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In this paper we analyze two single server queueing-inventory systems in which items in the in-

ventory have a random common life time. On realization of common life time, all customers in

the system are flushed out. Subsequently the inventory reaches its maximum levelS through a

(positive lead time) replenishment for the next cycle which follows an exponential distribution.

Through cancellation of purchases, inventory gets added until their expiry time; where cancella-

tion time follows exponential distribution. Customers arrive according to a Poisson process and

service time is exponentially distributed. On arrival if a customer finds the server busy, then he

joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in

a finite waiting room of capacityK. Finding that at full, he joins a pool of infinite capacity with

probabilityγ (0 < γ < 1); else it is lost to the system forever. We discuss two models based on

‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service

completion epoch the waiting room size drops to preassigned numberL − 1 (1 < L < K) or

below, a customer is transferred from pool to waiting room with probabilityp (0 < p < 1) and

positioned as the last among the waiting customers. If at a departure epoch the waiting room

turns out to be empty and there is at least one customer in the pool, then the one ahead of all

waiting in the pool gets transferred to the waiting room with probability one. We introduce a

totally different transfer mechanism in Model 2: when at a service completion epoch, the server

turns idle with at least one item in the inventory, the pooled customer is immediately taken for

service. At the time of a cancellation if the server is idle with none, one or more customers in

the waiting room, then the head of the pooled customer go to the buffer directly for service. Also

we assume that no customer joins the system when there is no item in the inventory. Several sys-

tem performance measures are obtained. A cost function is discussed for each model and some

numerical illustrations are presented. Finally a comparison of the two models are made.
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1. INTRODUCTION

In this paper we consider a queueing-inventory problem with reservation of inventoried items, cancel-

lation of the reservation and common life time (CLT) of items in the inventory. The common life time

plays a crucial role unlike the perishable inventory problems investigated in literature. Perishability

or decay of items need not affect simultaneously all stored and sold items in a cycle (for definition of

cycle see the end of this section). However, this is not the case with the problem that we investigate in

this paper. We consider the case of common life time for all items in the inventory along with those

sold in the same cycle. In other words these perish simultaneously – they are no more usable. This

is the case with air plane/train/bus tickets for journey by a specified flight/train/bus. Here the seats

are considered as inventory. Whether they are sold or otherwise, once the flight/train/bus departs, the

vacant seats and those which are sold but the passenger does not show up at the time of departure, all

fall in the “no use category”. Recently this type of problem is investigated in a very special case in

Krishnamoorthyet al. [7]. Assuming all underlying distributions to be exponential, the authors ana-

lyze the problem as a quasi-birth-and-death (QBD) process where only the ‘phases’ and not ‘levels’

disappear from the system on realization of CLT. We elaborate on ‘phases’ and ‘levels’ a bit later.

With the assumption of flush out of all customers from the system on realization of CLT, what we get

is aGI/M/1 type Markov chain.

The flush out/reneging of all customers on realization ofCLT could be seen in several day to

day phenomena. For example, people waiting for tickets for travel by a specific train, for watching

a specific show of a movie and so on, tend to leave the system when they do not get tickets for the

intended purpose. Those who do not get tickets until realization ofCLT leave the service area.

Also replenishment of items within a cycle (that is, starting from a fresh batch of inventory un-

til realization ofCLT ) is meaningless since if we go for a replenishment when inventory goes to

zero, theCLT of these fresh replenishments do not match with that of the earlier ones (of course,

here we assumedCLT to be exponential and hence does not create serious problem). Further can-

cellation process may now lead to inventory level going aboveS. It may also be observed that in a

bus/train/airplane the number of seats are fixed and so a replenishment of inventory in that context is

meaningless.

