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We consider the algebra k[X2, XY, Y 2] where characteristic of the field k is zero. We

compute a differential calculus, introduced earlier by the authors, by associating an alge-

braic spectral triple with this algebra. This algebra can also be viewed as the coordinate

ring of the singular variety UV −W 2 and hence, is a quadratic algebra. We associate two

canonical algebraic spectral triples with this algebra and its quadratic dual, and compute

the associated Connes’ calculus. We observe that the resulting Connes’ calculi are also

quadratic algebras, and they turn out to be quadratic dual to each other.
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1. Introduction

In noncommutative geometry, associated to a spectral triple (A,H, D) Connes defined a

differential graded algebra (dga) Ω•D(A) in [3]. Here A is an associative algebra represented

on the Hilbert space H and D is an unbounded, self-adjoint operator with compact resolvent

acting on H, often called the Dirac operator. A dga specifies a differential structure on

an associative algebra, for which it is called a differential calculus. The dga Ω•D defined

by Connes is useful in many contexts (see Ch. 6 in [3]). There are other instances also

where differential calculus has been used in various noncommutative contexts for e.g. [10, 9,

1, 7] and references therein. To see applications of differential calculus in noncommutative
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geometry one can look at [4, 6]. While investigating the natural question of the behaviour of

Ω•D under the tensor product of spectral triples, Kastler-Testard could not reach a conclusive

answer in [5]. This question is then reinvestigated by the authors in [2]. Main outcome of [2]

is that Ω•D behaves nicely under the multiplication of spectral triples provided one restricts

attention to a suitable subclass of spectral triples. Note that to define Ω•D one does not use

self-adjointness and compactness of the resolvent of D. Authors casted Connes’ definition in

a slightly more general algebraic framework in [2] which we recall now.

We consider the quadruple (A,V, D, γ) where A is an associative, unital algebra over a

field k, represented on the vector space V, D ∈ End(V), and γ ∈ End(V) is a Z2-grading

operator which commutes with A and anticommutes with D. We call it an even algebraic

spectral triple. It is proved in [2] that the collection S̃pec of even algebraic spectral triples is a

monoidal category and the dga Ω•D gives a covariant functor F : S̃pec −→ DGA. Here DGA

denotes the category of dgas over field k . Then a suitable monoidal subcategory S̃pecsub was

identified and main result of [2] is that F is a monoidal functor when restricted to S̃pecsub . It

is necessary to validate the nontriviality of the functor F when restricted to S̃pecsub . For that

purpose authors constructed a faithful covariant functor G : S̃pec −→ S̃pecsub and computed

F ◦ G for two canonical algebraic spectral triples associated with compact manifolds and the

noncommutative torus. Note that for each algebraic spectral triple F ◦ G gives a dga i,e. a

differential calculus, and we call it the Connes-type calculus.

Goal of this article is two fold. On the one hand, we want to compute the Connes-type

calculus for a “purely algebraic” algebraic spectral triple which will strengthen the fact that

this calculus is actually computable. For that purpose we consider the algebra k[X2, XY, Y 2]

with ch(k) = 0 and associate an algebraic spectral triple with it. We compute the Connes-type

calculus F ◦ G and observe that it is not trivial. On the other hand, note that k[X2, XY, Y 2]

can be identified with A := k[U, V,W ]/〈UV −W 2〉 which is a quadratic algebra. We identify

its quadratic dual Adu := k{α, β, γ}/〈α2, β2, αγ + γα, βγ + γβ, αβ + βα + γ2〉. Then we

associate two canonical algebraic spectral triples (A,V, D) and (Adu,Vdu, δ ) with A and Adu

respectively. We observe that the Connes’ calculi Ω•D(A) and Ω•δ(Adu) are also quadratic

(graded)algebras. Moreover, Ω•D(A) and Ω•δ(Adu) are quadratic dual to each other. These

phenomena leads us to a series of open questions to be investigated, which we discuss at the

end.

Organization of this paper is as follows. In section 2 we recall the definition of Connes’

calculus, algebraic spectral triple and Connes-type calculus from [2]. Section 3 is devoted to
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the computation of Connes-type calculus for the algebra k[X2, XY, Y 2]. Final section carries

the quadratic duality between the Connes’ calculi for the algebra A = k[U, V, W ]/〈UV −W 2〉
and its quadratic dual Adu.

2. Preliminaries on The Connes’ Calculus and The Connes-type Calculus

In this section we define the Connes’ calculus and recall few essential results from [2].

Definition 2.1 [2] — An algebraic spectral triple (A,V, D) over an associative k-algebra A
consists of the following things :

1. a representation π of A on the k-vector space V;

2. a linear operator D acting on V.

It is said to be an even algebraic spectral triple if there exists a Z2-grading γ ∈ End(V)

such that γ commutes with each element of A and anticommutes with D. This is denoted

by (A,V, D, γ). It will be assumed that A is unital and the unit 1 ∈ A acts as the identity

operator on V. Associated to every algebraic spectral triple (A,V, D) we have the following

differential graded algebra due to Connes.

Definition 2.2 — Let Ω•(A) =
⊕∞

k=0 Ωk(A) be the reduced universal differential graded

algebra over A . Here Ωk(A) := A⊗ Ā⊗k , Ā = A/K . The graded product is given by
(∑

k

a0k ⊗ a1k ⊗ . . .⊗ amk

)
.

(∑

k′
b0k′ ⊗ b1k′ ⊗ . . .⊗ bnk′

)

:=
∑

k,k′
a0k ⊗ (⊗m−1

j=1 ajk)⊗ amkb0k′ ⊗ (⊗n
i=1bik′)

+
m−1∑

i=1

(−1)ia0k ⊗ a1k ⊗ . . .⊗ am−i,kam−i+1,k ⊗ . . .⊗ amk ⊗ (⊗n
i=0bik′)

+(−1)ma0ka1k ⊗ (⊗m
j=2ajk)⊗ (⊗n

i=0bik′) .

for
∑

k a0k ⊗ a1k ⊗ . . .⊗ amk ∈ Ωm(A) and
∑

k′ b0k′ ⊗ b1k′ ⊗ . . .⊗ bnk′ ∈ Ωn(A). There is a

differential d acting on Ω•(A) given by

d(a0 ⊗ a1 ⊗ . . .⊗ ak) := 1⊗ a0 ⊗ a1 ⊗ . . .⊗ ak , ∀ aj ∈ A

and it satisfies the following relations

1. d2ω = 0 ∀ω ∈ Ω•(A),
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2. d(ω1ω2) = (dω1)ω2 + (−1)deg(ω1)ω1dω2 , ∀ homogeneous ω1 ∈ Ω•(A).

