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In this paper we study closed range operators on a Hilbert space such that the range is contained

in the range of its adjoint. Some results pertaining to these operators and operator matrices are

discussed.
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1. INTRODUCTION

Let H be a separable Hilbert space andBL(H) be the space of all bounded linear operators fromH

to H. We say thatA ∈ BL(H) is hypo-EP if the rangeR(A) of A is closed, andR(A) ⊂ R(A∗)

equivalentlyN (A) ⊂ N (A∗), whereA∗ denotes the adjoint ofA.

ForA ∈ BL(H) with R(A) closed, there is a uniqueA† ∈ BL(H) such that

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The operatorA† is known as the Moore-Penrose inverse ofA [11]. InfactAA† is the orthogonal

projection ontoR(A) andA†A is the orthogonal projection ontoR(A∗).

1Theresearch work is supported by UGC-SAP-DRS-II Grant No. F.510/3/DRS/2009/SAP-1 provided to the Department

of Mathematics, Sardar patel University. The second author is also supported by UGC-JRF Grant
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An operatorA ∈ BL(H) is called an EP operator ifA†A = AA† [11]. In factA ∈ BL(H) is EP

if and only ifR(A) is closed andR(A) = R(A∗). It is well known that EP stands for equiprojection.

An operatorA ∈ BL(H) is normal if A∗A = AA∗ and hyponormal if||A∗x|| ≤ ||Ax|| for each

x ∈ H.

It is observed in [9], thatA is hypo-EP if and only if||A†Ax|| ≥ ||AA†x|| for eachx ∈ H. It is

also proved thatA is hypo-EP if and only ifA†A2A† = AA†. It is observed in ([10], Corollary 2.5),

that for closed range operatorsA andB, AB is a closed ranged operator if and only ifN (A)+R(B)

is closed. We note that the unilateral right shift operator on the Hilbert spacel2 is hypo-EP but it is

not EP. ForA ∈ BL(H), it is easy to observe the following:

(1) BothA andA∗ are hypo-EP if and only ifA is EP.

(2) A hypo-EP operator on a finite dimensional Hilbert space is EP.

(3) A hyponormal operator with closed range is hypo-EP.

Infinite dimensional EP operators have been studied by several authors. Hypo-EP operators have

been introduced by Itoh [9] presumably motivated by hyponormal operators. In the present paper, we

discuss powers and product of hypo-EP operators. We also discuss hypo-EP operator matrices.

2. POWERS ANDPRODUCT OFHYPO-EP OPERATORS

For a hyponormalA ∈ BL(H), A2 need not be hyponormal [6]; however for a hypo-EP operator, we

have the following.

Theorem2.1— If A ∈ BL(H) is hypo-EP, thenAn is hypo-EP for eachn.

We shall need a couple of lemmas. It is well known that for a hyponormal operatorA ∈ BL(H),

N (A) = N (An) for eachn, whereN (A) = {x ∈ H : Ax = 0} is the null space ofA. The

following is a hypo-EP analogue of this.

Lemma2.2 — If A ∈ BL(H) is hypo-EP, thenN (A) = N (An) for eachn.

PROOF : We prove this result by induction onn. First we prove it forn = 2. Clearly,N (A) ⊂
N (A2). Let x ∈ N (A2). ThenAx ∈ N (A). SinceA is hypo-EP,A∗Ax = 0. So, ||Ax||2 =

〈A∗Ax, x〉 = 0. Thusx ∈ N (A). HenceN (A) = N (A2). Now suppose that the result holds for

n = k. Let x ∈ N (Ak+1). ThenAx ∈ N (Ak) = N (A) ⊂ N (A∗). ThusA∗Ax = 0, which implies

thatAx = 0. So,x ∈ N (A). ThusN (Ak+1) ⊂ N (A). HenceN (A) = N (Ak+1). 2
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The converse of above lemma need not be true as is seen from the following example. Consider

A : C × C → C × C define byA(x, y) = (x, ix). ThenA∗(x, y) = (x − iy, 0). SinceA is

idempotent,N (A) = N (An) for eachn. AlsoN (A) = {(0, y)/y ∈ C} andN (A∗) = {(x, y)/x

= iy, x, y ∈ C}. ThusA is not hypo-EP.