For the model discussed in Krishnamoorthyet al. [7], the stability condition was to be investi-

gated. It is obvious that the present system is stable because of the immediate departure of all waiting
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customers from the system on realization ofCLT . A look at the infinitesimal generator of the pro-

cess shows that the left most column (starting from the second row) has all elements positive. This

is a special case of theGI/M/1 type situation. A generalGI/M/1 type situation needs checking

of stability. In our case the system is always stable since theCLT of inventory has a finite mean

and the number of customers joining during this time is finite with probability 1. Further unsatisfied

customers leave the system forever.

The main difference between the model(s) discussed in this paper and the one considered in

Krishnamoorthyet al. [7], despite having several common features, are:

(i) In Krishnamoorthyet al. [7] orbital customers are not flushed out of the system on realization

of CLT whereas customers in the pool are also flushed out in the model described in this paper. As

a consequence, whereas the infinitesimal generator of the continuous time Markov chain (CTMC) in

Krishnamoorthyet al. [7] has a quasi-Toeplitz structure with the repeating part starting in row 2, the

Markov chain in the present case does not have this nice structure.

(ii) Model described by Krishnamoorthyet al. [7] could be stable only under prescribed condi-

tions. In contrast the model described here is stable for any traffic intensity, however, large. The latter

is the consequence of the flush out of customers from the pool as well, thereby the system become to-

tally empty – that is to say the system is devoid of inventory and customers on realization of common

life time. The new cycle then starts.

(iii) Whereas lead time for inventory replenishment in Krishnamoorthyet al. [7] is zero, in the

present case it has exponential distribution. All these lead to a totally different structure for the

function to be optimized in the case of the present model. The flush out of all customers from the

system on realization of CLT is necessitated by the fact that they all want to have inventory in the

present cycle.

Thus a much more complex system is studied in this paper. Going back to Krishnamoorthyet al.

[7], we note that whereas the authors assume retrial of customers from an orbit when they are not able

to get into the buffer or waiting room, we assume a more visible entity called pool for such customers

in the present work. This has the advantage of customers in the pool knowing the status of the buffer

as also waiting room as well as the server getting complete information on the pool. This aspect will

enable the service system to design a transfer mechanism of customers from the pool.
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Note that there were some errors in the expressions forENC , ENP , Pfull andPvacant (see pages

8, 9 for definition) in the model described in Krishnamoorthyet al. [7]. The authors have subsequently

corrected those.

Before proceeding further, we provide a brief survey on queueing-inventory models. Its origin

dates back to 1992 with Sigman and Levi [17] introducing the M/G/1 queueing-inventory model

with exponentially distributed lead time under light traffic. This was followed by contributions from

Bermanet al. [2], Berman and Kim [3], Berman and Sapna [4], Arivarignanet al. [1], Krishnamoor-

thy et al. [8] and by several other researchers. In Krishnamoorthyet al. [8] the authors provide

a stochastic decomposition of the system under study; neverthless, it is not a big surprise since the

inventory replenishment lead time is assumed to be zero though the N-policy is brought in. Thus

Schwarzet al. [14] stand out as the first significant contribution providing stochastic decomposition

of the system state of a queueing-inventory problem. Krishnamoorthy and Viswanath [9] brings in

production of items for inventory thereby subsuming Schwarzet al. [14]. The latter is also subsumed

by Saffariet al. [13] in that the lead time is arbitrarily distributed. Further contribution with stochastic

decomposition results could be found in Schwarzet al. [16], Schwarz and Daduna [15], Krenzler and

Daduna [6], Ottenet al. [12].

Though our concern in this paper is not stochastic decomposition of system state, we wanted to

bring to the notice of the readers some of the finest contributions in the queueing-inventory concerning

stochastic decomposition.

This paper is organized as follows. The section to follow provides the model description. In fact

two models are analyzed. Mathematical formulation of Model 1 is taken up in Section 2. That section

also contains key performance characteristics of the system. This is followed by the Mathematical

formulation of Model 2 in Section 3. Evaluation of its performance is also indicated in that section.

Section 4 analyzes numerically an objective function – the objective being cost minimization / profit

maximization.

