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Lower bounds for persistence probabilities of stationary Gaussian processes in discrete time are
obtained under various conditions on the spectral measure of the process. Examples are given
to show that the persistence probability can decay faster than exponentially. It is shown that if
the spectral measure is not singular, then the exponent in the persistence probability cannot grow
faster than quadratically. An example that appears (from numerical evidence) to achieve this
lower bound is presented.
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1. THE PROBLEM AND OUR RESULTS

Let X = (X,,),,cza be a centered, stationary Gaussian proceg’oiThis means that for any > 1
and anymy, ..., my € Z¢, the vector X, +mo ) 1<j<x has a multivariate Gaussian distribution with
zero mean and a covariance matrix that does not depemdyori-or basics on Gaussian processes,

consult for example, the book by Adler [1].

For a subse#t C Z?, we define thepersistence probabilityalso called gap probability or hole
probability) of X in A as

Hx(A):=P{X,, > 0forallm e A}.
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In particular, one may be interestedific (Q ), where forN = (Ny,..., Ny) € Z%, the cube
Qy = {m € Z%:1 < my, < N, foreachl < k < d}. This paper is exclusively about getting

bounds on the persistence probability under some additional conditions on the Gaussian process.

Notations: Let T = [—m,7]. Ford > 1, we use\ to denote the Lebesgue measureTsn
normalized so thad(T?) = 1. A stationary Gaussian process Bf is uniquely described by its
covariance kernel CqX,,, X,,) = Cow(Xy, X,,—n). Further, there exists a unique finite Borel
measure: on T¢ that is symmetric about the origin (i.e.(I) = u(—1I) for any Borel setl C T¢)
such that Co(Xo, X,,) = i(m) wherej(m) = [1, e dpu(t) with the usual notation for the inner
product(m,t) = mit; + ...+ mgty. The measurg is called the spectral measure of the procEss
Write du(t) = b(t)dA(t) + dus(t) wherepus is singular to Lebesgue measure and L'(T9, \) is
non-negative. In all the results of this paper, it will be assumedbtisanot identically zero. In other
words, the spectral measure is not singular. Lastly, for a subsgtZ¢, we denote the covariance

matrix of (Xo,)mea by X4 := (i(j — k)); 14 and the cardinality ofi by |A].

These notations will be maintained throughout the paper without further mention. In addition,
there will appear many constants denoted’hy, v etc. Unless otherwise mentioned, the constants

depend on the given proce&s(or equivalently, on the spectral measuie

We now state our results and then give an overview of past results in the literature in Section
2. Our first theorem has already been proved by Feldheim and Feldheim [8] and but we explain in

Section 2 why we include it here nevertheless.

Theoreml — Assume thali(t) > § for a.e. t € [—¢, €]¢ for some positive numbedse. Then, for

any finiteA C 74, we haveH x (A) > =714l for some finite constantthat depends only ohandke.

Theorem 1 is proved in Section 3. Then, in Section 4, we exhibit a Gaussian procégban
does not satisfy the conditions of this theorem and for witigh({1, 2, ..., N}) decays faster than
exponentially inN. To deal with such cases, in one dimension, we prove different lower bounds
under weaker assumptions on the spectral measure. With a slight abuse of notation, iEuhte
for Hx({1,2,...,N}).

Theorem2 — Letd = 1.

1. Ifb(-) is notidentically zero ir.! (T), thenH x (N) > ¢~ *V* for all N, for some finite constant

~ that may depend obx-).
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2. Assume that there exist some 0 andC' < oo such that\{t € T? : b(t) < §} < Co? for any
§ € [0,7]. Then,Hx(N) > e~ ¥N1og N for all N, for some finite constant that depends only

onC andp.

Theorem 2 is proved in Section 5. Lastly, in Section 6, we give an example of a Gaussian process
on Z for which the gap probability appears to achieve the lower bound ®¥”. We do not have a

full proof that it works, but we present convincing numerical evidence.
2. BRIEF REVIEW OF PAST RESULTS

As may be expected, the question of gap probability has been studied quite extensively. We give a

brief overview of some of the relevant results and then explain where our results fit in.

