now

This gives

z—aj

Since all zeros 0f(s(z)) lie in T'U D, therefore for: € T with z # by, we have

z z

<

o 1' forj=1,2,3,...mn. (4.7)
J

z—bj z —

Using the fact thake(z) < 35 if and only if |z| < |z — 1], we get from inequality (4.7)

1
2

1
Re< : )§ for 7=1,2,....mn’.
Z—bj 2
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Hence from equation (4.6), we have

This with the help of equation (4.4) gives

NCCE) AP
%<v@@»>§ Bl

This completes the proof of Lemma 5.
Lemma 6 — Letr(s(z)) € Rpn. If all zeros ofr(s(z)) liein T'U D, then forz € T and

r(s(z)) # 0, we have

Re(ZTEENN S L pi)) — g -y, (4.8)
<rww> 2

wheremn’ andmn are respectively the number of zeros and poleg &fz)).

PROOF: Suppose all the zeros ofs(z)) liein T UD_ andz € T with z # b; V1 < j < mn'.

Then as in lemma 5, we obtain

This completes the proof of Lemma 6.
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5. PROOFS OFTHEOREMS

PROOF OFTHEOREM 1 : Let ¢(z) = w*(s(z)) — Mw(s(z))). Since the solution oB(z) = A is
same as polynomial equatiart (s(z)) — Aw(s(z)) = 0 which has degree exacttyn, it follows that
it has exactlynn roots counting multiplicities. If these roots are denotedhys, ..., t,,, then

mn

a(2) = w(s(2))[B(2) = Al = K [ (= — ta).

k=1
Forr(s(z)) = L& € Ry, letp(s(2)) = pz™" + ..., then

p(s(2)) = 224(=) € Prun-1.

The numbers,, to, ..., t,y, are distinct, so by Lagrange interpolation formula we obtain
p < P(s(t))a(z)
s(2)) — —=q(z) = — .
PG ~ ) = 3 =i
Dividing both sides by;(z) and differentiating, we get

< s(2)) )I %(J' tr) Z*tk (p(s(tr))) — p(s(te))q ()

(2) (¢ (tk)(z — tg))?

5 plsh)
= - o

Next recall thatg(z) = w(s(2))[B(z) — A] andp(s(z)) = w(s(2))r(s(z)).

Henceq (t;) = w(s(tx))B (tx) andp(s(tr)) = w(s(tx))r(s(tx)). Moreover, since; are the
zeros of B(z) = \. Thereforeg(t;) = 0. Using these in equation (5.1), we get

(5575) - ZB’ Tl 52)

Which implies

[B(2) = A(r(s(2))" = r(s(2))B'(2) _ _ % r(s(tk))
[B(2) — A]? B'(tk) (2 — t)*

k=1

Multiplying both sides by-[B(z) — AJ?, we get

< 1 (s z) — A2
OB () = S B — A = 3 EIPE S
k=1
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Forz € T, |B(z)| = 1 and|)\| = 1. Therefore by virtue of lemma 2, we obtdiB(z) — \]? =
—B(2)\|B(2) — 2. Similarly, (z — t)? = —zti|z — tx|>. Hence it follows from equation (5.3)

mn 2
B~ /o)~ = PN G PIT e
Using Lemma (1) and definition @f,, we get
i B(z) - A
B'(2)r(s(2)) = 8 (2)1"(s(2))[B(2) - D3 cur(s(tn) th SENCE)
1
Which completely proves Theorem 1.
PROOF OFCOROLLARY 1: Applying Theorem 1 after replacingby — A, we get
, N B(z) B A2
B Er(s(2)) = (2 (NBE) + N = 22 Y drts(u) 2L (s
k=1
Subtract (5.5) and (5.6), we get
28’ (2)1'(s(2))[B(z) + A — B(z L B( )+ A2
B(2) chr (tr) ‘ z—tk Zdr s(ug)) Y
Hence forz € T', we have
125 (= \<Zyck\|r () ‘_ +Z|d 7 (s(up)) B(z )+kA
| BG) = A ( )+ A’
<max\r (tx)) ;|Ck’ p— —{—max\r s(uk)) 2 " |

Since both;, andd;, are positive by definition, therefore using (3.3) we get

2 (s < 5 5 m r(s(00) + g (o) .

Finally, by virtue of lemma 3 and lemma 4, we obtain

[ (s(2))] <

O g (st + o r(s(w)

2mm

wherem’ is defined by equation (3.4).
This proves Corollary 1 completely.

PROOF OFTHEOREM 2 : From Theorem 1, we have ferec T

2 ‘

|B'(2)r(s(2)) — &' (2)r'(s(2))[B(2) —




346 IDREES QASIM AND A. LIMAN

mn

> Ir(st)l

k=1

B(z) = A|?

— ty

<

‘B(z) Ck

= |B'(2)|lIr(s)]

Since right hand side is independent\gtherefore we can suitably chooseuch that
|B'(2)r(s(2)) — s'(2)r'(s(2)) B(2)| + |s'(2)r' (s(2))| < |B'(2)]][r(s)]]. (5.7)

Next recall that

r(s(2) = Bz)r(s(2)).
So that
(=) = B ()r(s(2) — 5 BEI(5(2)).5(3)
Which implies
()Y | = B ~ SBEMGE) )

= |B'(2)r(s(2)) — r'(s(2))s'(2) B(2)]. (5-8)

Hence we have from inequality (5.7)
™ (s(2))s'(2)] + |r'(s(2))s' (2)] < |B'(2)|l|r(s)]l-

Which gives the desired result by use of Lemma 3.

PROOF OFTHEOREM 3 ;: From equation (4.4), we have

z =|B'(z)| >0
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Hence forz € T, with r(s(z)) # 0, we have from (5.8)

(r*(s(2)))'| = |B'(2)r(s(2)) — 7' (s(2))s'(2) B(2)|
_ ZB/((;)T(s(z)) — o (s(2))8'(2)
= |B'(2)Ir(s(2)) — 2r'(s(2))s'(2)]
B 2r'(s(2))s'(2) B A (s( 2

From lemma 5, we have

Which further implies

21 (s(2))s'(2) zr'(s(2))s'(2) 1‘
|B'(2)|r(s(2)) | ~ [1B'(2)Ir(s(2)) |
Using in (5.9), we get
i o |27 (5(2))8'(2) |
[(r*(s(2)))] = B (2)r(5() [B'(2)r(s(2))|

Hence Theorem 2 yields .
|(r(s()))'] < SIB'2)[Ir(s)]]

Lemma 3 is thereby allowing us to write

()] < 5o B G (s

This proves the theorem for(s(z)) # 0. Since the above inequality is trivially true for
r(s(z)) =0.

Therefore we conclude that the theorem is true for &l T.

PROOF OFTHEOREM4 : Letr(s(z)) # 0. Sincez € T, therefore we have by use of lemma 6

(r(s(2))’ CEN L iy i o
o |2 () = s el - m
Which yields by the use of inequality (1.1)
I (s(2))] = 27;M,{|B’<z>| —m(n - n’>}rr<s<z>>| (5.10).

This proves Theorem 4 for(s(z)) # 0. Since inequality (5.10) is trivially true for(s(z)) = 0.
Therefore Theorem 4 holds for alle T'.
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