We can represent Ω•(A) on V by the following

π(a0 ⊗ a1 ⊗ . . .⊗ ak) := a0[D, a1] . . . [D, ak] ; aj ∈ A .

Let J
(k)
0 = {ω ∈ Ωk : π(ω) = 0} and J ′ =

⊕
J

(k)
0 . But J ′ fails to be a differential ideal.

We consider J• =
⊕

J (k) where J (k) = J
(k)
0 +dJ

(k−1)
0 . Then J• becomes a differential graded

two-sided ideal and hence the quotient Ω•D = Ω•/J• becomes a differential graded algebra.

The representation π gives the following isomorphism,

Ωk
D
∼= π(Ωk)/π(dJk−1

0 ) ∀ k ≥ 1 . (2.1)

The abstract differential d induces a differential d̃ on the complex Ω•D(A) so that we get

a chain complex (Ω•D(A), d̃ ) and a chain map πD : Ω•(A) → Ω•D(A) such that the following

diagram

Ω•(A)

d
²²

πD // Ω•D(A)

ed
²²

Ω•+1(A) πD

// Ω•+1
D (A)

commutes. This makes Ω•D a differential graded algebra and we call it the Connes’ calculus.

It is observed in [2] that the collection of even algebraic spectral triples (A,V, D, γ) form

a category S̃pec (see Definition 2.4 in [2]) and it is a monoidal category (Proposition 2.6 in

[2]). Recall the following results from [2].

Lemma 2.3 [2] — There is a covariant functor F : S̃pec −→ DGA given by (A,V, D, γ)

7−→ Ω•D(A), where DGA denotes the category of differential graded algebras over a field k.

Following the same notation as in [2], let S̃pecsub be the subcategory of S̃pec objects

of which are (A,V, D, γ) with γ ∈ π(A). This is a monoidal subcategory of S̃pec . Starting

with (A,V, D, γ) ∈ S̃pec one can consider the algebra (A⊕A , ?) where the multiplication ?

is given by

(a, b) ? (ā, b̄) = (aā + bb̄ , ab̄ + bā),

and

π̃ : (a, b) 7−→ π(a) + γπ(b) ∈ End(V)
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represents (A ⊕ A , ?) on the vector space V. It shown in [2] that ((A ⊕ A , ?),V, D, γ)

∈ S̃pecsub and we have the following result.

Proposition 2.4 [2] — There is a faithful covariant functor G : S̃pec −→ S̃pecsub which

sends (A,V, D, γ) to ((A⊕A , ?),V, D, γ).

Recall the functor F in Lemma 2.3. The main result in [2] is the following.

Theorem 2.5 [2] — Restricted to the monoidal subcategory S̃pecsub of S̃pec , the covari-

ant functor F : S̃pecsub −→ DGA is a monoidal functor.

However, it must be shown that the functor F restricted to S̃pecsub does not become

trivial. To prove nontriviality of F , authors have computed F ◦ G : S̃pec −→ DGA for two

canonical algebraic spectral triples associated with compact manifolds and the noncommu-

tative torus in [2].

Definition 2.6 — For an even algebraic spectral triple (A,V, D, γ), the calculus F ◦
G(A,V, D, γ) is called the Connes-type calculus.

3. Computation for the Algebra k[X2, XY, Y 2]

The calculus F◦G was computed for the compact manifold and the noncommutative torus in

[2]. In this section we do it for a “purely algebraic” even algebraic spectral triple and observe

that this is not trivial in this case also.

Let k be a field of characteristic zero and consider the k-algebra k[X2, XY, Y 2]. Our

candidate for the even algebraic spectral triple is
(
A := k[X2, XY, Y 2] , V := k[X, Y ] , D̃ , γ

)
,

where D̃ and γ are given by

D̃(XmY n) := αmXm−1Y n + βnXmY n−1 ; α, β ∈ k ; (3.2)

γ ξ(X,Y ) := ξ(−X,−Y ) ; ∀ ξ ∈ k[X, Y ] . (3.3)

Here A is represented on the k-vector space k[X, Y ] via the multiplication operator a 7→
Ma . Since γ2 = Id, we have k[X, Y ] = k[X, Y ]even ⊕ k[X,Y ]odd , where

k[X, Y ]even := span{XmY n : m + n is even} ,

k[X, Y ]odd := span{XmY n : m + n is odd} .

Observe that D̃ takes k[X, Y ]even to k[X, Y ]odd and vice versa, and hence induces maps

D± such that
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D̃ =

(
0 D−

D+ 0

)

where both D− : k[X,Y ]odd −→ k[X,Y ]even and D+ : k[X,Y ]even −→ k[X, Y ]odd are given

by equation 3.2. Moreover, in view of equation (3.3), we can write

γ =

(
1 0

0 −1

)
.

Observe that A = k[X,Y ]even as k-vector space.

Notation : Ã := G
(
(A,V, D̃, γ)

)
throughout the section.

Since the representation of A on V is faithful, we get J0
0 (Ã ) = {0} . Observe that

[D̃, MXmY n ] = M eD(XmY n)
, the multiplication operator on V. Let M±

1 := span{MaD±Mb :

k[X,Y ]± −→ k[X,Y ]∓ : a, b ∈ A}, where k[X,Y ]+ = k[X, Y ]even and k[X,Y ]− = k[X,Y ]odd.

Henceforth, for notational brevity, we always denote the multiplication operator Mξ by ξ.

Lemma 3.1 — π(Ω1(Ã )) = M−
1 ⊕M+

1 .