Early papers on gap probabilities are by Longuet-Higgins [9] and Newell and Rosenblatt [14].
Newell and Rosenblatt [14] obtain a number of bounds for the gap probabiify; > 0fort €
[0,T]} for a stationary Gaussian process®n They showed that if the covariance &% and X,
goes to zero as1 — oo, then the persistence probabil#y (Q ) decays faster than any polynomial
in N and if Cov Xy, X,,,) is also summable, then they showed that (N) < e~ VN. They also
obtained lower bounds, but under the assumption that the covariance is positive. Some of these
results generalize to higher dimensions, see for example the paper of Malevich [12]. A more recent
paper of Dembo and Mukherjee [5] is also concerned with the question of gap probability for one-
dimensional Gaussian processes, but again they assume positivity of covariance. In all these papers,
the assumption of positive covariance is crucial in that it allows one to compare with other processes

(for example, the i.i.d. process) using Slepian’s inequality (this inequality is recalled in Section 3).

Our interest is in getting lower bounds for the gap probability even when the covariance is not
positive. The first result we know of this kind is due to Antezabal. [2] who showed that for the
sin(t—s

P ) (known as the Paley-Wiener process), the
gap probability has the bounds“” < P{X; > 0for0 <t < T} <e T,

Gaussian processX;)qcr With Cov(X;, X) =

Generalizing their result, Feldheim and Feldheim [8] showed similar exponential upper and lower
bounds for a large class of Gaussian process@san Z. Their conditions are similar to ours and
their result is stronger than Theorem 1. The strength is in that lower bounds for gap probability
for a processX = (X;):cr in continuous time imply also a lower bound for a discrete time process

(X,s5)nez Obtained by sampling the continuous time process at regular intervals. But it is not possible
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to go in the reverse direction, since our results will only grgX,,s > 0forné < 7'} > e=e'T

and the constant in the exponent blows up when 0.

Their proof of lower bound uses the result of [2] for the Paley-Wiener process. But we give a full
proof of Theorem 1 as it is different and self-contained. We feel that it may have some interesting

points to it (in particular, the construction in Lemma 4).

Hole probabilities have also been studied beyond the setting of stationary Gaussian processes. For
example, persistence probability of a random polynomial with i.i.d. coefficients was studied in [6].
Persistence for (the absolute value of) the planar Gaussian analytic function was studied by Sodin and

Tsirelson [18] and Nishry [15]. Also of interest are the results of Shao and Wang [16].

For more on such problems, we refer to the surveys of Li and Shao [10], the recent review by
Aurzada and Simon [4] on the persistence question for genéaf processes, and the works of

Ehrhardtet al. [7] and Aurzada and Gullotin-Plantard [3] on persistence exponents.

3. PROOF OFTHEOREM 1

We first present a simple lemma that we shall use many times. The setting and notation are as before.

In particular, recall that fod C Z?, the matrix© 4 := (u(j — k)); ke 4 denotes the covariance matrix
of (Xm)meA-

Lemma3 — Let A C Z¢ be a finite non-empty subset. Supp@sg b,,b* < +oo are such that
by <b(t) <b*fora.e.t € e,

1. Thendet(X4) < 1(0)".

2. Allthe eigenvalues of 4 lie in the interval[b., oo). If the singular part of the spectral measure

us vanishes, then all the eigenvaluesdf lie in [b., b*].

Al/2
3. Hx(A) > (%)l / whereo 4 is the smallest eigenvalue &f4. In particular,Hx(A) >

(#@))lAW-
PROOF:

1. SinceX 4 is a positive semidefinite matrix, its determinant is bounded from above by the prod-

uct of its diagonal entries (we may realisg as the Gram matrix af vectors inR™ and then
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det(X4) is the squared volume of the parallelepiped formed by these vectors while the diag-
onal entries are the squared norms of these vectors). All its diagonal entries are gg@al to

and hence the claim follows.

. Letu € R4 and set/ () = 3,4 upe’™? for ¢t € T4. Observe that fok, ¢ € Z, the inner
product ofe’®t) ande’(“) is equal tody, o in L2(T?, \) and equal tgi(k — £) in L*(T%, 11). It

follows that
HuH?:/ U@PANG  and  u'Sau :/ U () Peut).
Td Td
Now, du(t) > b(t)dA(t) with equality if s = 0. Hence,
WS 4u > / U (1) [2b(t)dA(E)
Td

with equality if us = 0. Thus, using the lower bound for we see that!Y su > b, ||jul|?.
Whenpu, = 0, we may also use the upper bound foand getu'> 4u < b*||u||?>. From the

variational characterization of eigenvalues of symmetric matrices, the claims follow.

