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In this work, by utilizing the modified Poincaré-Lighthill-Kuo (PLK) method, we studied the

propagation of weakly nonlinear waves in a collisionless cold plasma and obtained the governing

evolution equations of various order terms in the perturbation expansion. Seeking a progressive

wave solution to these evolution equations we obtained the speed correction terms so as to remove

some possible secularities. The result obtained here is exactly the same with those of the modified

reductive perturbation and re-normalization methods. The method presented here is quite simple

and based on introducing a new set of stretched coordinates.
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1. INTRODUCTION

The studies of nonlinear waves of various fields in physics and engineering, by use of the reductive

perturbation method, in the long-wave approximation, lead to the Korteweg-deVries equation as the

evolution equation (Antar and Demiray [1] and Davidson [3]). The study the higher order terms in the

perturbation expansion by use of the reductive perturbation method gives some secularities (Ichikawa

et al., [7]). To remove such secularities Sugimoto and Kakutani [12] introduced additional slow

variables both in space and time in reductive perturbation theory, but their result was not supported by

other methods. Kodama and Taniuti [9] presented the re-normalization procedure of the velocity of

the KdV soliton. In [9], employing the conventional reductive perturbation method, they showed that

the lowest order term in the perturbation expansion is governed by the conventional KdV equation

K(u1) =
∂u1

∂τ
− 6u1

∂u1

∂ξ
+

∂3u1

∂ξ3
= 0, (1)
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whereas the higher order terms are governed by the linearized KdV equation with non-homogeneous

term

L(u1)un = Sn(u1, u2, ...., un−1), L(u1) =
∂

∂τ
− 6

∂

∂ξ
u1 +

∂3

∂ξ3
, (2)

whereξ and τ are the slow variables in reductive perturbation method, i. e.,ξ = ε1/2(x − t),

τ = ε3/2t, whereε is the smallness parameter,u1, u2, ....., un are the unknown coefficient functions

of the formal perturbation expansion andSn(u1, u2, ..., un−1) is the non-homogeneous term. Here it

is to be noted that for eachn ≥ 2, the non-homogeneous termSn(u1, u2, ..., un−1) contains a term

proportional tou1,ξ with known coefficient, saycn−1 6= 0. On the other hand, it is well-known that

if u1 is the solution of the conventional KdV equation,u1,ξ will be the solution of the homogeneous

linearized KdV equation

L(u1)un = 0. (3)

The term inSn proportional tou1,ξ causes the secularity in the particular solution of Eq.(2),

namely, the particular solution will contain a term likecn−1τu1, which causes to secularity in the

solution. In order to remove such a secularity one must setcn−1 = 0, which contradicts the previous

result.

Roughly speaking, in order to remove such a secularity, Kodama and Taniuti [9] wrote the equa-

tions (1) and (2) in the following form

εK(u1) +
∑

n≥2

εnL(u1)un =
∑

n≥2

εnSn. (4)

Then, they added on both sides of equation (4) the term
∑

n≥1 εnλun,ξ, whereλ is given as a

power seriesλ = ελ1 + ε2λ2 + ε3λ3 + ..... . Here the crucial point in this procedure is thatλ on the

left hand side is not expanded into a power series whereas in the right hand side it is expanded. Then,

setting the coefficients of various powers ofε equal to zero, their KdV equation is modified to

∂u1

∂τ
− 6u1

∂u1

∂ξ
+

∂3u1

∂ξ3
+ λ

∂u1

∂ξ
= 0, (5)

while the linearized equations become

L(u1)un + λ
∂un

∂ξ
= Sn(u1, u2, ...., un−1) +

n−1∑

k=1

λkun−k,ξ. (6)

Here we note that the left hand sides of equations (5) and (6) are not conventional KdV equations

in terms ofξ andτ . Nevertheless, if we introduce the new coordinates system by

ξ′ = ξ − λτ, τ ′ = τ, (7)
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the equations (5) and (6) reduce to the conventional KdV equations in the new coordinate system

ξ′ andτ ′. Moreover, in order to remove the secularity in the solution, the coefficient ofu1,ξ in the

right hand side of Eq.(6) must vanish, e.g.λn−1 + cn−1 = 0. This makes it possible to determine

all λn, consecutively. Kodama and Taniuti [9] called this heuristic approach as the “re-normalization

method”. Since this approach has no rational bases, it has been criticized by several scientists (see, for

instance, Malfliet and Wieers [10] and Demiray [4, 5]) and found this approach somewhat artificial.