We note that the right unilateral shift operatorA on l2 is hypo-EP butR(A) 6= R(An) for any

n > 1.

Corollary 2.3 — If A ∈ BL(H) is hypo-EP and nilpotent, thenA = 0.

Lemma2.4 — If A ∈ BL(H) is hypo-EP, thenR(An) is closed for eachn.

PROOF : First we prove thatN (A)⊥ is invariant underAj for eachj. Let x ∈ N (A). SinceA

is hypo-EP,x ∈ N (A∗) and soA∗x ∈ N (A). ThusA∗(N (A)) ⊂ N (A). HenceA(N (A)⊥) ⊂
N (A)⊥. ThusAj(N (A)⊥) ⊂ N (A)⊥. To see thatR(An) is closed, letx ∈ N (An)⊥. SinceA

is hypo-EP, by Lemma 2.2,N (A) = N (Aj) for eachj. Thusx ∈ N (A)⊥. SoAjx ∈ N (A)⊥

for eachj. In particularAn−1x ∈ N (A)⊥. SinceR(A) is closed, there existsα ≥ 0 such that

||Ay|| ≥ α||y|| for eachy ∈ N (A)⊥. So||A(An−1x)|| ≥ α||An−1x||. Now again using the fact that

An−2x ∈ N (A)⊥, we get||Anx|| ≥ α2||An−2x||. Continuing this process we get||Anx|| ≥ αn||x||
for x ∈ N (An)⊥. HenceR(An) is closed. 2

PROOF OFTHEOREM 2.1 : By Lemma 2.4,R(An) is closed for eachn. So it is enough to prove

thatN (An) ⊂ N (A∗n). Now by Lemma 2.2,N (A) = N (An) for eachn. ThusN (An) = N (A) ⊂
N (A∗) ⊂ N (A∗n). HenceN (An) ⊂ N (A∗n). ThusAn is hypo-EP. 2

Hartwig [8] and Basket and Katz [1], discussed the product of two EP operators on finite dimen-

sional spaces. Necessary and sufficient conditions for the product of two EP operators to be an EP

operator have been discussed by Djordjevic [4]. It is shown that the product of two commuting EP

operators is EP. We discuss the case of hypo-EP operators.

Theorem2.5— LetA, B ∈ BL(H) be hypo-EP operators.

(a) If R(AB) is closed,R(AB) ⊂ R(A) ∩R(B∗) and N (AB) ⊂ N (A) +N (B), thenAB is

hypo-EP.

(b) If A is injective andR(AB) ⊂ R(A) ∩R(B∗), thenAB is hypo-EP.

(c) If AB is hypo-EP, thenR(AB) ⊂ R(A) ∩R(B∗).
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PROOF : (a) SinceR(AB) is closed, it is enough to prove thatR(AB) ⊂ R((AB)∗).

Now,R(AB) ⊂ R(A) ∩R(B∗) = (R(A) ∩R(B∗))⊥⊥

= (R(A)⊥ +R(B∗)⊥)⊥ = (N (A∗) +N (B))⊥

⊂ (N (A) +N (B))⊥ ⊂ R((AB)∗) = R((AB)∗). ThusAB is hypo-EP.

(b) SupposeA is injective andR(AB) ⊂ R(A) ∩ R(B∗). As A is injective andB is hypo-EP,

N (A) +R(B) = R(B) is closed. HenceR(AB) is closed. SinceN (AB) = N (B), by part(a),

AB is hypo-EP.