. We may assume that, is non-singular (otherwise;, = 0 and by the previous part we must
haveb, = 0 and thus the right hand sides of both inequalities to prove are zero anyway).
Then, the Gaussian vecttK,,)me 4 has density27) 14172 exp{—1u!S 7, u} with respect to

Lebesgue measure @& and hence

du
(2m) A2 Jdet (5 )

1 -
Hx(A) = /Rd exp{—iutEAlu}
+

whereR; = [0,00). From the first part, we havget(34) < (0)4l. Further,u!X tu <

é |||? for all u sinceo 4 is the smallest eigenvalue &f,. Putting these together, we get

1 —garlul? _ du
Hx(A) > %
x(4) = [1(0)141/2 /Rie 4 (2m)HAI2

oAl/2
_ A
- 2141 13(0)1A1/2
by evaluating the integral (which splits into a product of one dimensional Gaussian integrals).

This proves the first inequality fal x (A). By the second part, we have the boung > b,

from which the second inequality follows. [ |
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If bis bounded below by a positive constapbn T¢, then the third part of Lemma 3 immediately
implies the conclusion of Theorem 1 with= —1 log(b../4/1(0)). But the assumption in that theorem
is only thatb is bounded below by a positive constant in a neighbourhood of the origin. To get an
exponential lower bound under this weaker assumption, we shall use the following direct consequence

of Slepian’s inequality (see Corollary 2.4 of Adler [1] or Slepian’s original paper [17]).

Slepian’s inequality : Let X andY be two Gaussian processes Gf with Cov(X,,, X,,)
> Cov(Y;,,Y,) for all m,n € Z¢ and such that V&iX,,) = Var(Y;,) for all m € Z%. Then,
Hx(A) > Hy(A) forany A C 7.

The idea will be to get a different procesghat is comparable t& as in Slepian’s inequality and
such thatr” has spectral density that is bounded below on all‘efThen we may combine Slepian’s
inequality and the lower bound fdfy (A) from Lemma 3 to prove Theorem 1. To produce sudh a

we shall need the following lemma.

Lemma4 — Givene > 0 there exists a functioh € L'(T?, \) such that
1. h(n) > 0 for all n andh(0) = 0.
2. sup h(t) = h(0) = 1.

teTd

3. sup h(t) < —p3. whereg, = €.
tZ(eT)d

Assuming this lemma, we prove Theorem 1.

PROOF OFTHEOREM1 : Leth be the function provided by Lemma 4 and &g = b(t) — gh(t).
Letdfu(t) = dus(t)+b(t)dt and let(X,,) .z be the centered stationary Gaussian process with spectral

measure.

From the assumption o it follows thatb > tofort € (eT)? andb(t) > B fort & (eT)? (for
a.e. t). Thus,b is bounded below by, = min{14, 3}.

By the properties ofi, we see thafi(n) > ji(n) for all n with equality forn = 0. In terms of
covariances this says thafX 2] = E[X?2] and Co\(X,,, X,,) > Cov(X,,, X,,,). Therefore, Slepian’s
inequality applies to¥ and X and givesH x (A4) > Hz(A).

. Al/2
By Lemma 3 and the fact that(0) = /(0), we haveH 3 (A) > (4&0))' / , completing the

)
proof of the theorem withy = — 1 log(b./4/1(0)). [
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Finally we prove Lemma 4. In one dimension, one can give an explicit construction as follows.
Letcos(e) < A < 1 and set
Z)‘W ikt _ ACOS( ) — N
_ Aeit|2 :
k;éo
Fort € T\ [—¢, ¢, clearly this is bounded above byA(1 — A\)72(\ — cos(e)) < 0. Thus

SUPJ|>e h(t) is negative (the precise value is of no importance) while the Fourier coefficients are as

desired. We now give a construction valid in any dimension.