Proof : Since
[
D̃,

(
a 0

0 b

)]
=

(
0 D−b− aD−

D+a− bD+ 0

)
,

elements of π(Ω1(Ã )) are linear combinations of 2×2 matrices of the form

(
0 ξD−η

ξ′D+η′ 0

)

with ξ, η, ξ′, η′ ∈ A. This proves that π(Ω1(Ã )) ⊆M−
1 ⊕M+

1 . To see equality observe that
(

a 0

0 a′

)[
D̃,

(
0 0

0 1

)](
−b′ 0

0 b

)
=

(
0 aD−b

a′D+b′ 0

)

for all a, b, a′, b′ ∈ A . ¤
Since both D+ and D− are given by equation (3.2), henceforth we simply write D when

no confusion arises regarding domain of D+ and D−. For similar reason we write M1 instead

of M±
1 . Now define

Φ̃ : M1 −→ k[X,Y ]odd ⊕ A
aDb 7−→ (aD(b) , ab)

Lemma 3.2 — The map

Φ := Φ̃ ⊕ Φ̃ : M1 ⊕M1 −→ k[X, Y ]odd ⊕ A ⊕ k[X,Y ]odd ⊕ A
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gives a k-linear bijection.

Proof : Since aDb = a[D, b] + abD and [D, b] = MD(b), we have
∑

aiDbi = 0 implies
∑

aiD(bi) = 0 and
∑

aibiD = 0. Since D(X) = α we have
∑

aibi = 0. This shows that Φ

is well-defined. Clearly Φ is injective and R(Φ̃) ⊆ k[X,Y ]odd ⊕ A. To see surjectivity first

observe that Φ̃ : aD1 7−→ (0 , a) for any a ∈ A. Now choose any XmY n ∈ k[X, Y ]odd . Then

Case 1 : m even and n odd.

XmDY n+1 eΦ−→ (β(n + 1)XmY n, XmY n+1) .

Case 2 : m odd and n even.

Xm−1DXY n+1 eΦ−→ (αXm−1Y n+1 + β(n + 1)XmY n, XmY n+1) ,

and use the previous case to subtract the term αXm−1Y n+1.

Since Φ := Φ̃ ⊕ Φ̃ by definition, we are done. ¤

Lemma 3.3 — The following action
(

f 0

0 g

)
.(XmY n , a , XrY s , b) := (fXmY n , fa , gXrY s , gb)

(XmY n , a , XrY s , b).

(
f ′ 0

0 g′

)
:= (aD(g′) + XmY ng′ , ag′ , bD(f ′) + XrY sf ′ , bf ′)

gives an Ã-bimodule structure on the k-vector space k[X,Y ]odd ⊕ A ⊕ k[X, Y ]odd ⊕ A .

Proof : Define
(

f 0

0 g

)
. (XmY n , a , XrY s , b) := Φ

((
f 0

0 g

)
.Φ−1(XmY n , a , XrY s , b)

)
,

for f, g ∈ A , where Φ is in Lemma 3.2. It is clearly a left module structure induced by that

on Ω1
D(Ã ). Now one can check that

(
f 0

0 g

)
.(XmY n , a , 0 , 0) = (fXmY n, fa, 0, 0) ,

(
f 0

0 g

)
.(0 , 0 , XrY s , b) = (0, 0, gXrY s, gb) .

Similarly for the right module structure we define
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(XmY n , a , XrY s , b).

(
f ′ 0

0 g′

)
:= Φ

(
Φ−1(XmY n , a , XrY s , b).

(
f ′ 0

0 g′

))

for f ′, g′ ∈ A , and one can check that it is equal to the following

(XmY n , a , 0 , 0).

(
f ′ 0

0 g′

)
= (aD(g′) + XmY ng′, ag′, 0, 0) ,

(0 , 0 , XrY s , b).

(
f ′ 0

0 g′

)
= (0, 0, bD(f ′) + XrY sf ′, bf ′) .¤

Lemma 3.4 — π(Ω2(Ã )) = M2 ⊕ M2 , where M2 := span{aDbDc : k[X, Y ] −→
k[X,Y ] : a, b, c ∈ A}.

Proof : Elements of π(Ω2(Ã )) are linear combinations of matrices of the form(
ξDηDζ 0

0 ξ′Dη′Dζ ′

)
with ξ, η, ζ, ξ′, η′, ζ ′ ∈ A. This proves that π(Ω2(Ã ) ⊆ M2 ⊕M2.

To see equality observe that
(

a 0

0 a′

)[
D̃,

(
0 0

0 1

)](
−b′ 0

0 b

)[
D̃,

(
0 0

0 1

)](
−c 0

0 c′

)
=

(
aDbDc 0

0 a′Db′Dc′

)

for all a, b, c, a′, b′, c′ ∈ A. ¤
Define

Φ̃ : M2 −→ k[X, Y ]even ⊕ k[X, Y ]odd ⊕ A
aDbDc 7−→ (aD(b)D(c) + abD2(c), aD(b)c + 2abD(c), abc) .

Lemma 3.5 — The map

Φ := Φ̃ ⊕ Φ̃ : M2 ⊕M2 −→ k[X, Y ] ⊕ A ⊕ k[X,Y ] ⊕ A

gives a k-linear bijection.

Proof : Note that

aDbDc = MaD(b)D(c)+ab[D2,c] + MaD(b)c ◦D + Mabc ◦D2 .

But [D2, c] = MD2(c) ⊕M2D(c) ◦D. Hence,

aDbDc = MaD(b)D(c)+abD2(c)

⊕
MaD(b)c+2abD(c) ◦D

⊕
Mabc ◦D2 .

This shows that Φ is well-defined. Clearly Φ is injective and
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R(Φ̃) ⊆ k[X, Y ]even
⊕

k[X, Y ]odd
⊕ A ∼= k[X, Y ]

⊕A .

To see surjectivity first observe that Φ̃ : aD1D1 7−→ (0, 0, a). Now choose any XmY n ∈
k[X, Y ]odd . Then

Case 1 : m even and n odd.

XmDY n+1D1
eΦ−→ (0, β(n + 1)XmY n, XmY n+1) .

Case 2 : m odd and n even.