(c) SupposeAB is a hypo-EP operator. SinceA is hypo-EP,R(A∗) is closed. ThusH = R(A∗) ⊕
N (A). Consider the following decomposition ofA:

A =


 A1 0

0 0


 :


 R(A∗)

N (A)


 →


 R(A∗)

N (A)




SinceB is hypo-EP,R(B∗) is closed. ThusH = R(B∗) ⊕N (B). Let x ∈ H. Thenx = x1 + x2,

for somex1 ∈ R(B∗), x2 ∈ N (B). SinceBx ∈ H = R(A∗) ⊕ N (A), Bx = y1 + y2, for

somey1 ∈ R(A∗), y2 ∈ N (A). DefineB1 : R(B∗) → R(A∗) andB2 : R(B∗) → N (A) by

B1(x1) = y1 andB2(x1) = y2. ClearlyB1, B2 are well defined. Thus we have following decompo-

sition forB

B =


 B1 0

B2 0


 :


 R(B∗)

N (B)


 →


 R(A∗)

N (A)


 .

SinceB1 : R(B∗) →R(A∗),R(B∗) = N (B1)⊕ (N (B1)⊥ ∩R(B∗)).

Now AB =


 A1B1 0

0 0


 :


 R(B∗)

N (B)


 →


 R(A∗)

N (A)


.

ClearllyN (B1) ⊕ N (B) ⊂ N (AB). SinceA1 is injective,N (AB) ⊂ N (B1) ⊕ N (B). Thus

N (AB) = N (B) ⊕N (B1). ThereforeN (AB)⊥ = (N (B1) ⊕N (B))⊥ = N (B1)
⊥ ∩ N (B)⊥ =

N (B1)
⊥ ∩ R(B∗). SinceAB is hypo-EP,R(AB) ⊂ R(AB)∗ = N (AB)⊥ ⊂ R(B∗). Therefore

R(AB) ⊂ R(A) ∩R(B∗). 2

Corollary 2.6 — LetA, B ∈ BL(H) be hypo-EP withA injective andAB = BA, thenAB is

hypo-EP.

The following example shows that we cannot drop the conditionAB = BA in Corollary 2.6. We
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do not know whether the injectivity assumption can be omitted.

Example: Let A =


 1 0

1 1


 andB =


 1 1

1 1


. ThenA is invertible andB is EP. Then

AB =


 1 1

2 2


 with N (AB) = {(x, −x) : x ∈ R} andN ((AB)∗) = {(−2x, x) : x ∈ R}.

ThusN (AB) is not contained inN ((AB)∗). HenceAB is not hypo-EP.

Theorem2.7— If every operator on a Hilbert spaceH of rankn is hypo-EP, thendim H = n.

PROOF : Suppose thatdim H > n. Then there exist orthonormal vectorsu1, u2, . . . . un and

orthonormal vectorsw1, w2, . . . . wn such thatSpan{u1, u2, . . . . . un} 6= Span{w1, w2, . . . . wn}.
Define T : H → H by Tx =

n∑
i=1
〈x, ui〉wi, x ∈ H. Thus for x, y ∈ H, 〈Tx, y〉

=
n∑

i=1
〈x, ui〉〈wi, y〉 =

n∑
i=1
〈x, 〈y, wi〉ui〉 = 〈x,

n∑
i=1
〈y, wi〉ui〉 = 〈x, T ∗y〉. ThereforeT ∗y

=
n∑

i=1
〈y, wi〉ui. Thus we haveN (T ) = {u1, u2, . . . un}⊥ andN (T ∗) = {w1, w2, . . . wn}⊥.

SinceT is hypo-EP,{u1, u2, . . . un}⊥ ⊂ {w1, w2, . . . wn}⊥. ThereforeSpan{w1, w2, . . . wn}
⊂ Span{u1, u2, . . . un}. ThusSpan{w1, w2, . . . . wn} = Span{u1, u2, . . . . un}. This con-

tradiction givesdim H = n. 2

Theorem2.8 — Let A ∈ BL(H) be hypo-EP andB ∈ BL(H) be unitarily equivalent toA.

