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In this work, by utilizing the modified Poincatlighthill-Kuo (PLK) method, we studied the
propagation of weakly nonlinear waves in a collisionless cold plasma and obtained the governing
evolution equations of various order terms in the perturbation expansion. Seeking a progressive
wave solution to these evolution equations we obtained the speed correction terms so as to remove
some possible secularities. The result obtained here is exactly the same with those of the modified
reductive perturbation and re-normalization methods. The method presented here is quite simple
and based on introducing a new set of stretched coordinates.
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1. INTRODUCTION

The studies of nonlinear waves of various fields in physics and engineering, by use of the reductive
perturbation method, in the long-wave approximation, lead to the Korteweg-deVries equation as the
evolution equation (Antar and Demiray [1] and Davidson [3]). The study the higher order terms in the
perturbation expansion by use of the reductive perturbation method gives some secularities (Ichikawa
et al, [7]). To remove such secularities Sugimoto and Kakutani [12] introduced additional slow
variables both in space and time in reductive perturbation theory, but their result was not supported by
other methods. Kodama and Taniuti [9] presented the re-normalization procedure of the velocity of
the KdV soliton. In [9], employing the conventional reductive perturbation method, they showed that
the lowest order term in the perturbation expansion is governed by the conventional KdV equation

-5 =0, (1)
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whereas the higher order terms are governed by the linearized KdV equation with non-homogeneous

term 5 9 83
7 62w+ 2 2
ar o T ges 2)

where& and r are the slow variables in reductive perturbation method, i.£ e5 61/2(33 — 1),

L(ug)uy = Sp(ug, ugy ey tin_1), L(uy) =

T = €/2t, wheree is the smallness parameter,, us, ....., u,, are the unknown coefficient functions
of the formal perturbation expansion afg(u1, ug, ..., u,—1) is the non-homogeneous term. Here it
is to be noted that for each > 2, the non-homogeneous tersf (u1, ug, ..., u,—1) contains a term
proportional tou; ¢ with known coefficient, say,,_; # 0. On the other hand, it is well-known that
if u; is the solution of the conventional KdV equatian,¢ will be the solution of the homogeneous
linearized KdV equation

L(uy)uy = 0. (3)

The term inS,, proportional tou; ¢ causes the secularity in the particular solution of Eq.(2),
namely, the particular solution will contain a term likg_;7u1, which causes to secularity in the
solution. In order to remove such a secularity one must,set = 0, which contradicts the previous
result.

Roughly speaking, in order to remove such a secularity, Kodama and Taniuti [9] wrote the equa-
tions (1) and (2) in the following form

eK(uy) + Z €"L(uy)u, = Z €"Shp. (4)
n>2 n>2
Then, they added on both sides of equation (4) the eI, €"\u,, ¢, WhereA is given as a
power series\ = e\; + €2Xa + €Az + ... . Here the crucial point in this procedure is thabn the
left hand side is not expanded into a power series whereas in the right hand side it is expanded. Then,
setting the coefficients of various powerseagqual to zero, their KdV equation is modified to

ouq Ouq 83’&1 ouq -

while the linearized equations become

n—1

Ouy,
aig = Sn(UhUQ,----,Un—l)+Z)‘ku”_kaf' (6)
k=1

Here we note that the left hand sides of equations (5) and (6) are not conventional KdV equations

L(u1)un + A

in terms of¢ and7. Nevertheless, if we introduce the new coordinates system by

5/ = f - >‘7—7 T/ =T, (7)
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the equations (5) and (6) reduce to the conventional KdV equations in the new coordinate system
¢ and7’. Moreover, in order to remove the secularity in the solution, the coefficient gfin the

right hand side of Eq.(6) must vanish, ey, 1 + ¢,—1 = 0. This makes it possible to determine

all \,, consecutively. Kodama and Taniuti [9] called this heuristic approach as the “re-normalization
method”. Since this approach has no rational bases, it has been criticized by several scientists (see, for
instance, Malfliet and Wieers [10] and Demiray [4, 5]) and found this approach somewhat artificial.

