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In this paper we study closed range operators on a Hilbert space such that the range is contained
in the range of its adjoint. Some results pertaining to these operators and operator matrices are

discussed.
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1. INTRODUCTION

Let H be a separable Hilbert space aBd (H) be the space of all bounded linear operators fidm
to H. We say thatd € BL(H) is hypo-EP if the rang& (A) of A is closed, andR(A) C R(A™¥)
equivalentlyNV (A4) c N(A*), whereA* denotes the adjoint od.

For A € BL(H) with R(A) closed, there is a uniqué’ € BL(H) such that
AATA= A, ATAAT = AT, (AAT)* = AAT, (ATA)* = ATA.

The operatorA is known as the Moore-Penrose inversedofl1]. Infact AAT is the orthogonal

projection ontdR (A) and AT A is the orthogonal projection onf@(A*).
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An operatorA € BL(H) is called an EP operator 6t A = AA' [11]. InfactA € BL(H) is EP
if and only if R(A) is closed andR (A) = R(A*). Itis well known that EP stands for equiprojection.
An operatorA € BL(H) is normal if A*A = AA* and hyponormal if|A*z|| < ||Az|| for each
rx € H.

It is observed in [9], that! is hypo-EP if and only if| AT Az|| > ||AATz|| for eachz € H. Itis
also proved thatl is hypo-EP if and only ifAT A2At = A AT, Itis observed in ([10], Corollary 2.5),
that for closed range operatofsand B, AB is a closed ranged operator if and onl\f A) + R(B)
is closed. We note that the unilateral right shift operator on the Hilbert dpasdypo-EP but it is
not EP. ForA € BL(H), itis easy to observe the following:

(1) Both A and A* are hypo-EP if and only ifl is EP.
(2) A hypo-EP operator on a finite dimensional Hilbert space is EP.
(3) A hyponormal operator with closed range is hypo-EP.

Infinite dimensional EP operators have been studied by several authors. Hypo-EP operators have
been introduced by Itoh [9] presumably motivated by hyponormal operators. In the present paper, we

discuss powers and product of hypo-EP operators. We also discuss hypo-EP operator matrices.

2. POWERS ANDPRODUCT OFHYPO-EP OPERATORS

For a hyponormall € BL(H), A? need not be hyponormal [6]; however for a hypo-EP operator, we

have the following.
Theorem2.1—If A € BL(H) is hypo-EP, them" is hypo-EP for each.

We shall need a couple of lemmas. It is well known that for a hyponormal opetatoB L (H),
N(A) = N(A™) for eachn, where N (A) = {z € H : Az = 0} is the null space ofd. The

following is a hypo-EP analogue of this.
Lemma2.2 — If A € BL(H) is hypo-EP, thetV'(A) = N (A™) for eachn.

PROOF: We prove this result by induction an First we prove it fom = 2. Clearly,N'(A) C
N(42). Letz € N(A?). ThenAz € N(A). SinceA is hypo-EP,A*Az = 0. So, ||Az|)* =
(A*Az, z) = 0. Thusz € N(A). HenceN (A) = N(A?). Now suppose that the result holds for
n = k. Letz € N(A*1). Thendz € N (AF) = N(A) C N(A*). ThusA* Az = 0, which implies
that Az = 0. S0,z € N(A). ThusN (A1) C N(A). HenceN (A) = N (AR, O
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The converse of above lemma need not be true as is seen from the following example. Consider
A: CxC — C x Cdefine byA(z, y) = (x, iz). ThenA*(z, y) = (z — iy, 0). SinceA is
idempotent\ (A4) = N (A") for eachn. Also N (A) = {(0, y)/y € C} andN (4*) = {(z, y)/x
=1y, z, y € C}. ThusA is not hypo-EP.