Some notations, abbreviations and definitions used in the sequel:

• N1(t) = Number of customers with in the pool at timet.

• N2(t) = Number of customers in the waiting room at timet.

• N3(t) = Number of customers in the buffer (including in service) at timet.
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• I(t) = Number of items in the inventory at timet.

• u(t) =





0; if server is idle at timet,

1; pooled customer in service at timet,

2; customer in service not from the pool at timet

.

• e= Column vector of1′s with appropriate order.

• e′i = Row vector with 1 is in theith position and remaining elements are zero.

• U1 = (S + 1)(S + 2)/2 + K(S + 1).

• U2 = K(S + 1).

• U3 = (S + 1)2 + K(2S + 1).

• U4 = S(S + 1) + K(2S + 1) + 1.

• CTMC : continuous time Markov chain.

• QBD : quasi-birth and death process.

• CLT : common life time.

• GI/M/1 type queue: see Neuts [10], [11] for details.

• Cycle: The time duration from the epoch at which we start with maximum inventory levelS at

a replenishment epoch, to the moment when the common life time is realized.

• Lead time: On expiry of common life time, the inventory level reaches its maximumS through

a replenishment for the next cycle. The time elapsed between realization of CLT of a batch to

the epoch at which the replenishment takes place for the next cycle, is called lead time.

2. MATHEMATICAL FORMULATION : MODEL 1

We have a single commodity inventory system withS items at the beginning of a cycle. Customers

arrive according to a Poisson process of rateλ demanding exactly one unit of item (extension to

demand for more than one item by a customer is straight forward). To deliver the item to the customer

in service, it requires an exponentially distributed time with parameterµ. The inventoried items have
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a common life time which means that they all perish together on realization of this time. Examples are

indicated in the introduction (another example is drugs that are manufactured in a batch). We assume

that this common life time is exponentially distributed with parameterα. On realization of common

life time the process of ordering for inventory replenishment starts. The physical arrival of items

takes an exponentially distributed amount of time having parameterη. The quantity of replenishment

is S. A buffer of varying size, depending on the number of items in the inventory is available near the

service counter. We call it varying size because at most as many customers as the number of items in

the inventory are allowed to be in this buffer. In addition the possibility of cancellation of purchase

(return of the item with a penalty) is introduced here. Inter cancellation time follows exponential

distribution with parameteriβ, when there arei items in the purchased list in the current cycle (that

is, there are(S − i) items are in the inventory). Next in order is a finite waiting space of capacityK.

When the buffer is full further arrivals wait in this room; as and when inventory level in the buffer

goes above (due to cancellation), the head in the waiting room moves to the buffer and positions

himself as the last there. When the waiting room is also full, further arrivals are directed to a pool (of

customers) having infinite capacity. Whereas customers join with probability one in the buffer and

waiting room whenever there is a vacancy, it is not the case with the pool. An arrival finding waiting

room also full joins the pool with probabilityγ(0 < γ < 1) or balks with complementary probability.

We introduce a transfer mechanism of customers from pool to waiting room as follows: when,

at a departure epoch the number of customers in the waiting room drops to a preassigned number

L − 1, (1 < L < K) or below, a customer is transferred from the pool to the waiting room with

probability p (0 < p < 1) and positioned as last among the waiting customers. If at a service

completion epoch the waiting room turns out to be empty and there is at least one customer in the

pool, the one ahead of all waiting in the pool gets transferred (with probability one) to the waiting

room. Transfer of customers from a pool is introduced and analyzed in Deepaket al. [5].

It is in the transfer mechanism that the two models discussed in this paper differ. This mechanism

for Model 2 is discussed at the appropriate place in Section 3.

Further all customers are flushed out from the system (finite buffer, waiting room and pool) when

the common life time is realized.

