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Lower bounds for persistence probabilities of stationary Gaussian processes in discrete time are

obtained under various conditions on the spectral measure of the process. Examples are given

to show that the persistence probability can decay faster than exponentially. It is shown that if

the spectral measure is not singular, then the exponent in the persistence probability cannot grow

faster than quadratically. An example that appears (from numerical evidence) to achieve this

lower bound is presented.
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1. THE PROBLEM AND OUR RESULTS

Let X = (Xm)m∈Zd be a centered, stationary Gaussian process onZd. This means that for anyk ≥ 1

and anym0, . . . ,mk ∈ Zd, the vector(Xmj+m0)1≤j≤k has a multivariate Gaussian distribution with

zero mean and a covariance matrix that does not depend onm0. For basics on Gaussian processes,

consult for example, the book by Adler [1].

For a subsetA ⊆ Zd, we define thepersistence probability(also called gap probability or hole

probability) ofX in A as

HX(A) := P{Xm > 0 for all m ∈ A}.

1Partially supported by IMSc Project 12-R&D-IMS-5.01-0106 and UGC center for advanced studies.
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In particular, one may be interested inHX(QN ), where forN = (N1, . . . , Nd) ∈ Zd, the cube

QN := {m ∈ Zd : 1 ≤ mk ≤ Nk for each1 ≤ k ≤ d}. This paper is exclusively about getting

bounds on the persistence probability under some additional conditions on the Gaussian process.

Notations : Let T = [−π, π]. For d ≥ 1, we useλ to denote the Lebesgue measure onTd

normalized so thatλ(Td) = 1. A stationary Gaussian process onZd is uniquely described by its

covariance kernel Cov(Xm, Xn) = Cov(X0, Xm−n). Further, there exists a unique finite Borel

measureµ onTd that is symmetric about the origin (i.e.,µ(I) = µ(−I) for any Borel setI ⊆ Td)

such that Cov(X0, Xm) = µ̂(m) whereµ̂(m) =
∫
Td ei〈m,t〉dµ(t) with the usual notation for the inner

product〈m, t〉 = m1t1 + . . . + mdtd. The measureµ is called the spectral measure of the processX.

Write dµ(t) = b(t)dλ(t) + dµs(t) whereµs is singular to Lebesgue measure andb ∈ L1(Td, λ) is

non-negative. In all the results of this paper, it will be assumed thatb is not identically zero. In other

words, the spectral measure is not singular. Lastly, for a subsetA ⊆ Zd, we denote the covariance

matrix of (Xm)m∈A by ΣA := (µ̂(j − k))j,k∈A and the cardinality ofA by |A|.

These notations will be maintained throughout the paper without further mention. In addition,

there will appear many constants denoted byC, c, γ etc. Unless otherwise mentioned, the constants

depend on the given processX (or equivalently, on the spectral measureµ).

We now state our results and then give an overview of past results in the literature in Section

2. Our first theorem has already been proved by Feldheim and Feldheim [8] and but we explain in

Section 2 why we include it here nevertheless.

Theorem1 — Assume thatb(t) ≥ δ for a.e. t ∈ [−ε, ε]d for some positive numbersδ, ε. Then, for

any finiteA ⊆ Zd, we haveHX(A) ≥ e−γ|A| for some finite constantγ that depends only onδ andε.

Theorem 1 is proved in Section 3. Then, in Section 4, we exhibit a Gaussian process onZ that

does not satisfy the conditions of this theorem and for whichHX({1, 2, . . . , N}) decays faster than

exponentially inN . To deal with such cases, in one dimension, we prove different lower bounds

under weaker assumptions on the spectral measure. With a slight abuse of notation, we writeHX(N)

for HX({1, 2, . . . , N}).

Theorem2 — Letd = 1.

1. If b(·) is not identically zero inL1(T), thenHX(N) ≥ e−γN2
for all N , for some finite constant

γ that may depend onb(·).
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2. Assume that there exist somep > 0 andC < ∞ such thatλ{t ∈ Td : b(t) ≤ δ} ≤ Cδp for any

δ ∈ [0, π]. Then,HX(N) ≥ e−γN log N for all N , for some finite constantγ that depends only

onC andp.