In the present work, motivated with the coordinate transformation presented by us in Eq.(7), by

introducing a new set of stretched coordinatesε1/2(x − t) = ξ + P (τ), τ = ε3/2t , and utilizing

the conventional reductive perturbation method(the combination is known as modified PLK method),

we studied the propagation of weakly nonlinear waves in a collisionless cold plasma and obtained

the governing evolution equations of various order terms in the perturbation expansion. Seeking a

progressive wave solution to these evolution equations we obtained the speed correction terms so as

to remove some possible secularities. The result so obtained is exactly the same with that of the

re-normalization method of Kodama and Taniuti [9] and the modified reductive perturbation method

[4, 5].

2. MODIFIED PLK FORMALISM FOR ION-ACOUSTICWAVES

We consider nonlinear ion-acoustic waves in a one dimensional collisionless plasma whose dynamics

is characterized by the following equations (Davidson [3])

∂ni

∂t
+

∂

∂x
(niu) = 0,

∂u

∂t
+ u

∂u

∂x
+

∂φ

∂x
= 0,

∂2φ

∂x2
+ ni − exp(φ) = 0, (8)

whereni andne = exp(φ) denote, respectively, the number density of ions and electrons,u is the

velocity of ions andφ is the electrostatic potential,x is is the space coordinates andt is the time

variable. All the variables are dimensionless.

Introducing the ion density fluctuation from the equilibrium value byn, i.e., ni = 1 + n, the

equations (8) can be written as

∂n

∂t
+

∂u

∂x
+

∂

∂x
(nu) = 0,

∂u

∂t
+ u

∂u

∂x
+

∂φ

∂x
= 0,

∂2φ

∂x2
+ 1 + n− exp(φ) = 0. (9)

Under the long-wave approximation assumption, we would like to analyze the equations (9) by

use of the modified PLK ( Poincaré-Lighthill-Kuo ) method [2, 6,11,12]. For that purpose we intro-

duce the following strained coordinates

ε1/2(x− t) = ξ +
∞∑

n=1

εnPn(τ), τ = ε3/2t, (10)
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whereε is the smallness parameter characterizing the order of nonlinearity andPn(τ) (n=1, 2, 3,

...) are some unknown functions to be determined from the solution. As a matter of fact, the sum
∑∞

n=1 εnPn(τ) corresponds to the series expansion ofλ introduced in Eq. (7). Introducing Eq. (10)

into the field equations (9) one obtains

−∂n

∂ξ
+

∂u

∂ξ
+ ε

∂n

∂τ
−

∞∑

n=1

εn+1 dPn(τ)
dτ

∂n

∂ξ
+

∂

∂ξ
(nu) = 0, (11)

−∂u

∂ξ
+

∂φ

∂ξ
+ ε

∂u

∂τ
−

∞∑

n=1

εn+1 dPn(τ)
∂τ

∂u

∂ξ
+ u

∂u

∂ξ
= 0, (12)

ε
∂2φ

∂ξ2
+ 1 + n− exp(φ) = 0. (13)

Assuming that the field variablesn, u, φ can be expressed as asymptotic series inε we have

n =
∞∑

k=1

εknk, u =
∞∑

k=1

εkuk, φ =
∞∑

k=1

εkφk, (14)

where the coefficientsnk, uk, φk are some unknown functions of the strained coordinatesξ andτ .