We note that the right unilateral shift operatéron I? is hypo-EP butR(A4) # R(A™) for any

n > 1.
Corollary 2.3 —If A € BL(H) is hypo-EP and nilpotent, the#i = 0.
Lemma2.4 — If A € BL(H) is hypo-EP, therR(A") is closed for each.

PROOF: First we prove thatV'(4)" is invariant underd’ for eachj. Letz € A'(A). SinceA
is hypo-EPz € NV (A*) and soA*z € N(A). ThusA*(N(A)) € N(A). HenceA(N(A)1)
N(A)*F. Thus A7(N(A)F) © N(A)*F. To see thaiR(A") is closed, letr € N (A™)*. SinceA
is hypo-EP, by Lemma 2.2/ (A) = N (A7) for eachj. Thusz € N(A)*. SoAiz € N(A)*
for eachj. In particularA" 'z € N(A)*. SinceR(A) is closed, there exisis > 0 such that
|| Ay|] > «||y]| for eachy € N(A)*. So||A(A" 1z)|| > a||A"'z||. Now again using the fact that
A2 € N(A)*, we get]|A"z|| > o?||A"~2z||. Continuing this process we geti™z|| > o"|z||
for z € N'(A™)1. HenceR(A") is closed. O

PROOF OFTHEOREM 2.1 : By Lemma 2.4R(A") is closed for each. So it is enough to prove
that V' (A™) C N(A*™). Now by Lemma 2.2\ (A) = N (A™) for eachn. ThusN (A™) = N (A) C
N(A*) C N(A*"). HenceN (A™) C N(A*™). ThusA™ is hypo-EP. O

Hartwig [8] and Basket and Katz [1], discussed the product of two EP operators on finite dimen-
sional spaces. Necessary and sufficient conditions for the product of two EP operators to be an EP
operator have been discussed by Djordjevic [4]. It is shown that the product of two commuting EP

operators is EP. We discuss the case of hypo-EP operators.
Theorem2.5— Let A, B € BL(H) be hypo-EP operators.

(@) If R(AB) is closed,;R(AB) C R(A) N R(B*) and N (AB) Cc N(A) + N(B), thenAB is
hypo-EP.

(b) If Ais injective andR(AB) C R(A) NR(B*), thenAB is hypo-EP.

(c) If AB is hypo-EP, thetrR(AB) C R(A) N R(B*).
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PROOF: (a) SinceR(AB) is closed, it is enough to prove thR{ AB) C R((AB)*).

Now, R(AB) C R(A) NR(B*) = (R(A) NR(B*))*++

= (R T R(B)D)L = (N(A) + N(B))*

C (M(A) +N(B))* Cc R((AB)*) = R((AB)*). ThusAB is hypo-EP.
(b) SupposeA is injective andR(AB) C R(A) N R(B*). As A is injective andB is hypo-EP,
N(A) + R(B) = R(B) is closed. Henc&(AB) is closed. Sinc&V'(AB) = N(B), by part(a),
AB is hypo-EP.
(c) Supposed B is a hypo-EP operator. Sinckis hypo-EPR(A*) is closed. Thudl = R(A*) @
N (A). Consider the following decomposition df

A A 0} [ R(AY) R(A*)

o o) \ N4 N(A)
SinceB is hypo-EP,R(B*) is closed. Thud! = R(B*) & N(B). Letx € H. Thenz = x1 + o,
for somexr; € R(B*), w2 € N(B). SinceBx € H = R(A*) ® N(A), Bx = y1 + 1o, for

somey; € R(A*), yo € N(A). DefineB; : R(B*) — R(A*) and B, : R(B*) — N(A) by

Bi(x1) = y1 andBs(x1) = ys. Clearly By, Bs are well defined. Thus we have following decompo-

sition for B
R(B* R(A%)
/\/'(B N |
SinceB; : R(B*) — R(A*), R(B*) = N(B B1)* NR(BY)).
AB1 0 R(B) )
Now AB =

0 0 N(B)
Clearlly N(By) ® N(B) C N(AB). SinceA; is |nject|ve N(AB) Cc N(B1) ® N(B). Thus

N(AB) = N(B) @ N(By). Therefore\ (AB)+ = (V(By) @ N(B))* = N(B): N N(B)* =
N(By)* NR(B*). SinceAB is hypo-EP,R(AB) C R(AB)* = N(AB)+ c R(B*). Therefore
R(AB) C R(A) NR(B*). O

Corollary 2.6 — LetA, B € BL(H) be hypo-EP withA injective andAB = BA, thenAB is
hypo-EP.