Theorem 2 is proved in Section 5. Lastly, in Section 6, we give an example of a Gaussian process

onZ for which the gap probability appears to achieve the lower bound ofe−γN2
. We do not have a

full proof that it works, but we present convincing numerical evidence.

2. BRIEF REVIEW OF PAST RESULTS

As may be expected, the question of gap probability has been studied quite extensively. We give a

brief overview of some of the relevant results and then explain where our results fit in.

Early papers on gap probabilities are by Longuet-Higgins [9] and Newell and Rosenblatt [14].

Newell and Rosenblatt [14] obtain a number of bounds for the gap probabilityP{Xt > 0 for t ∈
[0, T ]} for a stationary Gaussian process onR. They showed that if the covariance ofX0 andXm

goes to zero asm →∞, then the persistence probabilityHX(QN ) decays faster than any polynomial

in N and if Cov(X0, Xm) is also summable, then they showed thatHX(N) ≤ e−cN . They also

obtained lower bounds, but under the assumption that the covariance is positive. Some of these

results generalize to higher dimensions, see for example the paper of Malevich [12]. A more recent

paper of Dembo and Mukherjee [5] is also concerned with the question of gap probability for one-

dimensional Gaussian processes, but again they assume positivity of covariance. In all these papers,

the assumption of positive covariance is crucial in that it allows one to compare with other processes

(for example, the i.i.d. process) using Slepian’s inequality (this inequality is recalled in Section 3).

Our interest is in getting lower bounds for the gap probability even when the covariance is not

positive. The first result we know of this kind is due to Antezanaet al. [2] who showed that for the

Gaussian process(Xt)t∈R with Cov(Xt, Xs) = sin(t−s)
t−s (known as the Paley-Wiener process), the

gap probability has the boundse−c1T ≤ P{Xt > 0 for 0 ≤ t ≤ T} ≤ e−c2T .

Generalizing their result, Feldheim and Feldheim [8] showed similar exponential upper and lower

bounds for a large class of Gaussian processes inR or Z. Their conditions are similar to ours and

their result is stronger than Theorem 1. The strength is in that lower bounds for gap probability

for a processX = (Xt)t∈R in continuous time imply also a lower bound for a discrete time process

(Xnδ)n∈Z obtained by sampling the continuous time process at regular intervals. But it is not possible



186 M. KRISHNA AND MANJUNATH KRISHNAPUR

to go in the reverse direction, since our results will only giveP{Xnδ > 0 for nδ ≤ T} ≥ e−cδ−1T

and the constant in the exponent blows up whenδ → 0.

Their proof of lower bound uses the result of [2] for the Paley-Wiener process. But we give a full

proof of Theorem 1 as it is different and self-contained. We feel that it may have some interesting

points to it (in particular, the construction in Lemma 4).

Hole probabilities have also been studied beyond the setting of stationary Gaussian processes. For

example, persistence probability of a random polynomial with i.i.d. coefficients was studied in [6].

Persistence for (the absolute value of) the planar Gaussian analytic function was studied by Sodin and

Tsirelson [18] and Nishry [15]. Also of interest are the results of Shao and Wang [16].

For more on such problems, we refer to the surveys of Li and Shao [10], the recent review by

Aurzada and Simon [4] on the persistence question for general Lévy processes, and the works of

Ehrhardtet al. [7] and Aurzada and Gullotin-Plantard [3] on persistence exponents.

3. PROOF OFTHEOREM 1

We first present a simple lemma that we shall use many times. The setting and notation are as before.

In particular, recall that forA ⊆ Zd, the matrixΣA := (µ̂(j − k))j,k∈A denotes the covariance matrix

of (Xm)m∈A.

Lemma3 — Let A ⊆ Zd be a finite non-empty subset. Suppose0 ≤ b∗, b∗ ≤ +∞ are such that

b∗ ≤ b(t) ≤ b∗ for a.e. t ∈ Td.