In the present work, motivated with the coordinate transformation presented by us in Eq.(7), by
introducing a new set of stretched coordinate8(z — t) = ¢ + P(7), 7 = €¥/?t, and utilizing
the conventional reductive perturbation method(the combination is known as modified PLK method),
we studied the propagation of weakly nonlinear waves in a collisionless cold plasma and obtained
the governing evolution equations of various order terms in the perturbation expansion. Seeking a
progressive wave solution to these evolution equations we obtained the speed correction terms so as
to remove some possible secularities. The result so obtained is exactly the same with that of the
re-normalization method of Kodama and Taniuti [9] and the modified reductive perturbation method
[4, 5].

2. MoDIFIED PLK FORMALISM FOR ION-ACOUSTIC WAVES

We consider nonlinear ion-acoustic waves in a one dimensional collisionless plasma whose dynamics
is characterized by the following equations (Davidson [3])

on; o _ ou ou 09 0% _
5 +%(nzu) =0, E—I-U%‘f‘% =0, @"‘nz_e){p((b) =0, (8)

wheren; andn. = exp(¢) denote, respectively, the number density of ions and electioissthe

velocity of ions andy is the electrostatic potentiat; is is the space coordinates ahds the time
variable. All the variables are dimensionless.

Introducing the ion density fluctuation from the equilibrium valuerhyi.e., n; = 1 + n, the
equations (8) can be written as

on Ou 0 B ou ou 0¢ 0% B
Under the long-wave approximation assumption, we would like to analyze the equations (9) by
use of the modified PLK ( Poincaslighthill-Kuo ) method [2, 6,11,12]. For that purpose we intro-

duce the following strained coordinates

e —t)=¢+ Z "P, (1), =€, (10)
n=1
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wheree is the smallness parameter characterizing the order of nonlinearity’and (n=1, 2, 3,

...) are some unknown functions to be determined from the solution. As a matter of fact, the sum
> oo, €"P,(7) corresponds to the series expansion @fitroduced in Eq. (7). Introducing Eq. (10)

into the field equations (9) one obtains

o0

on  Ou 8n ni1dPp(T)On 0
4 4e— — 4+ = = 11
“oc o =2 T e T e =0, (11)
w96 O N dPu) Ou | Ou
% o T > e 5 a§+“ag_0’ (12)
62¢ +1+4+n—exp(p)=0 (13)
“oe2 P ‘
Assuming that the field variables u, ¢ can be expressed as asymptotic seriesie have
Z fknka u = Z 6kuka d) = Z 6k¢k7 (14)
k=1 k=1 k=1

where the coefficienta,, uy, ¢ are some unknown functions of the strained coordinatesd .
Introducing the expansion (14) into the field equations (11)-(13) and setting the coefficients of like
powers ofe equal to zero we obtain the following sets of differential equations:

O(e)equations:

om o w06
BTz + ¢ =0, € + € =0, n;—¢;=0. (15)
O(e?)equations:
%%anla _o, Qw2 00 0w, Ou_
o Toe T +a§(n1u1)_0’ o T o Tor TU =0,
82
B+ a9t =0, (16)
O(e?)equations:
8n3 Gug 8712 dPl 8n1 0
_875+87§+E_?85 5(7‘L1UQ-|—TL1U1) O,
8U3 a¢3 8uQ dP1 8U1 8 _
o€ "o Tor ar o Tag) =0
82 3
i +n3 — ¢3 — 192 — % =0. (17)

9E? 6
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O(e*) equations:

8n4 8U4 8??,3 dP1 8n2 dP2 8n1 0

_8754_8754- or dr 96 o 0 + §(n1u3+n2uQ+n3u1) 0,

_Oua | 0¢4 | Dug  dP1Ouy dPy 0w | 0 L2
o "o T or or o6 ¢ o oe st =0
02 - 1
8523+n4—¢4—¢1¢3—§¢§—§¢%¢2—ﬂ¢%=0- (18)