Xm−1DXY n+1D1
eΦ−→ (0, αXm−1Y n+1 + β(n + 1)XmY n, XmY n+1) ,

and use the previous case. This says that k[X, Y ]odd ⊕A ⊆ R(Φ̃). Finally, choose arbitrary

XmY n ∈ k[X, Y ]even . Then

Case 1 : m = n = 0 .

DXY D1
eΦ−→ (0, αY + βX, XY ) ,

D1DXY
eΦ−→ (2αβ, 2αY + 2βX, XY ) .

Case 2 : m even and n even.

XmDY 2DY n eΦ−→ ((n2 + n)β2XmY n, 2(n + 1)βXmY n+1, XmY n+2) .

Case 3 : m odd and n odd.

XmY DY n−1DY 2 eΦ−→ (2β2nXmY n, (n + 3)βXmY n+1, XmY n+2) .

Since Φ = Φ̃ ⊕ Φ̃ by definition, we are done. ¤

Lemma 3.6 — π(dJ1
0 (Ã )) ∼= k[X, Y ] ⊕ k[X,Y ] .

Proof : Elements of π(dJ1
0 (Ã )) looks like

∑
[D, pa + qb][D, pe + qf ] such that

∑
(pa + qb)[D, pe + qf ] = 0 ,

where p = (1 + γ)/2 =

(
1 0

0 0

)
and q = (1 − γ)/2 =

(
0 0

0 1

)
are the projections onto the

eigenspaces of γ . Expanding the commutators and simplifying we get that arbitrary element

of π(dJ1
0 (Ã )) looks like

∑(
abD2 − aD2b 0

0 a′b′D2 − a′D2b′

)
s.t.





∑
aDb′ =

∑
abD

∑
a′Db =

∑
a′b′D

. (3.4)
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Clearly Φ
(
π(dJ1

0 (Ã ))
)
⊆ k[X,Y ]⊕k[X, Y ] (Φ of Lemma 3.5). To fulfill our claim we first

show that arbitrary (aD2(b), 2aD(b), a′D2(b′), 2a′D(b′)), such that the condition of equation

(3.4) holds, can generate k[X, Y ] ⊕ k[X, Y ] where a, b, a′, b′ ∈ A . Since the condition of

equation (3.4) is symmetric in a, a′ and b, b′ , let a′ = b′ = 0. Note the following facts :

(1) m, n even .

XmY 2D1DY n −XmD1DY n+2 eΦ−→ (−2β2(2n + 1)XmY n,−4βXmY n+1) .

(2) m, n odd and n 6= 1 .

XmY D1DY n+1 −XmY nD1DY 2 eΦ−→ ((n2 + n− 2)β2XmY n, 2(n− 1)βXmY n+1) .

(3) m odd and n = 1 .

XmY D1DY 2 −XmY 3D1D1
eΦ−→ (2β2XmY, 4βXmY 2) .

(4) m even, n odd and n ≥ 3 .

XmD1DY n+1 + XmY 4D1DY n−3 − 2XmY 2D1DY n−1 eΦ−→ (8β2XmY n−1, 0) .

(5) m odd, n even and n ≥ 4 .

XmY D1DY n + XmY 5D1DY n−4 − 2XmY 3D1DY n−2 eΦ−→ (8β2XmY n−1, 0) .

(6) m odd, n even and n ≥ 4 .

Xm−1D1DY n + Xm−1Y 4D1DY n−4 − 2Xm−1Y 2D1DY n−2 eΦ−→ (8β2Xm−1Y n−2, 0) .

(7) m ≥ 4 even .

D1DXm + X4D1DXm−4 − 2X2D1DXm−2 eΦ−→ (8α2Xm−2, 0) .

(8) m even .

X2D1DXm −D1DXm+2 eΦ−→ (−2α2(2m + 1)Xm,−4αXm+1) .

(9) m ≥ 1 odd .

Xm−1D1DX3Y −Xm+1D1DXY
eΦ−→ (6α2XmY + 4αβXm+1, 4αXm+1Y ) .

(10) α(Y 2D1D1−D1DY 2) + 2β(D1DXY −XY D1D1)
eΦ−→ (0 , 4β2X) .
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Check that in all these cases condition of equation (3.4) is satisfied. Now choose arbitrary

XmY n ∈ k[X, Y ]. Then either m + n is even or odd. We have the following cases.

Case 1 : m = n = 0 : This follows from (8)− (10).

Case 2 : m even and n ≥ 2 even : This follows from (6).

Case 3 : m ≥ 2 even and n = 0 : This follows from (7).

Case 4 : m odd and n ≥ 3 odd : This follows from (5).

Case 5 : m odd and n = 1 : This follows from (9)− (1)− (7).

These five cases capture the subspace k[X,Y ]even of k[X, Y ]. Finally, to capture k[X, Y ]odd

we have the following cases.

Case 1 : m = 1 , n = 0 : This follows from (10).

Case 2 : m ≥ 3 odd and n = 0 : This follows from (8)− (7).

Case 3 : m even and n ≥ 3 odd : This follows from (1)− (4).

Case 4 : m even and n = 1 : This follows from (1)− (7).

Case 5 : m odd and n ≥ 4 even : This follows from (2).

Case 6 : m odd and n = 2 : This follows from (3).

Thus we have k[X,Y ]even ⊕ k[X, Y ]odd ⊆ R(Φ̃) i,e. k[X, Y ] ⊆ R(Φ̃). Similarly, one can

do with a = b = 0 and this justifies our claim. ¤

Proposition 3.7 — Ω2
D(Ã ) ∼= A⊕A .

Proof : Combine Lemma 3.5 and 3.6. ¤

Lemma 3.8 — The action(
f 0

0 g

)
.(a , b).

(
f ′ 0

0 g′

)
:= (fag′, gbf ′)

gives an Ã-bimodule structure on the k-vector space A⊕A .

Proof : Define (
f 0

0 g

)
.(a , b) := Φ

((
f 0

0 g

)
.Φ−1(a , b)

)
,

for f, g ∈ A , where Φ is in Lemma 3.5. This is clearly a left module structure induced by

that on Ω2
D(Ã ). Now one can check that
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(
f 0

0 g

)
.(a , b) = (fa , gb) .

Similarly for the right module structure, we define

(a , b).

(
f ′ 0

0 g′

)
:= Φ

(
Φ−1(a , b).