PROOF OFLEMMA 4 : Fix 0 < e < Fandletg, f : T¢ — R be defined by = 1(r) and
f = (14+n)g —nwheren = < is chosen so thaf;, fd\ = 0. Finally, seth = f « f be the
convolution of f with itself, i.e., h de f(t —s)d\(s) (hereT? is treated as a group under
addition modul@).

By choice ofy, we havef (0) = 0. Further,(gxg)(t) = ]_[;1 1(e—5=]t5])+ andg*1 = €. From

this it follows that

(f*f)():(1+77)2

N
~

1
- !th> —2n(1+n)et +n?
2T "

<.
Il
—

=1+ 77)2

—_
N
[0}
|
M‘H
S
C/

+
|
3l\)

.
Il
-

since(1 + n)e? = .

Thus, h(t) = —n? for ||t]|e > 2me andh(m) = (f(m))? which is zero form = 0 and non-
negative for altn. Lastly, 2(0) = (1 + n)2e?. Dividing by h(0) gives the desired function. W

Remark5 : What is it that makes our proof work? Consider two centered Gaussian vectors
andY in R™ with covariance matrices andY’. There are two possible ways to comparandy’.
Firstly, we may compare them in positive definite order, bex ¥ if u!>u > u!>'v for all vectors

u. As the proof of Lemma 3 shows, in this cask,' < ¥'~! and hence,

1 1
/ exp {—Qutﬂlu} du > / exp {—2ut2’1u} .
¥ ¥

Although the inequality for the determinant in the denominator of the Gaussian density goes
the other wayc&et(z)*% < det(E’)*%), these determinants can be easily bounded;{isy'*! for

example) and hence, with a little imprecision, we may say thati X' in the positive definite order,
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thenP{X; > 0 for all i} is smaller tharP{Y; > 0 for all :}. The second comparison is the one used

in Slepian’s inequality (entrywise comparisonXfandY’ provided the diagonals are equal). In this
case, the much more non-trivial inequality of Slepian gives a comparison of the two probabilities,
P{X; > 0foralli} andP{Y; > 0 for all :}.

These two orderings are rather different from each other, and hence, by mixing them, we are able

to compare many more covariance matrices than is possible by either order alone!

4. AN EXAMPLE WHERE THE GAP PROBABILITY DECAYS FASTER THAN EXPONENTIAL

We give an example to show that the condition of Theorem 1 is necessary. This example is one among
a larger class of time series considered by Majumdar and Dhar [11]. Newell and Rosenblatt [14] also
remark in their paper that if the covariance is not positive, then the gap probability can decay faster

than exponential, but they do not give an example.

Example6 : Letdu(t) = b(t)dt with b(t) = 2 — 2cos(t). This is the spectral measure of the

Gaussian process,, = &, — &,+1 Whereg; are i.i.d. N (0, 1). Therefore

Hx(n) = P{X1 > 0,000, X > 0} = P{& > & > .. > b} =

(n+1)!

which decays faster than exponential (to be precise, decaysiké’s™). Therefore, in general we

cannot expect an exponential lower bound.

Observe thab(t) = 2 — 2cos(t) satisfies the hypothesis of the second part of Theorem 2 with
p = 2 (ande = 7 andC = 10) and henceH x (N) > e~ V16N Thus, Theorem 2 gives the right
lower bound for this example. More generally, consider any finite moving-average process, i.e., a
process otz of the formX,, = >} axéntk, Wherea;, € R and¢y, is an i.i.d. sequence of standard
Gaussians. Then the spectral measurk(fisdt whereb(t) = | > ake“ﬂz is a trigonometric

polynomial. There are two possibilities.
1. 1f Y% _oax # 0, thenb(0) # 0 and Theorem 1 applies. We gty (N) > eV,

2. 137, ax = 0, thenb(0) = 0, then there is somgsuch thab®) (0) > 0. If b(¢) has no zeros
in T other tharD, then Theorem 2 applies and we @&t (N) > e~V log NV,
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5. PROOF OFTHEOREM 2

To prove Theorem 2, we need a famous result on trigonometric polynomials due&io diod Re-
mez and Nazarov. For a subsBtC T and0 < p < oo, andP : T — R, let|P|[r(g) =
(J5 |P(t)[PdA(t))'/P. The following theorem is due to Nazarov [13].