2.1 Solution of the field equations

In this sub-section we shall present the solution of the field equations given in Egs.(15)-(18). From
the solution of the set of Egs.(15) we obtain

ny =up =¢1(577)- (19)

whereg, (£, 7) is an unknown function whose governing equation will be obtained later. Introducing
the solution (19) into (16) we have

_ 1, ¢ 02 | Ouy 3¢>1 P 91 _
ng = ¢2 + §¢1 - 852 5 T g + = 853 ¢1 é. ’
_Oup | 09 3¢>1 91 _
422 = 20
€ 5 + o1 o (20)
Eliminatingu, and¢- between the equations (20) the following evolution equation is obtained

1 Opr | 10%1

g + ¢1 8§+28§3 = 0. (21)

This is just the conventional Korteweg-deVries (KdV) equation. From the solution of Equ{2@n

be given by
19°¢:
=655 (22)

where g, is another unknown function whose governing equation will be obtained from the higher
order perturbation expansion.

Introducing Egs. (19), (20) and (22) into the differential equations (17) we have

6¢3 6U3 8(]52 63(252 ¢3 3 82¢1
o + == o + = E(¢1¢2) 6 + 875[? 5P 5 oe2 ]
100 B0 dRon

or  0€20r Ot ¢
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O¢3  Oug 5<Z5 Fpr, 1 Pop1 dP I
o6 b + 5= 8§(¢1¢2) 28§(¢1 ae2 ) — 208%0r 07 O¢ =0,
¢ 9%
= g3+ b+ - 3522' (23)

Eliminatingus and¢s between the equations (23) the following evolution equation is obtained

103y
2 9€3

% + ?(¢1¢2)

This evolution equation is the degenerate (linearized) KdV equation with non-homogeneous term
Rs(¢1) defined by

= Ra(¢1), (24)

AP 9¢y 1, By
01

0 ,0¢1.5 309
+ -
dr o 29 e

ag( o€ )= 8 9¢5 (25)

Ra(¢1) = - g

Here we note that the functioRs(¢;) contains the unknown functio#?; /d7. From the equation
(23) the functionus can be obtained as:

10%¢

02¢1 3 aﬁbl)z 1
o€ 8 9¢t

1 32¢>2 _3
262 3§

2 92

uz = ¢3 — *¢1 (26)

To obtain the solution fof (e*) equations we add the first and the second equations in Eq.(18) side by
side and substitute equations (19), (21) and (25) into the resulting expression and utilizing Egs.(20),
(22) and (26) one obtains the following evolution equation

oo 10%
5o+ 8—§<¢1¢3> 3 ges — Ra(01,02), (27)
where the functioRs(¢1, ¢2) is defined by
0. ¢t 1 826 826 826
Ra(91,62) = gel—15 — 598~ 5810+ 6 5 g o 5e
5,81 3¢1 ' dPl 7 39%¢ sz
0 1 ¢t 30%¢ o1 3 01, 1 9%

8T[§¢1¢ +ﬁ avirTe *¢1 o¢2 _E( 35) " 16 9ét J. (28)

The evolution equation (27) is the linearized KdV equationdgmwith non-homogeneous term
Rs3(1, ¢2), which contains the unknown functiod$’ /dr andd P /dr.
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2.2 Solitary waves

In this sub-section we shall study the localized travelling wave solution to the evolution equations
(21), (24) and (27). For that purpose we introduce

¢; = ¢Z(C)7 (= a<£ - uOT>7 (Z =1, 273)7 (29)

wherea andu are some constants to be determined from the solution. Introducing (29)far
into the evolution equation (21) we obtain

2
(0}
—uodh + é16} + -0} =0, (30)

where the prime denotes the differentiation of the corresponding quantity with respgctnte-
grating (30) with respect tq and utilizing the localization condition, i.ep; and its various order
derivatives vanish aé — oo we obtain

$1

U,
O+ 5 —2 561 =0. (31)

The equation (31) admits the solitary wave solution of the form

a a
o1 = asechQC7 o= (6)1/27 uy = 3 (32)

wherea is the amplitude of the solitary wave. Here we note that, for this order, the fundtidns
remain as unknowns.

