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In this short note, we give an elementary (set-theoretic) proof of Fuglede’s theorem that the com-

mutant of a normal operator is *-closed.
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1. INTRODUCTION

Throughout this note, ‘operator’ will mean a bounded linear operator (denoted by symbols like

A,N,P, T ) on a separable Hilbert spaceH.

Theorem1.1 (Fuglede [1]) —If an operatorT commutes with a normal operatorN , then it

necessarily commutes withN∗.

This short note provides a proof of this fact which is ‘natural’ in the sense that it exactly imitated

the most natural proof in caseH is finite dimensional: in that case, the spectral theorem guarantees

thatN has an expression of the formN =
∑k

i=1 λiPi wherePi is the projection ontoker(N − λi);

sincePi is a polynomial inN , it follows that T commutes with eachPi and hence withN∗ =
∑

i λ̄iPi.

We shall use the notation of the functional calculusf 7→ f(N) for bounded measurable functions

defined onC; thus1E(N) will denote the projection onto the spectral subspace ofN corresponding to

anyE in BC:= theσ-algebra of Borel sets inC. We shall prove thatT commutes with every1E(N),

to conclude thatT should commute withf(N) for any bounded measurable functionf onC. For

f(z) = 1sp(N)(z)z̄, this yields the desired result.
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Write M(E) = ran(1E(N)) for the spectral subspace corresponding to anE ∈ BC. As

M(E)⊥ = M(E′) (with the ‘prime’ denoting complement), it will suffice for us to show thatT

leaves eachM(E) invariant. To this end, let us write

F = {E ∈ BC : T (M(E)) ⊂M(E)}. (1)

We proceed through a sequence of simple steps to the desired conclusion. We start with the key

observation which is stated and proved for self-adjointN in [2].

First some notation: writeD(z0, r) = {z ∈ C : |z − z0| < r}, simplyD = D(0, 1) andD̄ for the

closed ball{z : |z| ≤ 1}.

Lemma1.2 — The following conditions on a vectorx ∈ H are equivalent:

1. x ∈M(D̄).

2. ‖Nnx‖ ≤ ‖x‖ ∀n ∈ N.

3. sup{‖Nnx‖ : n ∈ N} < ∞.

In particular,D̄ ∈ F .

PROOF : The implications1. ⇒ 2. ⇒ 3. are obvious. As for3. ⇒ 1., it is enough to see that

xm := 1{z:|z|≥1+ 1
m
}(N)x = 0 ∀m ∈ N sincex− limm xm ∈M(D); but this follows from

‖Nnx‖ ≥ ‖1{z:|z|≥1+ 1
m
}(N)Nnx‖ = ‖Nnxm‖ ≥ (1 +

1
m

)n‖xm‖ ∀n ∈ N .

In particular, ifx ∈M(D̄) it follows from

‖NnTx‖ = ‖TNnx‖ ≤ ‖T‖‖Nnx‖

and 3. above that alsoTx ∈M(D̄) so that indeed̄D ∈ F . 2

Corollary 1.3 —D(z, r) ∈ F ∀z ∈ C, r > 0.

PROOF : This follows on applying Lemma 1.2 to
(

N−z
r

)
. 2

Theorem1.4— With the foregoing notation, we have:

1. F is closed under countable monotone limits, and is thus a ‘monotone class’.

2. F contains all (open or closed) discs.

3. F contains all (open or closed) half-planes.
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4. F is closed under countable intersections and countable disjoint unions.

5. F = BC.

PROOF :

1. If En ∈ F ∀n and if eitherEn ↑ E or En ↓ E, then1En(N) SOT→ 1E(N) so that either

M(E) = (∪M(En)) orM(E) = ∩M(En) whence alsoE ∈ F .

2. The assertion regarding closed discs is Corollary 1.3, and the assertion regarding open discs

now follows from (1) above.

3. For example, ifa, b ∈ R, thenRa = {z ∈ C : <z > a} = ∪∞n=1{z ∈ C|z−(a+n)| < n} ∈ F
and hence, by (1) above, alsoLb = {z ∈ C : <z ≤ b} = − ∩∞n=1 R−b− 1

n
∈ F . Similarly, if

c, d ∈ R, we also haveUc := {z ∈ C : =z > c}, Dd := {z ∈ C : =z ≤ d} ∈ F .

4. This is an immediate consequence of the definitions.

5. It follows from items 3. and 4. above thatF contains(a, b]× (c, d] = Ra ∩ Lb ∩ Uc ∩Dd and

the collectionA of all finite disjoint unions of such rectangles. SinceA is an algebra of sets

which generatesBC as aσ-algebra, and sinceF is a monotone class containingA, the desired

conclusion is a consequence of the monotone class theorem.

We conclude with the cute observation - see [2] - that by applying Fuglede’s theorem to the block

operator-matrices

[
0 0

T 0

]
and

(
N1 0

0 N2

)
we obtain Putnam’s generalisation [3]: ifNi is a

normal operator onHi, i = 1, 2, and if T ∈ B(H1,H2) satisfiesTN1 = N2T , then necessarily

TN∗
1 = N∗

2 T .
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