1. Then,det(ΣA) ≤ µ̂(0)n.

2. All the eigenvalues ofΣA lie in the interval[b∗,∞). If the singular part of the spectral measure

µs vanishes, then all the eigenvalues ofΣA lie in [b∗, b∗].

3. HX(A) ≥
(

σA
4µ̂(0)

)|A|/2
whereσA is the smallest eigenvalue ofΣA. In particular,HX(A) ≥

(
b∗

4µ̂(0)

)|A|/2
.

PROOF :

1. SinceΣA is a positive semidefinite matrix, its determinant is bounded from above by the prod-

uct of its diagonal entries (we may realiseΣA as the Gram matrix ofn vectors inRn and then
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det(ΣA) is the squared volume of the parallelepiped formed by these vectors while the diag-

onal entries are the squared norms of these vectors). All its diagonal entries are equal toµ̂(0)

and hence the claim follows.

2. Letu ∈ RA and setU(t) =
∑

k∈A uke
i〈k,t〉 for t ∈ Td. Observe that fork, ` ∈ Zd, the inner

product ofei〈k,t〉 andei〈`,t〉 is equal toδk,` in L2(Td, λ) and equal tôµ(k − `) in L2(Td, µ). It

follows that

‖u‖2 =
∫

Td

|U(t)|2dλ(t) and utΣAu =
∫

Td

|U(t)|2dµ(t).

Now, dµ(t) ≥ b(t)dλ(t) with equality ifµs = 0. Hence,

utΣAu ≥
∫

Td

|U(t)|2b(t)dλ(t)

with equality if µs = 0. Thus, using the lower bound forb, we see thatutΣAu ≥ b∗‖u‖2.

Whenµs = 0, we may also use the upper bound forb and getutΣAu ≤ b∗‖u‖2. From the

variational characterization of eigenvalues of symmetric matrices, the claims follow.

3. We may assume thatΣA is non-singular (otherwise,σA = 0 and by the previous part we must

haveb∗ = 0 and thus the right hand sides of both inequalities to prove are zero anyway).

Then, the Gaussian vector(Xm)m∈A has density(2π)−|A|/2 exp{−1
2utΣ−1

A u} with respect to

Lebesgue measure onRA and hence

HX(A) =
∫

Rd
+

exp{−1
2
utΣ−1

A u} du

(2π)|A|/2
√

det(ΣA)

whereR+ = [0,∞). From the first part, we havedet(ΣA) ≤ µ̂(0)|A|. Further,utΣ−1
A u ≤

1
σA
‖u‖2 for all u sinceσA is the smallest eigenvalue ofΣA. Putting these together, we get

HX(A) ≥ 1
µ̂(0)|A|/2

∫

Rd
+

e
− 1

2σA
‖u‖2 du

(2π)|A|/2

=
σ
|A|/2
A

2|A|µ̂(0)|A|/2

by evaluating the integral (which splits into a product of one dimensional Gaussian integrals).

This proves the first inequality forHX(A). By the second part, we have the boundσA ≥ b∗

from which the second inequality follows. ¥
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If b is bounded below by a positive constantb∗ onTd, then the third part of Lemma 3 immediately

implies the conclusion of Theorem 1 withγ = −1
2 log(b∗/4µ̂(0)). But the assumption in that theorem

is only thatb is bounded below by a positive constant in a neighbourhood of the origin. To get an

exponential lower bound under this weaker assumption, we shall use the following direct consequence

of Slepian’s inequality (see Corollary 2.4 of Adler [1] or Slepian’s original paper [17]).

Slepian’s inequality : Let X and Y be two Gaussian processes onZd with Cov(Xm, Xn)

≥ Cov(Ym, Yn) for all m,n ∈ Zd and such that Var(Xm) = Var(Ym) for all m ∈ Zd. Then,

HX(A) ≥ HY (A) for anyA ⊆ Zd.

The idea will be to get a different processY that is comparable toX as in Slepian’s inequality and

such thatY has spectral density that is bounded below on all ofTd. Then we may combine Slepian’s

inequality and the lower bound forHY (A) from Lemma 3 to prove Theorem 1. To produce such aY ,

we shall need the following lemma.