Introducing the expansion (14) into the field equations (11)-(13) and setting the coefficients of like

powers ofε equal to zero we obtain the following sets of differential equations:

O(ε)equations:

−∂n1

∂ξ
+

∂u1

∂ξ
= 0, −∂u1

∂ξ
+

∂φ1

∂ξ
= 0, n1 − φ1 = 0. (15)

O(ε2)equations:

−∂n2

∂ξ
+

∂u2

∂ξ
+

∂n1

∂τ
+

∂

∂ξ
(n1u1) = 0, −∂u2

∂ξ
+

∂φ2

∂ξ
+

∂u1

∂τ
+ u1

∂u1

∂ξ
= 0,

∂2φ1

∂ξ2
+ n2 − φ2 − 1

2
φ2

1 = 0. (16)

O(ε3)equations:

−∂n3

∂ξ
+

∂u3

∂ξ
+

∂n2

∂τ
− dP1

dτ

∂n1

∂ξ
+

∂

∂ξ
(n1u2 + n1u1) = 0,

−∂u3

∂ξ
+

∂φ3

∂ξ
+

∂u2

∂τ
− dP1

dτ

∂u1

∂ξ
+

∂

∂ξ
(u1u2) = 0,

∂2φ2

∂ξ2
+ n3 − φ3 − φ1φ2 − φ3

1

6
= 0. (17)
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O(ε4) equations:

−∂n4

∂ξ
+

∂u4

∂ξ
+

∂n3

∂τ
− dP1

dτ

∂n2

∂ξ
− dP2

∂τ

∂n1

∂ξ
+

∂

∂ξ
(n1u3 + n2u2 + n3u1) = 0,

−∂u4

∂ξ
+

∂φ4

∂ξ
+

∂u3

∂τ
− dP1

∂τ

∂u2

∂ξ
− dP2

∂ξ

∂u1

∂ξ
+

∂

∂ξ
(u1u3 +

1
2
u2

2) = 0,

∂2φ3

∂ξ2
+ n4 − φ4 − φ1φ3 − 1

2
φ2

2 −
1
2
φ2

1φ2 − 1
24

φ4
1 = 0. (18)

2.1Solution of the field equations

In this sub-section we shall present the solution of the field equations given in Eqs.(15)-(18). From

the solution of the set of Eqs.(15) we obtain

n1 = u1 = φ1(ξ, τ). (19)

whereφ1(ξ, τ) is an unknown function whose governing equation will be obtained later. Introducing

the solution (19) into (16) we have

n2 = φ2 +
1
2
φ2

1 −
∂2φ1

∂ξ2
, −∂φ2

∂ξ
+

∂u2

∂ξ
+

∂φ1

∂τ
+

∂3φ1

∂ξ3
+ φ1

∂φ1

∂ξ
= 0,

−∂u2

∂ξ
+

∂φ2

∂ξ
+

∂φ1

∂τ
+ φ1

∂φ1

∂ξ
= 0. (20)

Eliminatingu2 andφ2 between the equations (20) the following evolution equation is obtained

∂φ1

∂τ
+ φ1

∂φ1

∂ξ
+

1
2

∂3φ1

∂ξ3
= 0. (21)

This is just the conventional Korteweg-deVries (KdV) equation. From the solution of Eq. (20)u2 can

be given by

u2 = φ2 − 1
2

∂2φ1

∂ξ2
, (22)

whereφ2 is another unknown function whose governing equation will be obtained from the higher

order perturbation expansion.

Introducing Eqs. (19), (20) and (22) into the differential equations (17) we have

−∂φ3

∂ξ
+

∂u3

∂ξ
+

∂φ2

∂τ
+

∂

∂ξ
(φ1φ2) +

∂3φ2

∂ξ3
+

∂

∂ξ
[
φ3

1

3
− 3

2
φ1

∂2φ1

∂ξ2
]

+φ1
∂φ1

∂τ
− ∂3φ1

∂ξ2∂τ
− dP1

∂τ

∂φ1

∂ξ
= 0,



674 HILMI DEMIRAY

∂φ3

∂ξ
− ∂u3

∂ξ
+

∂φ2

∂τ
+

∂

∂ξ
(φ1φ2)− 1

2
∂

∂ξ
(φ1

∂2φ1

∂ξ2
)− 1

2
∂3φ1

∂ξ2∂τ
− dP1

∂τ

∂φ1

∂ξ
= 0,

n3 = φ3 + φ1φ2 +
φ3

1

6
− ∂2φ2

∂ξ2
. (23)