The following example shows that we cannot drop the conditiégh= B A in Corollary 2.6. We
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do not know whether the injectivity assumption can be omitted.
1 0 11
Example: Let A = ( ) andB = ( ) ThenA is invertible andB is EP. Then
11 11
1 1 .
AB = with N(AB) = {(z, —z) : = € R} andN((AB)*) = {(—2z, z) : = € R}
2 2

ThusN (AB) is not contained iV ((AB)*). HenceAB is not hypo-EP.

Theorem2.7— If every operator on a Hilbert spacH of rankn is hypo-EP, thedim H = n.

PROOF: Suppose thafim H > n. Then there exist orthonormal vectars, us, . . .. u, and
orthonormal vectors);, we, . ... w, suchthaSpan{u;, ug, ... .. un} # Span{wy, wa, . ... wy}.
n
DefineT : H — H by Tz = > (z, wj)w;, * € H. Thus forz, y € H, Tz, y)
=1
n n n
= > (x, w)wi, y) = YAz, (y, w)u;) = (x, Y} (Y, wi)w;) = (w, T"y). ThereforelT™y
i=1 i=1 i=1
n
= S (y, w;)u;. Thus we haveV(T) = {uy, ug, ... ux}" andN(T*) = {wy, wo, . .. wn}*.
=1
SinceT is hypo-EP{u1, ug, . .. un}" C {wi, wa, ... w,}" . ThereforeSpan{wy, wa, ... wy}
C Span{ui, ug, ... u,}. ThusSpan{wi, wa, ....w,} = Span{ui, ua, . ... u,}. This con-
tradiction giveslim H = n. O

Theorem2.8— Let A € BL(H) be hypo-EP and3 € BL(H) be unitarily equivalent toA.
ThenB is hypo-EP.

PROOF: SinceR(A) is closed and3 is unitarily equivalent ta4, R(B) is closed. Since3 is
unitarily equivalent tod, B = U* AU for some unitary operatdy. Letz € N(B). ThenU*AUx =
0, so thatAUxz = 0. SinceA is hypo-EP,A*Uz = 0. ThusB*z = 0. HenceN (B) C N (B*).
ThereforeB is hypo-EP. O

The following example shows that in above theorem unitary equivalence cannot be replaced by
similarity.

010 1 0 0
Example LetA=| 1 0 0 [andC=| 0 1 0 [.TakeB=C"1AC. ThenAis EP
0 00 0 1 1
0 10
andB = 1 0 0 |withN(B)={(0,0, a) : aeR}andN(B*) ={(0, a, a) : a €

-1 00
R}. ThusB is not hypo-EP.
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3. HYPO-EP OPERATORMATRICES

A C
Hartwig [7] has discussed when a block matfix is EP. In this section, we discuss hypo-
B D

EP operator matrices. We generalize some results of Hartwig to infinite dimensional spaces.

A AX

Theorem3.1— LetA, X € BL(H)andM =
X*A X*AX

). ThenM is hypo-EP if
and only ifA is hypo-EP.