Lemma4 — Givenε > 0 there exists a functionh ∈ L1(Td, λ) such that

1. ĥ(n) ≥ 0 for all n andĥ(0) = 0.

2. sup
t∈Td

h(t) = h(0) = 1.

3. sup
t6∈(εT)d

h(t) ≤ −βε whereβε = εd.

Assuming this lemma, we prove Theorem 1.

PROOF OFTHEOREM1 : Leth be the function provided by Lemma 4 and setb̃(t) = b(t)− δ
2h(t).

Letdµ̃(t) = dµs(t)+b̃(t)dt and let(X̃n)n∈Z be the centered stationary Gaussian process with spectral

measurẽµ.

From the assumption onb, it follows that b̃ ≥ 1
2δ for t ∈ (εT)d andb(t) ≥ βε for t 6∈ (εT)d (for

a.e. t). Thus,̃b is bounded below bỹb∗ = min{1
2δ, βε}.

By the properties ofh, we see that̂µ(n) ≥ ˆ̃µ(n) for all n with equality forn = 0. In terms of

covariances this says thatE[X2
n] = E[X̃2

n] and Cov(Xn, Xm) ≥ Cov(X̃n, X̃m). Therefore, Slepian’s

inequality applies toX andX̃ and givesHX(A) ≥ HX̃(A).

By Lemma 3 and the fact that̃̂µ(0) = µ̂(0), we haveHX̃(A) ≥
(

b̃∗
4µ̂(0)

)|A|/2
, completing the

proof of the theorem withγ = −1
2 log(b̃∗/4µ̂(0)). ¥
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Finally we prove Lemma 4. In one dimension, one can give an explicit construction as follows.

Let cos(ε) < λ < 1 and set

h(t) =
1
2

∞∑

k 6=0

λ|k|eikt =
λ cos(t)− λ2

|1− λeit|2 .

For t ∈ T \ [−ε, ε], clearly this is bounded above by−λ(1 − λ)−2(λ − cos(ε)) < 0. Thus

sup|t|>ε h(t) is negative (the precise value is of no importance) while the Fourier coefficients are as

desired. We now give a construction valid in any dimension.

PROOF OFLEMMA 4 : Fix 0 < ε < π
4 andlet g, f : Td → R be defined byg = 1(εT)d and

f = (1 + η)g − η whereη = εd

1−εd is chosen so that
∫
Td fdλ = 0. Finally, seth = f ? f be the

convolution off with itself, i.e.,h(t) =
∫
Td f(s)f(t − s)dλ(s) (hereTd is treated as a group under

addition modulo2π).

By choice ofη, we havef̂(0) = 0. Further,(g ?g)(t) =
∏d

j=1(ε− 1
2π |tj |)+ andg ?1 = εd. From

this it follows that

(f ? f)(t) = (1 + η)2
d∏

j=1

(
ε− 1

2π
|tj |

)

+

− 2η(1 + η)εd + η2

= (1 + η)2
d∏

j=1

(
ε− 1

2π
|tj |

)

+

− η2

since(1 + η)εd = η.

Thus,h(t) = −η2 for ‖t‖∞ > 2πε and ĥ(m) = (f̂(m))2 which is zero form = 0 and non-

negative for allm. Lastly,h(0) = (1 + η)2εd. Dividing h by h(0) gives the desired function. ¥

Remark5 : What is it that makes our proof work? Consider two centered Gaussian vectorsX

andY in Rn with covariance matricesΣ andΣ′. There are two possible ways to compareΣ andΣ′.

Firstly, we may compare them in positive definite order, i.e.,Σ ≥ Σ′ if utΣu ≥ utΣ′u for all vectors

u. As the proof of Lemma 3 shows, in this case,Σ−1 ≤ Σ′−1 and hence,
∫

Rn
+

exp
{
−1

2
utΣ−1u

}
du ≥

∫

Rn
+

exp
{
−1

2
utΣ′−1u

}
.