(
f ′ 0

0 g′

))

for f ′, g′ ∈ A , and observe that it is equal to (ag′, bf ′) . ¤

Theorem 3.9 — For the algebra A = k[X2, XY, Y 2] , the Connes-type calculus is given

by the following

Ωn
D(Ã ) ∼=





k[X,Y ]⊕ k[X, Y ] ; if n = 1,

A⊕A ; if n even,

k[X,Y ]odd ⊕ k[X,Y ]odd ; if n ≥ 3 odd.

Proof : The n = 1 case follows from Lemma 3.2 together with the observation that

A = k[X, Y ]even. Lemma 3.3 shows that this is an Ã-bimodule isomorphism. The n = 2

case follows from Proposition 3.7 and Lemma 3.8 shows that this is also an Ã-bimodule

isomorphism. Note that





0 0

0 1





0 1

0 0


 =


1 0

0 0





0 0

0 1


 =


0 1

0 0




2

=


0 0

1 0




2

=


0 0

0 0





0 0

0 1





1 0

0 0


 =


0 1

0 0





1 0

0 0


 =


0 0

1 0





0 0

0 1


 =


0 0

0 0




(3.5)

These matrices play a crucial role to compute Ωn
D(Ã ) for all n ≥ 3. Let

(k[X,Y ]even⊕k[X,Y ]odd)r := (k[X, Y ]even ⊕ k[X,Y ]odd)
⊕

. . . . . .
⊕

(k[X,Y ]even ⊕ k[X, Y ]odd)︸ ︷︷ ︸
r times

.

Assume that

π(Ωn(Ã )) =





((k[X,Y ]even ⊕ k[X, Y ]odd)r
⊕A)2 ; if n = 2r even,

(k[X,Y ]odd
⊕

(k[X, Y ]even ⊕ k[X,Y ]odd)r
⊕A)2 ; if n = 2r + 1 odd.

(3.6)

Lemma 3.2 and 3.5 give the n = 1 and n = 2 cases respectively. Now for n ≥ 3 use

induction, and equation (3.5), together with the fact that
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Ωn(Ã ) = Ω1(Ã )⊗ eA . . . . . .⊗ eA Ω1(Ã )︸ ︷︷ ︸
n times

.

Recall from Lemma 3.6 that

π(dJ1
0 (Ã )) ∼= k[X, Y ]⊗

(
1 0

0 0

)
+ k[X, Y ]⊗

(
0 0

0 1

)

∼= k[X, Y ]⊕ k[X, Y ]

whereas, Lemma 3.2 says that

π(Ω1(Ã )) ∼= (k[X, Y ]odd ⊕A)⊗
(

0 1

0 0

)
+ (k[X,Y ]odd ⊕A)⊗

(
0 0

1 0

)

∼= k[X, Y ]⊕ k[X, Y ]

because A = k[X, Y ]even. This proves that π(dJ1
0 (Ã )) ∼= π(Ω1(Ã )). Now we claim that

π(dJn
0 (Ã )) ∼= π(Ωn(Ã )) for all n ≥ 2. Recall Lemma 2.11 from [2], which says that for any

even algebraic spectral triple (A,V, D, γ), with γ ∈ π(A), we have [D2, a] ∈ π(dJ1
0 (A)). It is

then easy to prove that

π(dJn
0 ) =

n−1∑

i=0

π
(
Ωi ⊗A J2 ⊗A Ωn−1−i

) ∀ n ≥ 2 ,

by writing down any arbitrary element of π(dJn
0 ) and then passing D through the commu-

tators from left to right. Since in our case π(J2(Ã )) = π(dJ1
0 (Ã ) = π(Ω1(Ã )), we are done.

Hence,

Ωn
D(Ã ) ∼= π(Ωn(Ã ))/π(Ωn−1(Ã )).

Finally, equation (3.6) gives us

Ωn
D(Ã ) ∼=





k[X,Y ]odd ⊕ k[X,Y ]odd ; if n odd,

A⊕A ; if n even,

for all n ≥ 3, and this completes the proof. ¤

4. Duality of The Connes’ Calculus

Recall the definition of a quadratic algebra and its quadratic dual [8]. The k-algebra k[X2, XY, Y 2]

studied in the last section has another viewpoint. This is the co-ordinate ring of the singular

variety UV −W 2, hence a quadratic algebra. One can observe this by sending U 7→ X2, V 7→
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Y 2 and W 7→ XY . In this section we observe two things. Firstly, the Connes’ calculus for this

algebra and its quadratic dual are also quadratic algebras, and secondly these two Connes’

calculi are also quadratic dual to each other. Here also ch(k) = 0.

Proposition 4.1 — The quadratic dual of the quadratic k-algebra A := k[X, Y, Z]/〈XY −
Z2〉 is the noncommutative k-algebra Adu := k{α, β, γ}/〈α2, β2, αγ +γα, βγ +γβ, αβ +βα+

γ2〉.

Proof : Let V = kX ⊕ kY ⊕ kZ be the k-vector space of dimension 3. Consider the

following subspace of V⊗ V

I = span{X ⊗ Y − Z ⊗ Z , X ⊗ Y − Y ⊗X , X ⊗ Z − Z ⊗X , Y ⊗ Z − Z ⊗ Y } ⊆ V⊗ V.

Let 〈I〉 be the ideal in T (V), the tensor algebra of V, generated by I. Then the quadratic

algebra T (V)/〈I〉 is the algebra A. We denote the basis {X, Y, Z} of V by {e1, e2, e3}, whereas

{e∗1, e∗2, e∗3} denotes the dual basis of V∗, and let 〈 . , . 〉 be the pairing between V and V∗. Then

{eij := ei ⊗ ej : 1 ≤ i, j ≤ 3} is the basis of V⊗ V. With this notation,

I = span{e12 − e33 , e12 − e21 , e13 − e31 , e23 − e32} ⊆ V⊗ V.