PROOF: SupposeV/ is a hypo-EP operator. Lete A/(A). Then

A AX x 0 ) ) A* A*X
= . SinceM is a hypo-EP operatot,
X*A X*AX 0 0 X*A* X*A*X

T 0 .
( = . Therefored*z = 0. ThusN'(A) C N(A*). Next we prove thaR(A) is closed.
0 0

A AX Tn U .
SupposeA(z,,) — u, for someu € H. Then — . Since
XA X*AX 0 X*u

. . U A AX x
R(M) is closed, there exist, y € H such that = =
X*u X*A X*AX Y

( Az + Xy)

. Thusu = A(z + Xy). ThereforeR(A) is closed. Hencel is hypo-EP.
X*A(z + Xy)

A X
Conversely suppos#is a hypo-EP operator. Lgt e N(M). Then (z+Xy) =
Yy X*A(x + Xy)

. Thusz + Xy € N(A). SinceA is a hypo-EP operatory + Xy € N(A*). There-
0

fore M | | = A+ Xy) = 0 . ThusN (M) C N(M*). To see that
Yy X*A*(x + Xy) 0

R(M) is closed, let\/ — . Then — . Thus
Yn v X*A(zy, + Xyn) v

A(zp + Xyn) — vand X*A(z, + Xy,) — v = X*u. SinceR(A) is closed,u = Az and

u A AX x i
v = X*u = X*Az. Thus = . ThereforeR (M) is closed.
v X*A X*AX 0

HencelM is hypo-EP.



HYPO-EPOPERATORS 79

A AX

Corollary 3.2 — LetA, X € BL(H)andM =
X*A X*AX

). ThenM is EP if and
only if Ais EP.

PROOF: SupposeM is EP. ThenM* is also EP. Therefor@d/ and M* are hypo-EP. Thus by
Theorem 3.14 and A* are hypo-EP. Thereforé is EP.

Conversely supposd is EP. Therefored and A* are hypo-EP. Thus by Theorem 3Af =

A AX A* A*X _
andM* = are hypo-EP. Hencg{ is EP. O
X*A X*AX X*A* X*A*X

The following results are observed by Hartwig [7], for EP matrices. Next we discuss similar

results for hypo-EP and EP operator matrices.

A 0
Theorem3.3— An operatorA € BL(H) is hypo-EP ifand only if/ = ( ) is hypo-EP.
A A

A 0 Tn, U
PROOF: Supposed is a hypo-EP operator. L4t — . ThenAzx,, —

A A Yn v
uandAy, — v —u. SinceR(A) is closed, there exist, y € H such thaty = Az andv — u = Ay.

A 0
Thusv = Az + y). Therefore( B ) = ( ) ( v ) . ThusR(M) is closed. Now
v A A Y

let v € N(M). ThenAz = 0 = Ay. SinceA is hypo-EP,A*xz = 0 = A*y. Therefore

D)
)
o

A A* 0

N(M*). Thus T = . ThereforeA*z = 0. ThusN(A) C N(A%).
0 A* 0 0

0

HenceA is hypo-EP.

( ! ) € N(M*). HenceM is hypo-EP.
Y

A
Conversely supposg/ is a hypo-EP operator. Ledx,, — u. Then (

A
( B ) SinceR (M) is closed, there exist, y € H such that( ) (
u

Thus Az = uand Ay = 0. ThusR(A) is closed. Now letr € N'(A). Then



80 ARVIND B. PATEL AND MAHAVEER P. SHEKHAWAT

T
_ A C At —ATCDT |
ForA, C, D € BL(H) with R(A) andR(D) closed, = if
0 D 0 Dt

and only if V(D) c N(C) andR(C) c R(A) [3].
Theorem3.4— Let A, C, D € BL(H) with N (D) c N(C) andR(C) C R(A). Then

A C
M = ( ) is hypo-EP if and only ifA and D are hypo-EP.
0 D

. T T
PROOF : SupposeM is hypo-EP. Letr € N (A4), then € N(M). Thus ( ) €
0 0

N(M*). Thereforex € N(A*). HenceN(A) C N(A*). Supposedx, — u, for someu € H.