ThenB is hypo-EP.

PROOF : SinceR(A) is closed andB is unitarily equivalent toA, R(B) is closed. SinceB is

unitarily equivalent toA, B = U∗AU for some unitary operatorU . Letx ∈ N (B). ThenU∗AUx =

0, so thatAUx = 0. SinceA is hypo-EP,A∗Ux = 0. ThusB∗x = 0. HenceN (B) ⊂ N (B∗).

ThereforeB is hypo-EP. 2

The following example shows that in above theorem unitary equivalence cannot be replaced by

similarity.

Example: Let A =




0 1 0

1 0 0

0 0 0


 andC =




1 0 0

0 1 0

0 1 1


. TakeB = C−1AC. ThenA is EP

andB =




0 1 0

1 0 0

−1 0 0


 with N (B) = {(0, 0, α) : α ∈ R} andN (B∗) = {(0, α, α) : α ∈

R}. ThusB is not hypo-EP.
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3. HYPO-EP OPERATORMATRICES

Hartwig [7] has discussed when a block matrix


 A C

B D


 is EP. In this section, we discuss hypo-

EP operator matrices. We generalize some results of Hartwig to infinite dimensional spaces.

Theorem3.1 — Let A, X ∈ BL(H) andM =


 A AX

X∗A X∗AX


. ThenM is hypo-EP if

and only ifA is hypo-EP.

PROOF : SupposeM is a hypo-EP operator. Letx ∈ N (A). Then
 A AX

X∗A X∗AX





 x

0


 =


 0

0


. SinceM is a hypo-EP operator,


 A∗ A∗X

X∗A∗ X∗A∗X





 x

0


 =


 0

0


. ThereforeA∗x = 0. ThusN (A) ⊂ N (A∗). Next we prove thatR(A) is closed.

SupposeA(xn) → u, for someu ∈ H. Then


 A AX

X∗A X∗AX





 xn

0


 →


 u

X∗u


. Since

R(M) is closed, there existx, y ∈ H such that


 u

X∗u


 =


 A AX

X∗A X∗AX





 x

y


 =


 A(x + Xy)

X∗A(x + Xy)


. Thusu = A(x + Xy). ThereforeR(A) is closed. HenceA is hypo-EP.

Conversely supposeA is a hypo-EP operator. Let


 x

y


 ∈ N (M). Then


 A(x + Xy)

X∗A(x + Xy)


 =


 0

0


 . Thus x + Xy ∈ N (A). SinceA is a hypo-EP operator,x + Xy ∈ N (A∗). There-

fore M∗


 x

y


 =


 A∗(x + Xy)

X∗A∗(x + Xy)


 =


 0

0


. ThusN (M) ⊂ N (M∗). To see that

R(M) is closed, letM


 xn

yn


 →


 u

v


. Then


 A(xn + Xyn)

X∗A(xn + Xyn)


 →


 u

v


. Thus

A(xn + Xyn) → u andX∗A(xn + Xyn) → v = X∗u. SinceR(A) is closed,u = Ax and

v = X∗u = X∗Ax. Thus


 u

v


 =


 A AX

X∗A X∗AX





 x

0


. ThereforeR(M) is closed.

HenceM is hypo-EP. 2
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Corollary 3.2 — LetA, X ∈ BL(H) andM =


 A AX

X∗A X∗AX


. ThenM is EP if and

only if A is EP.

PROOF : SupposeM is EP. ThenM∗ is also EP. ThereforeM andM∗ are hypo-EP. Thus by

Theorem 3.1,A andA∗ are hypo-EP. ThereforeA is EP.