Eliminatingu3 andφ3 between the equations (23) the following evolution equation is obtained

∂φ2

∂τ
+

∂

∂ξ
(φ1φ2) +

1
2

∂3φ2

∂ξ3
= R2(φ1), (24)

This evolution equation is the degenerate (linearized) KdV equation with non-homogeneous term

R2(φ1) defined by

R2(φ1) =
dP1

dτ

∂φ1

∂ξ
+

1
2
φ1

∂3φ1

∂ξ3
− 5

8
∂

∂ξ
(
∂φ1

∂ξ
)2 − 3

8
∂5φ1

∂ξ5
. (25)

Here we note that the functionR2(φ1) contains the unknown functiondP1/dτ . From the equation

(23) the functionu3 can be obtained as:

u3 = φ3 − 1
2

∂2φ2

∂ξ2
+

1
2
φ1

∂2φ1

∂ξ2
− 3

8
(
∂φ1

∂ξ
)2 − 1

8
∂4φ1

∂ξ4
, (26)

To obtain the solution forO(ε4) equations we add the first and the second equations in Eq.(18) side by

side and substitute equations (19), (21) and (25) into the resulting expression and utilizing Eqs.(20),

(22) and (26) one obtains the following evolution equation

∂φ3

∂τ
+

∂

∂ξ
(φ1φ3) +

1
2

∂3φ3

∂ξ3
= R3(φ1, φ2), (27)

where the functionR3(φ1, φ2) is defined by

R3(φ1, φ2) =
∂

∂ξ
[−φ4

1

16
− 1

2
φ2

2 −
1
2
φ2

1φ2 + φ2
∂2φ1

∂ξ2
+ φ1

∂2φ2

∂ξ2
− 3

8
φ2

1

∂2φ1

∂ξ2

− 5
16

(
∂2φ1

∂ξ2
)2 +

3
8
φ1(

∂φ1

∂ξ
)2 +

1
8
φ1

∂4φ1

∂ξ4
+

dP1

dτ
(φ2 +

φ2
1

4
− 3

4
∂2φ1

∂ξ2
) +

dP2

dτ
φ1]

− ∂

∂τ
[
1
2
φ1φ2 +

φ3
1

12
− 3

4
∂2φ2

∂ξ2
+

1
4
φ1

∂2φ1

∂ξ2
− 3

16
(
∂φ1

∂ξ
)2 − 1

16
∂4φ1

∂ξ4
]. (28)

The evolution equation (27) is the linearized KdV equation forφ3 with non-homogeneous term

R3(φ1, φ2), which contains the unknown functionsdP1/dτ anddP2/dτ .
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2.2 Solitary waves

In this sub-section we shall study the localized travelling wave solution to the evolution equations

(21), (24) and (27). For that purpose we introduce

φi = φi(ζ), ζ = α(ξ − u0τ), (i = 1, 2, 3), (29)

whereα andu0 are some constants to be determined from the solution. Introducing (29) fori = 1

into the evolution equation (21) we obtain

−u0φ
′
1 + φ1φ

′
1 +

α2

2
φ′′′1 = 0, (30)

where the prime denotes the differentiation of the corresponding quantity with respect toζ. Inte-

grating (30) with respect toζ and utilizing the localization condition, i.e.,φ1 and its various order

derivatives vanish asζ → ±∞ we obtain

φ′′1 +
φ1

α2
− 2

u0

α2
φ1 = 0. (31)

The equation (31) admits the solitary wave solution of the form

φ1 = a sech2ζ, α = (
a

6
)1/2, u0 =

a

3
, (32)

wherea is the amplitude of the solitary wave. Here we note that, for this order, the functionsPi(τ)

remain as unknowns.