A C n _ . ,
Then ( ) ( v ) — ( B ) SinceR (M) is closed, there exists, y € H such that
0 D 0 0

A C
Y= “]. ThusDy = 0 and Az + Cy = u. SinceN (D) C N(C),
0 0 D y

Az = u. ThusR(A) is closed. Hencel is hypo-EP. Lety € N (D). Theny € N(C). Thus

A C 0 0 _ _ A* 0 0 0
= . SinceM is hypo-EP, = . Thus
0 D Y c* D* Y 0

y € N(D*). HenceN (D) C . To ProveR(D) is closed, it is enough to prove thRi(D*)

N(D*
A 0 0 _ .
is closed. LetD*y,, — v. Then — . SinceR(M*) is closed, there
c* D Yn v

existz, y € H such that = v . Therefored*z = 0 andC*x + D*y =
v Cc* D Y

v. SiInceR(C) C R(A), D*y = v. ThereforeR(D*) is closed.

Conversely suppose thdtandD are hypo-EP. ThuR (A) andR (D) are closed. Sinc&/ (D) C

At —AtCDf
N(C) and R(C) c R(A), Mt = T : Thus MTM2M?T
0 D
AAT —AATCDT + ATACD? AAT 0
— = = MMT'. Therefore M
0 DDt 0 DDt
is hypo-EP.

Corollary 3.5 — LetA, D, X € BL(H). If AandD are hypo-EP, then

A AXD \ .
is hypo-EP.
0 D
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A A
Corollary 3.6 — Let A € BL(H). ThenA is hypo-EP if and only ifM = ( ) is
0 A
hypo-EP.
Theorem3.7— Let A, C, D € BL(H) with N (D) c N(C) and R(C) C R(A). Then

A C
M = ( ) is EP if and only ifA and D are EP.
0 D

PROOF: SupposeV is EP. In view of Theorem 3.4, to prowé and D are EP, it is enough to
prove N (A*) ¢ N(A) andN (D*) c N(D). Letz € N (A*). SinceR(C) C R(A), z € N(C*).

A* 0 T 0 ) ) A C T 0
Therefore = . SinceM is EP, = .
c* D* 0 0 0 D 0 0

A0 0
Thus Az = 0. ThereforeN'(A*) ¢ N(A). Lety € N(D*). Then =
Cc* D* Yy

0 : : A C 0 0

( ) SinceM is EP,( ) ( ) = ( ) Thus Dy = 0. ThereforeN' (D*) C
0 0 D y 0

N (D).

Conversely suppose thdtand D are EP operators. Thig(A) andR (D) are closed. Therefore

_ . At —AtCeDf
under the assumption of hypothesis we haye = | . Thus
0 D
ATA — AAT 0 0 0 .
MM — MM = = . ThereforeM is EP. m
0 DID — DDf 0 0

We study similar results to above for another type of operator matrices in the following.

Theorem3.8— Let A, B, C € BL(H) with N (B) = N(C) Cc N(A) andR(A) C R(C).

A C
ThenM = ( ) is hypo-EP if and only i€ and B are hypo-EP.
B 0

PROOF: SupposéV! is hypo-EP. Let: € N'(C). SinceN' (B) = N(C) Cc N(A),z € N(A) and

A C z 0 , ) A" B* z
x € N(B). Therefore = . Sincel is hypo-EP, =
B 0 0 0 c* 0 0
0

. Thusz € N(C*). HenceN(C) Cc N(C*). SupposeCz, — u, for someu € H.
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A C
Thus ( ) ( ) ( ) SinceR(M) is closed, there exist, y € H such that
B 0
A C :
( ) ( . ThusBzx = 0 and Az + Cy = u. SinceN(B) C N(A4),
B 0 Y
Cy = u. ThusR(C) is closed. Henc€' is hypo-EP. Next we prove thd is a hypo-EP operator.