Conversely supposeA is EP. ThereforeA andA∗ are hypo-EP. Thus by Theorem 3.1,M =
 A AX

X∗A X∗AX


 andM∗ =


 A∗ A∗X

X∗A∗ X∗A∗X


 are hypo-EP. HenceM is EP. 2

The following results are observed by Hartwig [7], for EP matrices. Next we discuss similar

results for hypo-EP and EP operator matrices.

Theorem3.3— An operatorA ∈ BL(H) is hypo-EP if and only ifM =


 A 0

A A


 is hypo-EP.

PROOF: SupposeA is a hypo-EP operator. Let


 A 0

A A





 xn

yn


 →


 u

v


. ThenAxn →

u andAyn → v− u. SinceR(A) is closed, there existx, y ∈ H such thatu = Ax andv− u = Ay.

Thus v = A(x + y). Therefore


 u

v


 =


 A 0

A A





 x

y


 . ThusR(M) is closed. Now

let


 x

y


 ∈ N (M). ThenAx = 0 = Ay. SinceA is hypo-EP,A∗x = 0 = A∗y. Therefore


 x

y


 ∈ N (M∗). HenceM is hypo-EP.

Conversely supposeM is a hypo-EP operator. LetAxn → u. Then


 A 0

A A





 xn

0


 →


 u

u


. SinceR(M) is closed, there existx, y ∈ H such that


 A 0

A A





 x

y


 =


 u

u


.

ThusAx = u andAy = 0. ThusR(A) is closed. Now letx ∈ N (A). Then


 x

0


 ∈ N (M) ⊂

N (M∗). Thus


 A∗ A∗

0 A∗





 x

0


 =


 0

0


. ThereforeA∗x = 0. ThusN (A) ⊂ N (A∗).

HenceA is hypo-EP. 2
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ForA, C, D ∈ BL(H) with R(A) andR(D) closed,


 A C

0 D



†

=


 A† −A†CD†

0 D†


 if

and only ifN (D) ⊂ N (C) andR(C) ⊂ R(A) [3].

Theorem3.4 — Let A, C, D ∈ BL(H) with N (D) ⊂ N (C) andR(C) ⊂ R(A). Then

M =


 A C

0 D


 is hypo-EP if and only ifA andD are hypo-EP.

PROOF : SupposeM is hypo-EP. Letx ∈ N (A), then


 x

0


 ∈ N (M). Thus


 x

0


 ∈

N (M∗). Thereforex ∈ N (A∗). HenceN (A) ⊂ N (A∗). SupposeAxn → u, for someu ∈ H.

Then


 A C

0 D





 xn

0


 →


 u

0


. SinceR(M) is closed, there existsx, y ∈ H such that


 u

0


 =


 A C

0 D





 x

y


. ThusDy = 0 and Ax + Cy = u. SinceN (D) ⊂ N (C),

Ax = u. ThusR(A) is closed. HenceA is hypo-EP. Lety ∈ N (D). Theny ∈ N (C). Thus
 A C

0 D





 0

y


 =


 0

0


. SinceM is hypo-EP,


 A∗ 0

C∗ D∗





 0

y


 =


 0

0


. Thus

y ∈ N (D∗). HenceN (D) ⊂ N (D∗). To ProveR(D) is closed, it is enough to prove thatR(D∗)

is closed. LetD∗yn → v. Then


 A∗ 0

C∗ D∗





 0

yn


 →


 0

v


. SinceR(M∗) is closed, there

existx, y ∈ H such that


 0

v


 =


 A∗ 0

C∗ D∗





 x

y


. ThereforeA∗x = 0 andC∗x + D∗y =

v. SinceR(C) ⊂ R(A), D∗y = v. ThereforeR(D∗) is closed.