Inserting (29) and (32) fof = 2 into the evolution equation (24), integrating the result with
respect ta’ and utilizing the localization condition we have

12 12dP 14
S (01— Ao = (- —20)¢1 +1267 — 6. (33)

The first term on the right-hand side causes to secularity in the progressive wave solution. In order

to avoid the secularity the coefficient of must vanish, i. e.,

12dP 2
;d—; ~2a=0, or P = %T, (34)

and the remaining part of equation (33) becomes
12 14
5+ (o — 4)da = 1201 — —o. (35)

The solution of (35) yields
3 7
Rt (36)
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This solution can be expressed in terms of hyperbolic functions as

o = (fsechQC(l — Ttanh?(). (37)

This solution is exactly the same with those of Malfliet and Wieers [10] and Demiray [4], but

different from that of Sugimoto and Kakutani [12].

Finally, to obtain the progressive wave solution & ¢) we introduce Eq.(29) foi = 3 into
Egs.(27) and (28), integrating the result with respect &md utilizing the localization condition, the
following equation is obtained

12 12 dP. 10 107 333 943
¢z + <a¢>1 - 4) ¢3 = (a2 - — 2> ¢1 — ——adi + 7¢1 7¢1 (38)

Again, the first term on the right hand side causes to secularity; thus, the coefficigntrafst

vanish, i.e.,
%% — %aQ =0, or % = 55—4(13 (39)
and the remaining part of the equation (39) becomes
4 (B =) oa =~ ast+ 0t - L0k (40)
The particular solution of equation (40) gives
b3 = 2i0(306a2¢1 — 1223a¢? + 943¢3). (41)

In terms of hyperbolic functions the solution takes the following form
3
b3 = %OsechQC(% 663tanh¢ + 943tanh*¢). (42)

This solution is exactly the same with those of Malfliet and Wieers [10] and Demiray [4], but
different from that of Sugimoto and Kakutani [12].

The total solution up to and includin@(e?) terms reads

b= ey + € (—2aq§1 + Zqﬁ%) + %(306a2¢1 — 1223a¢? + 943¢3). (43)
The phase functiog may be expressed in terms of the real space and time variables as
C=ell2 |z - PP LA L (44)
B 3 6 54

As is seen from equation (44), the speed correction terms are, respeetit®ely,? /6 and5a? /54
for the orders o, €2 ande3.
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3. RESULTS ANDDISCUSSIONS

Modifying the PLK method and introducing a new set of stretched coordinates we have studied the
propagation of weakly nonlinear waves in a collisionless cold plasma and obtained the evolution
equations governing the various order terms in the perturbation expansion. Seeking a progressive
wave solution to these evolution equations we obtained the speed correction terms so as to remove
the possible secularities that might occur in the solution. The result so obtained is exactly the same
with that of modified reductive perturbation method [4, 5] and of the re-normalization method of
Kodama and Taniuti [9], which is rather heuristic. The present method can be applied for higher
order speed correction terms. In order to save the space these calculations will not be given here.

4. CONCLUSIONS

Employing the modified PLK method, the propagation of weakly nonlinear waves in a collisionless
cold plasma is studied and a set of KdV equations are obtained as the evolution equations. By seeking
a progressive wave solution to these evolution equations a set of speed correction terms are obtained
S0 as to remove possible secularities. The result obtained here is the same with those of modified re-
ductive perturbation[4] and re-normalization [9] methods. The method presented here is quite simple
as compared to the re-normalization method of Kodama and Taniuti [9].
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