Lety € N(B). SinceN (B) = N (C),y € N(C). Thus

O = 1)) o)

y € N(B*). HenceN(B) C N(B*). To proveR(B) is closed, it is enough to prove that

. A* B* 0 U .
R(B*) is closed. LetB*y, — u. Therefore( ) ( ) — ( ) SinceR(M™)
c* 0 Yn 0

. ) U A* B* T
is closed, there exist, y € H such that = . ThusC*z = 0 and
0 c* 0 Y

A*x + B*y = u. SinceR(A) C R(C), B*y = u. ThereforeR(B*) is closed. Hencé is hypo-EP.

T A C T
Conversely suppose thBtandC are hypo-EP. Le( ) e N(M). Then ( ) ( )
(0 B 0 Y

= 0 . ThusBxz = 0 andAxz+ Cy = 0. SinceN (B) Cc N (A), Cy = 0. SinceN (B) = N (C),
0

Cxz =0 = By. AsC andB are hypo-EPC*z = 0 = B*y. SinceR(A) C R(C), A*x = 0. Thus

(A* B ) () _ ( : ).ThusMM)cN(M*).
c* 0 Y 0

A C Ty U . .
Let — . ThusAzx,, + Cy, — wandBx, — v. SinceR(B) is
B 0 Un v

closed, there exists € H such thatBx = v. ASR(A) C R(C), for eachn there exists,, € H such
thatAx,, = Cz,. ThusC(z,+y,) — u. SinceR(C) is closed, there existse H suchthat. = C>.
AsR(A) C R(C), Cz — Ax € R(C). Thus there existy € H such thatCz — Az = Cy. Thus

A C x Ax + Cy u _ _
= = . ThusR(M) is closed. Henc@/ is hypo-EP.
B 0 Y Bx v

Theorem3.9— Let A, B, C € BL(H) with N'(B) = N(C) Cc N(A) andR(A) C R(C).

A C
ThenM = ( ) is EP if and only ifC' and B are EP.
B 0
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PROOF: SupposéV! is EP. In view of Theorem 3.8, to proveandB are EP, it is enough to prove
that V'(C*) ¢ N(C) and N (B*) C N(B). Letz € N(C*). SinceR(A) C R(C), z € N(A%).

el ) () = (1) s (0) - (50)(2) -

Av . ThusBz = 0. SinceN (B) = N(C), z € N(C). ThereforeN (C*) c N(C). Lety €
Bz
A* B* 0 0 . . 0 A C 0
N(B*).Then( ) ( )( ).SmceMlsEP,( )( ) ( )
c* 0 y 0 0 B 0 y
( Cy . ThusCy = 0. SinceN(B) = N(C), y € N(B). Therefore\N' (B*) C N (B).
0

Conversely suppos€ and B are EP. In view of the Theorem 3.8, to pra¥&is EP, it is enough

Y c* 0 Y 0
ThereforeC*x = 0 andA*x + B*y = 0. SinceR(A) C R(C), A*z = 0. ThereforeC*z = 0 =
B*y. SinceC andB are EPCx = 0 = By. SinceN (B) = N (C) C N(A), Az =0 = Bz = Cy.

Therefore( 4 c ) ( v ) = ( 0 ).Thus/\/(M*) C N(M). O
B 0 y 0

Theorem3.10 — Let A € BL(H) be hypo-EP andB € BL(H) be invertible. IfM =

to prove that\/(M*) c N(M). Let v € N(M*). Thus A B x) = ( 0 )

A 0
is hypo-EP, ther/ is injective.
B D

) T Az 0
PROOF : SupposeM is hypo-EP. Let € N(M). Then = .
Y Bz + Dy 0

Thereforer € N (A) andBz + Dy = 0. SinceA is hypo-EPA*x = 0. Also, sinceM is hypo-EP,

A* B*
( ) ( ) ( ) . ThusA*z+ B*y = 0. SoB*y = 0. SinceB* is injective,y = 0.
0 D*

As Bz + Dy =0, Bz = 0. Soz = 0. HenceN (M) = {0}. O
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