Conversely suppose thatA andD are hypo-EP. ThusR(A) andR(D) are closed. SinceN (D) ⊂

N (C) and R(C) ⊂ R(A), M † =


 A† −A†CD†

0 D†


. Thus M †M2M †

=


 AA† −AA†CD† + A†ACD†

0 DD†


 =


 AA† 0

0 DD†


 = MM †. Therefore M

is hypo-EP. 2

Corollary 3.5 — LetA, D, X ∈ BL(H). If A andD are hypo-EP, then
 A AXD

0 D


 is hypo-EP.
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Corollary 3.6 — Let A ∈ BL(H). ThenA is hypo-EP if and only ifM =


 A A

0 A


 is

hypo-EP.

Theorem3.7 — Let A, C, D ∈ BL(H) with N (D) ⊂ N (C) andR(C) ⊂ R(A). Then

M =


 A C

0 D


 is EP if and only ifA andD are EP.

PROOF : SupposeM is EP. In view of Theorem 3.4, to proveA andD are EP, it is enough to

proveN (A∗) ⊂ N (A) andN (D∗) ⊂ N (D). Let x ∈ N (A∗). SinceR(C) ⊂ R(A), x ∈ N (C∗).

Therefore


 A∗ 0

C∗ D∗





 x

0


 =


 0

0


. SinceM is EP,


 A C

0 D





 x

0


 =


 0

0


.

ThusAx = 0. ThereforeN (A∗) ⊂ N (A). Let y ∈ N (D∗). Then


 A∗ 0

C∗ D∗





 0

y


 =


 0

0


. SinceM is EP,


 A C

0 D





 0

y


 =


 0

0


. ThusDy = 0. ThereforeN (D∗) ⊂

N (D).

Conversely suppose thatA andD are EP operators. ThusR(A) andR(D) are closed. Therefore

under the assumption of hypothesis we haveM † =


 A† −A†CD†

0 D†


. Thus

M †M −MM † =


 A†A−AA† 0

0 D†D −DD†


 =


 0 0

0 0


. ThereforeM is EP . 2

We study similar results to above for another type of operator matrices in the following.

Theorem3.8 — Let A, B, C ∈ BL(H) with N (B) = N (C) ⊂ N (A) andR(A) ⊂ R(C).

ThenM =


 A C

B 0


 is hypo-EP if and only ifC andB are hypo-EP.

PROOF: SupposeM is hypo-EP. Letx ∈ N (C). SinceN (B) = N (C) ⊂ N (A), x ∈ N (A) and

x ∈ N (B). Therefore


 A C

B 0





 x

0


 =


 0

0


. SinceM is hypo-EP,


 A∗ B∗

C∗ 0





 x

0


 =


 0

0


. Thusx ∈ N (C∗). HenceN (C) ⊂ N (C∗). SupposeCxn → u, for someu ∈ H.
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Thus


 A C

B 0





 0

xn


 →


 u

0


. SinceR(M) is closed, there existx, y ∈ H such that


 u

0


 =


 A C

B 0





 x

y


. ThusBx = 0 and Ax + Cy = u. SinceN (B) ⊂ N (A),

Cy = u. ThusR(C) is closed. HenceC is hypo-EP. Next we prove thatB is a hypo-EP operator.

Let y ∈ N (B). SinceN (B) = N (C), y ∈ N (C). Thus
 A C

B 0





 0

y


 =


 0

0


. SinceM is hypo-EP,


 A∗ B∗

C∗ 0





 0

y


 =


 0

0


. Thus

y ∈ N (B∗). HenceN (B) ⊂ N (B∗). To proveR(B) is closed, it is enough to prove that

R(B∗) is closed. LetB∗yn → u. Therefore


 A∗ B∗

C∗ 0





 0

yn


 →


 u

0


. SinceR(M∗)

is closed, there existx, y ∈ H such that


 u

0


 =


 A∗ B∗

C∗ 0





 x

y


. ThusC∗x = 0 and

A∗x + B∗y = u. SinceR(A) ⊂ R(C), B∗y = u. ThereforeR(B∗) is closed. HenceB is hypo-EP.