Although the inequality for the determinant in the denominator of the Gaussian density goes

the other way (det(Σ)−
1
2 ≤ det(Σ′)−

1
2 ), these determinants can be easily bounded (byµ̂(0)|A| for

example) and hence, with a little imprecision, we may say that ifΣ ≥ Σ′ in the positive definite order,
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thenP{Xi > 0 for all i} is smaller thanP{Yi > 0 for all i}. The second comparison is the one used

in Slepian’s inequality (entrywise comparison ofΣ andΣ′ provided the diagonals are equal). In this

case, the much more non-trivial inequality of Slepian gives a comparison of the two probabilities,

P{Xi > 0 for all i} andP{Yi > 0 for all i}.

These two orderings are rather different from each other, and hence, by mixing them, we are able

to compare many more covariance matrices than is possible by either order alone!

4. AN EXAMPLE WHERE THE GAP PROBABILITY DECAYS FASTER THAN EXPONENTIAL

We give an example to show that the condition of Theorem 1 is necessary. This example is one among

a larger class of time series considered by Majumdar and Dhar [11]. Newell and Rosenblatt [14] also

remark in their paper that if the covariance is not positive, then the gap probability can decay faster

than exponential, but they do not give an example.

Example6 : Let dµ(t) = b(t)dt with b(t) = 2 − 2 cos(t). This is the spectral measure of the

Gaussian processXn = ξn − ξn+1 whereξi are i.i.d.N(0, 1). Therefore

HX(n) = P{X1 > 0, . . . , Xn > 0} = P{ξ1 > ξ2 > . . . > ξn+1} =
1

(n + 1)!

which decays faster than exponential (to be precise, decays likee−cn log n). Therefore, in general we

cannot expect an exponential lower bound.

Observe thatb(t) = 2 − 2 cos(t) satisfies the hypothesis of the second part of Theorem 2 with

p = 2 (andε = π andC = 10) and hence,HX(N) ≥ e−cN log N . Thus, Theorem 2 gives the right

lower bound for this example. More generally, consider any finite moving-average process, i.e., a

process onZ of the formXn =
∑r

k=0 akξn+k, whereak ∈ R andξk is an i.i.d. sequence of standard

Gaussians. Then the spectral measure isb(t)dt whereb(t) =
∣∣∑n

k=0 ake
ikt

∣∣2 is a trigonometric

polynomial. There are two possibilities.

1. If
∑r

k=0 ak 6= 0, thenb(0) 6= 0 and Theorem 1 applies. We getHX(N) ≥ e−cN .

2. If
∑r

k=0 ak = 0, thenb(0) = 0, then there is somep such thatb(p)(0) > 0. If b(t) has no zeros

in T other than0, then Theorem 2 applies and we getHX(N) ≥ e−cN log N .
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5. PROOF OFTHEOREM 2

To prove Theorem 2, we need a famous result on trigonometric polynomials due to Turán and Re-

mez and Nazarov. For a subsetE ⊆ T and 0 < p < ∞, andP : T → R, let ‖P‖Lp(E) =

(
∫
E |P (t)|pdλ(t))1/p. The following theorem is due to Nazarov [13].

Nazarov’s complete version of Tuŕan’s lemma: There is a numberB such that for any trigono-

metric polynomial in one variableP (t) =
∑n

k=0 ake
ikt, for any measurable subsetE ⊆ T with

λ(E) ≥ 1
3 , and for any0 < p ≤ 2, we have‖P‖Lp(E) ≥ e−B(n−1)λ(T\E)‖P‖Lp(T).

The original result due to Turán was the inequality‖P‖E ≥
(

λ(E)
4e

)n−1
‖P‖T for the case when

E is an arc inT (hereT is naturally identified with the circle). The inequality here is for sup-norms

while we shall need the comparison ofL2 norms. Further, Turán’s result was valid for arcs only, while

Nazarov’s inequality is valid for any measurableE. Further, in Nazarov’s version, as opposed to

Turán’s original inequality, the bound for ratio between‖P‖E and‖P‖T goes to1 asλ(T \E) → 0.

All these three features of Nazarov’s version of Turán’s inequality are essential to our application

below.