Let I⊥ ⊆ V∗⊗V∗ be the orthogonal complement to I with respect to the natural pairing

〈v1 ⊗ v2 , v∗1 ⊗ v∗2〉 = 〈v1, v
∗
1〉〈v2, v

∗
2〉

between V ⊗ V and V∗ ⊗ V∗. For any ξ =
∑

αije
∗
ij ∈ I⊥ (here e∗ij = e∗i ⊗ e∗j ) we have

〈∑αije
∗
ij , η〉 = 0 for η ∈ {e12 − e33 , e12 − e21 , e13 − e31 , e23 − e32}. This gives us the

following

α12 = α33 = α21 ; α13 = α31 ; α23 = α32 .

Hence, ξ = α12(e∗12 +e∗21 +e∗33)+α13(e∗13 +e∗31)+α23(e∗23 +e∗32)+α11e
∗
11 +α22e

∗
22. Letting

e∗1 = α, e∗2 = β, e∗3 = γ we get

I⊥ = span{α⊗ β + β ⊗ α + γ ⊗ γ , α⊗ γ + γ ⊗ α , β ⊗ γ + γ ⊗ β , α⊗ α , β ⊗ β} ⊆ V∗ ⊗V∗.

Hence, the quadratic dual of the quadratic k-algebra A := k[X, Y, Z]/〈XY −Z2〉 is given

by

Adu =
T (V∗)
〈I⊥〉

=
k{α, β, γ}

〈α2, β2, αγ + γα, βγ + γβ, αβ + βα + γ2〉
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and this is a noncommutative k-algebra. ¤

Now we associate the following canonical algebraic spectral triples with A and Adu re-

spectively.

(I) Consider a derivation D : k[X, Y, Z] −→ k[X, Y, Z] which takes 1 7→ 0, X 7→ X, Y 7→
Y and Z 7→ Z. Observe that D preserves the ideal I := 〈XY −Z2〉 ⊆ k[X, Y, Z], and hence

induces an well-defined derivation on A := k[X, Y, Z]/I. Let V denotes the k-vector space

A. The algebra A acts on V via the multiplication operator a 7→ Ma. The tuple (A,V, D)

forms an algebraic spectral triple.

(II) Consider a derivation δ : k{α, β, γ} −→ k{α, β, γ} which takes 1 7→ 0, α 7→ α, β 7→ β

and γ 7→ γ. Observe that δ preserves the ideal J := 〈α2, β2, αγ+γα, βγ+γβ, αβ+βα+γ2〉 ⊆
k{α, β, γ}, and hence induces an well-defined derivation on Adu = k{α, β, γ}/J . Let Vdu

denotes the k-vector space Adu. The algebra Adu acts on Vdu via the multiplication operator

a 7→ Ma. The tuple (Adu,Vdu, δ ) forms an algebraic spectral triple.

We are intended to compute the Connes’ calculi Ω•D(A) and Ω•δ(Adu), and we will see

that both Ω•D(A) and Ω•δ(Adu) are also quadratic k-algebras. Furthermore, it turns out that

Ω•D(A) and Ω•δ(Adu) are also quadratic dual to each other.

We first consider the algebraic spectral triple (A,V, D). It is easy to see that arbitrary

element a ∈ A is a k-linear span of elements of the form [U iV jW ] with i, j ≥ 0. Since D

is a derivation, [D, Ma] = MD(a) for all a ∈ A. Henceforth, for notational brevity, we will

always denote the multiplication operator Mξ by ξ throughout this section.

Lemma 4.2 — Ω1
D(A) = A/k.

Proof Observe that J0
0 (A) = {0}. Hence, Ω1

D
∼= π(Ω1) by the isomorphism in (2.1).

Notice that D([U iV jW ]) = (i + j + 1)[U iV jW ]. Hence Ω1
D ⊆ A/k. To see equality observe

that D( 1
i+j+1 [U iV jW ]) = [U iV jW ]. ¤

Lemma 4.3 — Ω2
D(A) = {0}.

Proof : Note that π(Ω2) = span{aD(b)D(c) : a, b, c ∈ A} ⊆ A.

Case 1 : It is easy to see that [U iV jW ] ∈ π(Ω2) except for i = j = 0. Consider U iW

for i ≥ 1. Then ω = [U i]d([W ]) − 1
i+1d([U iW ]) ∈ J1

0 (A) and π(dω) = i[U iW ] ∈ π(dJ1
0 ).

Similarly [V jW ] ∈ π(dJ1
0 ). Since π(dJ1

0 ) is an A-bimodule, we get [U iV jW ] ∈ π(dJ1
0 ) except

for i = j = 0.
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Case 2 : Consider ω′ = [W ]d([W ])− 1
2d([W 2]) ∈ J1

0 (A). Then π(dω′) = [UW ] ∈ π(dJ1
0 ).

Since π(dJ1
0 ) is an A-bimodule, we get [U iV j ] ∈ π(dJ1

0 ) for all i, j ≥ 1.

These two cases show that π(Ω2) ⊆ π(dJ1
0 ), and hence Ω2

D = {0} by the isomorphism in

(2.1). ¤

Lemma 4.4 — Ωn
D(A) = {0}, ∀n ≥ 3.

Proof : Note that for all n ≥ 2

Ωn = Ω1 ⊗A . . . . . .⊗A Ω1

︸ ︷︷ ︸
n times

.

Now for all n ≥ 3 we have

π(Ωn) = π(Ωn−2 ⊗ Ω2)

= π(Ωn−2)π(Ω2)

⊆ π(Ωn−2)π(dJ1
0 ) by Lemma 4.3

= π(Ωn−2)π(J2)

⊆ π(Ωn−2.J2)

⊆ π(Jn)

= π(dJn−1
0 ).

Here the last inclusion follows from the fact that J• is a graded ideal in Ω•. Hence

Ωn
D(A) = {0}, ∀n ≥ 3 by the isomorphism in (2.1). ¤

Proposition 4.5 — For the algebraic spectral triple (A,V, D) we have

1. Ω0
D(A) = A ;

2. Ω1
D(A) = A/k ;

3. Ωn
D(A) = {0}, ∀n ≥ 2.

Proof : Observe that J0
0 (A) = {0}. This gives case (1). Now combine Lemma (4.2, 4.3,

4.4). ¤

Hence, for the algebraic spectral triple (A,V, D) the Connes’ calculus is given by Ω•D(A)

= A⊕A/k. The algebra structure on Ω•D is specified by

(a, 0)(b, 0) = (ab, 0) ; (0, a)(0, b) = (0, 0) ; (a, 0)(0, b) = (0, ab)
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for all a, b ∈ A, i,e. (a, b)(x, y) = (ax, bx + ay) in Ω•D .