Conversely suppose thatB andC are hypo-EP. Let


 x

y


 ∈ N (M). Then


 A C

B 0





 x

y




=


 0

0


. ThusBx = 0 andAx+Cy = 0. SinceN (B) ⊂ N (A), Cy = 0. SinceN (B) = N (C),

Cx = 0 = By. As C andB are hypo-EP,C∗x = 0 = B∗y. SinceR(A) ⊂ R(C), A∗x = 0. Thus
 A∗ B∗

C∗ 0





 x

y


 =


 0

0


. ThusN (M) ⊂ N (M∗).

Let


 A C

B 0





 xn

yn


 →


 u

v


. ThusAxn + Cyn → u andBxn → v. SinceR(B) is

closed, there existsx ∈ H such thatBx = v. AsR(A) ⊂ R(C), for eachn there existszn ∈ H such

thatAxn = Czn. ThusC(zn+yn) → u. SinceR(C) is closed, there existsz ∈ H such thatu = Cz.

AsR(A) ⊂ R(C), Cz − Ax ∈ R(C). Thus there existsy ∈ H such thatCz − Ax = Cy. Thus
 A C

B 0





 x

y


 =


 Ax + Cy

Bx


 =


 u

v


. ThusR(M) is closed. HenceM is hypo-EP.

Theorem3.9 — Let A, B, C ∈ BL(H) with N (B) = N (C) ⊂ N (A) andR(A) ⊂ R(C).

ThenM =


 A C

B 0


 is EP if and only ifC andB are EP.
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PROOF: SupposeM is EP. In view of Theorem 3.8, to proveC andB are EP, it is enough to prove

thatN (C∗) ⊂ N (C) andN (B∗) ⊂ N (B). Let x ∈ N (C∗). SinceR(A) ⊂ R(C), x ∈ N (A∗).

Thus


 A∗ B∗

C∗ 0





 x

0


 =


 0

0


. SinceM is EP,


 0

0


 =


 A C

B 0





 x

0


 =


 Ax

Bx


. ThusBx = 0. SinceN (B) = N (C), x ∈ N (C). ThereforeN (C∗) ⊂ N (C). Let y ∈

N (B∗). Then


 A∗ B∗

C∗ 0





 0

y


 =


 0

0


. SinceM is EP,


 0

0


 =


 A C

B 0





 0

y


 =


 Cy

0


. ThusCy = 0. SinceN (B) = N (C), y ∈ N (B). ThereforeN (B∗) ⊂ N (B).

Conversely supposeC andB are EP. In view of the Theorem 3.8, to proveM is EP, it is enough

to prove thatN (M∗) ⊂ N (M). Let


 x

y


 ∈ N (M∗). Thus


 A∗ B∗

C∗ 0





 x

y


 =


 0

0


.

ThereforeC∗x = 0 andA∗x + B∗y = 0. SinceR(A) ⊂ R(C), A∗x = 0. ThereforeC∗x = 0 =

B∗y. SinceC andB are EP,Cx = 0 = By. SinceN (B) = N (C) ⊂ N (A), Ax = 0 = Bx = Cy.

Therefore


 A C

B 0





 x

y


 =


 0

0


. ThusN (M∗) ⊂ N (M). 2

Theorem3.10 — Let A ∈ BL(H) be hypo-EP andB ∈ BL(H) be invertible. IfM =
 A 0

B D


 is hypo-EP, thenM is injective.

PROOF : SupposeM is hypo-EP. Let


 x

y


 ∈ N (M). Then


 Ax

Bx + Dy


 =


 0

0


.

Thereforex ∈ N (A) andBx + Dy = 0. SinceA is hypo-EP,A∗x = 0. Also, sinceM is hypo-EP,
 A∗ B∗

0 D∗





 x

y


 =


 0

0


. ThusA∗x+B∗y = 0. SoB∗y = 0. SinceB∗ is injective,y = 0.

As Bx + Dy = 0, Bx = 0. Sox = 0. HenceN (M) = {0}. 2
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