Inserting (29) and (32) fori = 2 into the evolution equation (24), integrating the result with

respect toζ and utilizing the localization condition we have

φ′′2 + (
12
a

φ1 − 4)φ2 = (
12
a

dP1

dτ
− 2a)φ1 + 12φ2

1 −
14
a

φ3
1. (33)

The first term on the right-hand side causes to secularity in the progressive wave solution. In order

to avoid the secularity the coefficient ofφ1 must vanish, i. e.,

12
a

dP1

dτ
− 2a = 0, or P1 =

a2

6
τ, (34)

and the remaining part of equation (33) becomes

φ′′2 + (
12
a

φ1 − 4)φ2 = 12φ2
1 −

14
a

φ3
1. (35)

The solution of (35) yields

φ2 = −3
2
aφ1 +

7
4
φ2

1. (36)
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This solution can be expressed in terms of hyperbolic functions as

φ2 =
a2

4
sech2ζ(1− 7tanh2ζ). (37)

This solution is exactly the same with those of Malfliet and Wieers [10] and Demiray [4], but

different from that of Sugimoto and Kakutani [12].

Finally, to obtain the progressive wave solution forφ3(ζ) we introduce Eq.(29) fori = 3 into

Eqs.(27) and (28), integrating the result with respect toζ and utilizing the localization condition, the

following equation is obtained

φ′′3 +
(

12
a

φ1 − 4
)

φ3 =
(

12
a

dP2

dτ
− 10

9
a2

)
φ1 − 107

2
aφ2

1 +
333
2

φ3
1 −

943
8a

φ4
1. (38)

Again, the first term on the right hand side causes to secularity; thus, the coefficient ofφ1 must

vanish, i.e.,
12
a

dP2

dτ
− 10

9
a2 = 0, or

dP2

dτ
=

5
54

a3 (39)

and the remaining part of the equation (39) becomes

φ′′3 +
(

12
a

φ1 − 4
)

φ3 = −107
2

aφ2
1 +

333
2

φ3
1 −

943
8a

φ4
1. (40)

The particular solution of equation (40) gives

φ3 =
1

240
(306a2φ1 − 1223aφ2

1 + 943φ3
1). (41)

In terms of hyperbolic functions the solution takes the following form

φ3 =
a3

240
sech2ζ(26− 663tanh2ζ + 943tanh4ζ). (42)

This solution is exactly the same with those of Malfliet and Wieers [10] and Demiray [4], but

different from that of Sugimoto and Kakutani [12].

The total solution up to and includingO(ε3) terms reads

φ = εφ1 + ε2
(
−3

2
aφ1 +

7
4
φ2

1

)
+

ε3

240
(306a2φ1 − 1223aφ2

1 + 943φ3
1). (43)

The phase functionζ may be expressed in terms of the real space and time variables as

ζ = ε1/2

[
x−

(
1 + ε

a

3
+ ε2

a2

6
+ ε3

5a3

54
+ ...

)
t

]
. (44)

As is seen from equation (44), the speed correction terms are, respectively,a/3, a2/6 and5a3/54

for the orders ofε, ε2 andε3.
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3. RESULTS AND DISCUSSIONS

Modifying the PLK method and introducing a new set of stretched coordinates we have studied the

propagation of weakly nonlinear waves in a collisionless cold plasma and obtained the evolution

equations governing the various order terms in the perturbation expansion. Seeking a progressive

wave solution to these evolution equations we obtained the speed correction terms so as to remove

the possible secularities that might occur in the solution. The result so obtained is exactly the same

with that of modified reductive perturbation method [4, 5] and of the re-normalization method of

Kodama and Taniuti [9], which is rather heuristic. The present method can be applied for higher

order speed correction terms. In order to save the space these calculations will not be given here.

4. CONCLUSIONS

Employing the modified PLK method, the propagation of weakly nonlinear waves in a collisionless

cold plasma is studied and a set of KdV equations are obtained as the evolution equations. By seeking

a progressive wave solution to these evolution equations a set of speed correction terms are obtained

so as to remove possible secularities. The result obtained here is the same with those of modified re-

ductive perturbation[4] and re-normalization [9] methods. The method presented here is quite simple

as compared to the re-normalization method of Kodama and Taniuti [9].
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