PROOF OF THEOREM 2 : In this proof, letA = {1, 2, . . . , N} and we writeΣN for ΣA and

HX(N) for HX(A) etc.

1. Recall from the proof of Lemma 3 that foru ∈ Rn, with U(t) =
∑N

k=1 uke
i〈k,t〉, we have

‖u‖2 =
∫

T

|U(t)|2dλ(t) and utΣNu ≥
∫

T

|U(t)|2b(t)dλ(t).

Let Eδ = {t ∈ T : b(t) ≥ δ} so thatλ(Eδ) ≥ δ for someδ > 0 (since we assume thatb is not

identically zero). Apply Tuŕan’s lemma as stated above to get

utΣNu ≥ δ‖U‖2
L2(Eδ)

≥ δe−B(1−δ)(N−1)‖U‖2
L2(T)

≥ e−γN‖u‖2

where we have absorbed various constants intoγ (henceγ now depends onb). Thus, the

smallest eigenvalue ofΣN is bounded below bye−γN . By the third part of Lemma 3, we get

the lower bound

HX(N) ≥
(

1
2
√

µ̂(0)
e−γN

)N/2

which is at leaste−γ′N2
for someγ′.
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2. For the second part, we get a more accurate lower bound for the smallest eigenvalue. For this

we again write

utΣNu ≥ δ‖U‖2
L2(Eδ)

≥ δe−Bλ(T\Eδ)(N−1)‖U‖2
L2(T)

≥ δe−CδpN‖u‖2

by the assumption thatλ(T \ Eδ) ≤ Cδp. Choosingδ = N−1/p, we get the lower bound

C ′N−1/p for the smallest eigenvalue ofΣA. Again invoking the third part of Lemma 3, we get

the lower boundHX(N) ≥ e−γN log N for a constantγ that depends onb throughC andp. ¥

6. AN EXAMPLE THAT (PERHAPS!) ACHIEVES e−cN2

LetX be the Gaussian process with spectral densityb(t) = 1 for t ∈ [12π, π]∪[−π,−1
2π] andb(t) = 0

for t ∈ (−1
2π, 1

2π). We have convincing evidence, but not yet a proof, thatHX(N) ≤ e−cN2
. Note

that the covariance kernel in this case is

K(m) =





1
2 if m = 0,

0 if m is even andm 6= 0,

1
πm if m = 3 (mod4),

− 1
πm if m = 1 (mod4).

As such we can invertΣN for smallN and by numerical experiments on Mathematica forN ≤ 24,

we have strong evidence that all entries ofΣ−1
N are positive. Accepting this, it follows that for any

u ∈ RN
+ , we haveutΣ−1

N u ≥ ∑N
k=1 σk,k

N u2
k, where we use the notation thatσi,j

N is the(i, j) entry of

Σ−1
N . Thus,

HX(N) ≤ 1√
det(ΣN )

N∏

k=1

1√
2π

∫

R+

e−
1
2
σk,k

N u2
du

=
1

2N
√

det(ΣN )
N∏

k=1

√
σk,k

N

.

Again numerically, we can evaluate the right hand side (call itĤ(N)), and it is observed that the

points(k,− log Ĥ(k)) for 1 ≤ k ≤ 24, lie very close to the parabola3.1 − 0.8x + 0.57x2. This

suggests thatHX(N) is indeed bounded above bye−cN2
.
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Remark7 : As remarked in the introduction, lower bounds for gap probability in continuous

time are stronger than analogous results in discrete time. For upper bounds the reverse is true:

(P{Xt > 0 for all t ∈ [0, T ]} ≤ P{Xn > 0 for all n ≤ bT c}). In particular, if it can be proved

rigorously for the above process that the gap probability is bounded above bye−cN2
, then the same

holds for the continuous time processX = (Xt)t∈R with spectral density (which is now a finite Borel

measure onR) b(t) = 1 1
2
π≤|t|≤π. It is worth noting that the processX is not pathological in any

sense and in fact it has smooth and even real-analytic sample paths. This is because the covariance

function is real analytic (to see that, either compute the covariance explicitly or use the fact that the

Fourier transform of a comapctly supported function is real analytic).
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