Now we will concentrate on the algebraic spectral triple (Adu,Vdu, δ ).

Lemma 4.6 — J := {[βmαnγk] : m,n ∈ {0, 1} ; k ∈ N ∪ {0}} generates Adu as k-algebra

i,e. any element a ∈ Adu can be written as finite linear combination of elements from J .

Proof : If αβ + βα + γ2 = 0 and αγ + γα = 0 then γ2α = αγ2 and hence for all m ≥ 2,

αmβ = −αm−1(βα + γ2)

= αm−2(βα + γ2)α− αm−1γ2

= αm−2βα2.

Hence, if m is even then αmβ = βαm and if m is odd then αmβ = −βαm − αm−1γ2.

When we impose the relation βγ +γβ = 0 then we get βnα = αβn for even n. Hence we have

αmβ = βαm , ∀ m even, (4.7)

βnα = αβn , ∀ n even, (4.8)

αmβ = −βαm − αm−1γ2 , ∀ m odd. (4.9)

Equations (4.7) and (4.8) imply that

αmβn = βnαm except for both m and n odd.

For m odd and n ≥ 3 odd,

αmβn = βn−1αmβ

= βn−1(−βαm − αm−1γ2) by (4.9)

= −βnαm − βn−1αm−1γ2.

Hence, we have

αmβn =




−βnαm − βn−1αm−1γ2 ; both m, n odd

βnαm ; otherwise.

Now impose the relations α2 = β2 = 0 to observe that J generates Adu as k-algebra. ¤

Lemma 4.7 — Ω1
δ(Adu) = Adu/k.

Proof : Observe that J0
0 (Adu) = {0}. Hence, Ω1

δ
∼= π(Ω1) by the isomorphism in (2.1).

Notice that δ([βmαnγk]) = (m+n+k)[βmαnγk]. Hence Ω1
δ ⊆ Adu/k. To see equality observe

that δ( 1
m+n+k [βmαnγk]) = [βmαnγk]. ¤
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Lemma 4.8 — Ω2
δ(Adu) = {0}.

Proof : Clearly π(Ω2) ⊆ Adu and only the k-linear subspace of Adu generated by

{1, α, β, γ} intersects π(Ω2) trivially. We prove that (i)βγk, k ≥ 1 (ii)αγk, k ≥ 1 (iii)βαγk, k ≥
0 and (iv)γk, k ≥ 2 all lie in π(dJ1

0 ) i,e. π(Ω2) ⊆ π(dJ1
0 ).

(i,ii) Let ω = 2βd(γ)− d(βγ) ∈ Ω1. Then π(dω) = 2βγ ∈ π(dJ1
0 ). Similarly replacing β

with α and using the fact that π(dJ1
0 ) is an Adu-bimodule we get (i) and (ii).

(iii) Let k = 0 and ω = βd(α) + 1
2d(αβ) + 1

2d(γ2) ∈ Ω1. Then π(dω) = βα ∈ π(dJ1
0 ). For

k ≥ 1, choose ω = k+1
k βαd(γk)− βd(αγk) ∈ Ω1. Then π(dω) = (k + 1)βαγk ∈ π(dJ1

0 ).

(iv) Let ω = αd(β) + βd(α) + 1
2d(γ2) ∈ Ω1. Then π(dω) = −γ2 ∈ π(dJ1

0 ) and hence

γk ∈ π(dJ1
0 ),∀ k ≥ 2.

Since Ω2
δ
∼= π(Ω2)/π(dJ1

0 ) (see 2.1) we are done. ¤

Proposition 4.9 — For the algebraic spectral triple (Adu,Vdu, δ ) we have

1. Ω0
δ(Adu) = Adu ;

2. Ω1
δ(A) = Adu/k ;

3. Ωn
δ (Adu) = {0}, ∀n ≥ 2.

Proof : Observe that J0
0 (Adu) = {0}. This gives case (1). In view of Lemma 4.8,

Lemma 4.4 is true when we replace D by δ. Now combine Lemma (4.7, 4.8, 4.4). ¤

Hence, for the algebraic spectral triple (Adu,Vdu, δ ) the Connes’ calculus is given by

Ω•δ(Adu) = Adu ⊕Adu/k. The algebra structure on Ω•δ is specified by

(a, 0)(b, 0) = (ab, 0) ; (0, a)(0, b) = (0, 0) ; (a, 0)(0, b) = (0, ab)

for all a, b ∈ Adu, i,e. (a, b)(x, y) = (ax, bx + ay) in Ω•δ .

Theorem 4.10 — Consider the quadratic k-algebra A := k[X, Y, Z]/〈XY − Z2〉 and

its quadratic dual Adu := k{α, β, γ}/〈α2, β2, αγ + γα, βγ + γβ, αβ + βα + γ2〉. Then, both

the Connes’ calculi Ω•D(A) and Ω•δ(Adu) are also quadratic k-algebras. Moreover, these two

Connes’ calculi are quadratic dual to each other.

Proof : To observe that both the Connes’ calculi are quadratic algebras, note that

Ω•D(A) = A⊕A/k is generated by {([X], 0), ([Y ], 0), ([Z], 0), (0, [X ′]), (0, [Y ′]), (0, [Z ′])}. Now

([X], 0) ∈ A ⊕ A/k can be identified with [X ′] ∈ Ω0
D and (0, [Y ′]) ∈ A ⊕ A/k is identified
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with [D, [Y ′]] ∈ Ω1
D. Then in Ω•D, ([X], 0)(0, [Y ′]) = [X ′][D, [Y ′]] ∈ Ω1

D, which is equal to

[X ′Y ′] = [Z ′]2 in Ω1
D
∼= A/k. Thus ([X], 0)(0, [Y ′]) = (0, [Z ′]2) ∈ Ω•D. Similarly,

(0, [Y ′])([X], 0) = [D, [Y ′]][X ′]

= [D, [Y ′][X ′]]− [Y ′][D, [X ′]]

= D([Y ′X ′])− [Y ′][X ′]

= 2[Y ′X ′]− [Y ′X ′]

= [Z ′]2

= (0, [Z ′]2).

in Ω•D . Let

V := span{([X], 0), ([Y ], 0), ([Z], 0), (0, [X ′]), (0, [Y ′]), (0, [Z ′])}.