Nazarov’'s complete version of Tuan’s lemma: There is a numbeB such that for any trigono-
metric polynomial in one variabl®(t) = Y_7_, axe*?, for any measurable subsgt C T with
A(E) > 1, and for any0 < p < 2, we have|| P| sy > e~ BO=DATME) | P|| 1, .

The original result due to Tan was the inequalityP ||z > (%)n_l | P||r for the case when
Eis an arc inT (hereT is naturally identified with the circle). The inequality here is for sup-norms
while we shall need the comparisoniof norms. Further, Tém'’s result was valid for arcs only, while
Nazarov's inequality is valid for any measuralile Further, in Nazarov’'s version, as opposed to
Turan’s original inequality, the bound for ratio betweleRi|| z and|| P||t goes tol asA(T \ E) — 0.

All these three features of Nazarov's version of anis inequality are essential to our application

below.
PROOF OF THEOREM 2 : In this proof, letA = {1,2,..., N} and we writeX for ¥4 and
Hx(N) for Hx(A) etc.

1. Recall from the proof of Lemma 3 that farc R™, with U(t) = S0, ue’*"), we have

lul2 = [[0@PaAG)  and  wSyu > [ [U@PHEAAD).
/ /

Let Es = {t € T : b(t) > 6} so that\(Es) > ¢ for somed > 0 (since we assume thais not
identically zero). Apply Tuain's lemma as stated above to get
u'Snu > 0|07 gy

> 5o BU-ON D)2, o

> e N |ul?
where we have absorbed various constants in{bence~y now depends om). Thus, the

smallest eigenvalue & v is bounded below by =" . By the third part of Lemma 3, we get

. N/2
—N
Hx(N) > <2 o g )

the lower bound

which is at least~""N* for somey’.



192 M. KRISHNA AND MANJUNATH KRISHNAPUR

2. For the second part, we get a more accurate lower bound for the smallest eigenvalue. For this

we again write
u'Snu > 8|07 gy
> g NIV D)y |2,

> 5e~CON |u?
by the assumption that(T \ Es) < Cé”. Choosingd = N~'/?, we get the lower bound

C'N~1/? for the smallest eigenvalue & 4. Again invoking the third part of Lemma 3, we get

the lower boundZx (N) > e~V N for a constanty that depends ohthroughC andp. B

2
6. AN EXAMPLE THAT (PERHAPY) ACHIEVES e~V

Let X be the Gaussian process with spectral dengity= 1fort € [$r, 7]U[—7, —37] andb(t) =
for t € (—im, 17). We have convincing evidence, but not yet a proof, tHat(N) < ¢~“N*. Note

that the covariance kernel in this case is

% if m=0,

K(m) — 0 if m is even andn # 0,
L if m =3 (mod4),
——L if m =1 (mod4).

As such we can invebf i for small NV and by numerical experiments on Mathematica¥Yox 24,
we have strong evidence that all entrie@;;.1 are positive. Accepting this, it follows that for any
u € RY, we haveu!S3tu > Y | o%Fu2, where we use the notation thal is the (i, j) entry of

¥yt Thus,

Hx(N) <

\/det EN H \/%/R+ 75

- .
N /det(% \ ok
et ( N)kl;ll ON

Again numerically, we can evaluate the right hand side (caﬂl(iN)), and it is observed that the
points (k, —log H(k)) for 1 < k < 24, lie very close to the parabolkal — 0.8z + 0.5722. This
suggests thall x (V) is indeed bounded above byCN2.
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Remark?7 : As remarked in the introduction, lower bounds for gap probability in continuous

time are stronger than analogous results in discrete time. For upper bounds the reverse is true:

(P{X; > Oforallt € [0,T]} < P{X,, > 0foralln < |T|}). In particular, if it can be proved
rigorously for the above process that the gap probability is bounded abcn/ecﬁf/, then the same
holds for the continuous time proceX¥s= (X;);cr With spectral density (which is now a finite Borel

measure orR) b(t) = L1 cp<n It is worth noting that the procesk is not pathological in any
sT<[t|<

sense and in fact it has smooth and even real-analytic sample paths. This is because the covariance

function is real analytic (to see that, either compute the covariance explicitly or use the fact that the

Fourier transform of a comapctly supported function is real analytic).
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