The relations among the generators of Ω•D(A) is given by the following subspace of T (V )

I := span{ ([X], 0)⊗ ([Y ], 0)− ([Z], 0)⊗ ([Z], 0) , ([X], 0)⊗ ([Y ], 0)− ([Y ], 0)⊗ ([X], 0) ,

([X], 0)⊗ ([Z], 0)− ([Z], 0)⊗ ([X], 0) , ([Y ], 0)⊗ ([Z], 0)− ([Z], 0)⊗ ([Y ], 0) ,

([X], 0)⊗ (0, [Y ′])− ([Z], 0)⊗ (0, [Z ′]) , ([X], 0)⊗ (0, [Y ′])− (0, [Y ′])⊗ ([X], 0) ,

([X], 0)⊗ (0, [Z ′])− (0, [Z ′])⊗ ([X], 0) , ([Y ], 0)⊗ (0, [Z ′])− (0, [Z ′])⊗ ([Y ], 0) ,

(0, [η′1])⊗ (0, [η′2])}

for η′1, η
′
2 ∈ {X ′, Y ′, Z ′}. The multiplication rule among the generators of Ω•D(A) is described

by the following table.

([X], 0) ([Y ], 0) ([Z], 0) (0, [X ′]) (0, [Y ′]) (0, [Z ′])

([X], 0) ([X2], 0) ([XY ], 0) ([XZ], 0) (0, [X ′2]) (0, [Z ′2]) (0, [X ′Z ′])

([Y ], 0) ([XY ], 0) ([Y 2], 0) ([Y Z], 0) (0, [Z ′2]) (0, [Y ′2]) (0, [Y ′Z ′])

([Z], 0) ([XZ], 0) ([Y Z], 0) ([Z2], 0) (0, [X ′Z ′]) (0, [Y ′Z ′]) (0, [Z ′2])

(0, [X ′]) (0, [X ′2]) (0, [Z ′2]) (0, [X ′Z ′]) 0 0 0

(0, [Y ′]) (0, [Z ′2]) (0, [Y ′2]) (0, [Y ′Z ′]) 0 0 0

(0, [Z ′]) (0, [X ′Z ′]) (0, [Y ′Z ′]) (0, [Z ′]2) 0 0 0

Since I ⊆ V ⊗ V we see that Ω•D(A) is a quadratic algebra. Similarly, Ω•δ(Adu)

= Adu ⊕Adu/k is generated by {([α], 0), ([β], 0), ([γ], 0), (0, [α′]), (0, [β′]), (0, [γ′])}. Let

V ∗ = span{([α], 0), ([β], 0), ([γ], 0), (0, [α′]), (0, [β′]), (0, [γ′])}.
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The relations among the generators of Ω•δ(Adu) is given by the following subspace of T (V ∗)

Ĩ := span{ ([α], 0)⊗ ([α], 0) , ([β], 0)⊗ ([β], 0) , ([α], 0)⊗ ([γ], 0) + ([γ], 0)⊗ ([α], 0) ,

([β], 0)⊗ ([γ], 0) + ([γ], 0)⊗ ([β], 0) , ([α], 0)⊗ (0, [α′]) , ([β], 0)⊗ (0, [β′]) ,

([α], 0)⊗ ([β], 0) + ([β], 0)⊗ ([α], 0) + ([γ], 0)⊗ ([γ], 0) , (0, [ξ])⊗ (0, [η]) ,

([α], 0)⊗ (0, [γ′]) + (0, [γ′])⊗ ([α], 0) , ([β], 0)⊗ (0, [γ′]) + (0, [γ′])⊗ ([β], 0) ,

([α], 0)⊗ (0, [β′]) + (0, [β′])⊗ ([α], 0) + ([γ], 0)⊗ (0, [γ′])} .

The multiplication rule among the generators of Ω•δ(Adu) is described by the following

table.

([α], 0) ([β], 0) ([γ], 0) (0, [α′]) (0, [β′]) (0, [γ′])

([α], 0) 0 ([αβ], 0) ([αγ], 0) 0 (0, [α′β′]) (0, [α′γ′])

([β], 0) ([βα], 0) 0 ([βγ], 0) (0, [β′α′]) 0 (0, [β′γ′])

([γ], 0) (−[αγ], 0) (−[βγ], 0) (−[αβ + βα], 0) (0,−[α′γ′]) (0,−[β′γ′]) (0,−[α′β′ + β′α′])

(0, [α′]) 0 (0, [α′β′]) (0, [α′γ′]) 0 0 0

(0, [β′]) (0, [β′α′]) 0 (0, [β′γ′]) 0 0 0

(0, [γ′]) (0,−[α′γ′]) (0,−[β′γ′]) (0,−[α′β′ + β′α′]) 0 0 0

Since Ĩ ⊆ V ∗ ⊗ V ∗ we see that Ω•δ(Adu) is a quadratic algebra. Check that Ĩ = I⊥

in V ∗ ⊗ V ∗ with respect to the natural pairing between V ⊗ V and V ∗ ⊗ V ∗, i,e. Ĩ is the

orthogonal complement to I. This proves the duality between the Connes’ calculi Ω•D(A) and

Ω•δ(Adu). ¤

Conclusion and Remark

In this article we investigate a particular quadratic algebra. This investigation leads us to

the following series of open questions.

• Is the Connes’ calculus of a quadratic algebra always a quadratic (graded)algebra?

• If not, can one classify the quadratic ideals J in T (V) such that the Connes’ calculus

of the quadratic algebra T (V)/J is a quadratic (graded)algebra?

• Suppose the Connes’ calculus of a quadratic algebraA becomes a quadratic (graded)algebra.

Is it then always the case that the Connes’ calculi of A and its quadratic dual Adu will

also be dual to each other?

• If not, can one classify all such quadratic algebras for which this happens?
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