By the above assumptionsΩ = {(N1(t), N2(t), I(t), N3(t)) , t ≥ 0} is aCTMC. Its state space

is given by

{∆}
⋃
{(0, 0, i, n3) ; 0 ≤ i ≤ S, 0 ≤ n3 ≤ i}
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⋃
{(n1, n2, i, n3) ; n1 ≥ 0, 1 ≤ n2 ≤ K, 0 ≤ i ≤ S, n3 = i}

where{∆} denotes the temporary absorbing state. The so called ‘temporary absorbing’ state{∆}
indicates that there is no inventory in the system consequent to realization ofCLT and so no customer

in the system due to flush out / reneging. The system stays there for an exponentially distributed

amount of time (namely the lead time). It may happen that within a cycle (before realization ofCLT )

there is no inventory in the system as also no customer. However, this state of the system is different

form {∆}. Thus we need to distinguish between the two, for which purpose the symbol{∆} was

brought in. The infinitesimal generatorQ is of the form

Q =




A∆ A∆0

A0∆ A00 A01

A′2 A10 A1 A0

A′2 A2 A1 A0

A′2 A2 A1 A0

...
. ..

.. .
. . .




.

The matricesA0, A1, A2 are square matrices of the same orderU2 with A0 representing transition

from level n1 to n1 + 1, n1 ≥ 1, A1 represents the transitions within the leveln1, n1 ≥ 1 and

A2 contains transition rates from leveln1 to n1 − 1, n1 ≥ 2. Dimension of matricesA00, A01, A10

areU1 × U1, U1 × U2, U2 × U1 respectively. MatricesA0∆, A′2 are column vectors of orderU1, U2

respectively.A∆0 is a row vector of orderU1.

A∆ = −η, A∆0 = ηe′S(S+1)/2+1, A0∆ = αe, A′2 = αe.

DefineA
(n2,i,n3:m2,j,m3)
k , k = 00, 01, 10, 0, 1, 2 as the transition rates from(n2, i, n3) → (m2, j,m3)

wheren2,m2 represent the number of customers in the waiting room,i, j represent the number of

items in the inventory andn3,m3 represent the number of customers in the buffer. These transition

rates are

A
(n2,i,n3:m2,j,m3)
01 =





γλ, for n2 = K, 0 ≤ i ≤ S, n3 = i;

m2 = n2, j = i,m3 = n3,

0, otherwise.

A
(n2,i,n3:m2,j,m3)
10 =





(S − i)β, for n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i + 1,m3 = n3 + 1,

p(S − i)β, for 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i + 1,m3 = n3 + 1,

0, otherwise.
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A
(n2,i,n3:m2,j,m3)
0 =

{
γλ, for n2 = K, 0 ≤ i ≤ S, n3 = i;

m2 = n2, j = i, m3 = n3,

0, otherwise.

A
(n2,i,n3:m2,j,m3)
2 =





(S − i)β, for n2 = 1, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i + 1, m3 = n3 + 1,

p(S − i)β, for 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2, j = i + 1, m3 = n3 + 1,

0, otherwise.

A
(n2,i,n3:m2,j,m3)
1 =





λ, for 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i, m3 = n3,

µ, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i− 1, m3 = n3 − 1,

(1− p)(S − i)β, for 2 ≤ n2 ≤ L, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1,

(S − i)β, for L + 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1,

−(λ + Sβ + α), for 1 ≤ n2 ≤ K − 1, i = 0, n3 = 0;

m2 = n2, j = i, m3 = n3,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i, m3 = n3,

−(γλ + Sβ + α), for n2 = K, i = 0, n3 = 0;

m2 = n2, j = i, m3 = n3,

−(γλ + µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i, m3 = n3,

0, otherwise.

A
(n2,i,n3:m2,j,m3)
00 =





λ, for n2 = 0, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i, m3 = n3,

λ, for n2 = 0, 1 ≤ i ≤ S, 0 ≤ n3 ≤ i− 1;

m2 = n2, j = i, m3 = n3 + 1,

λ, for 1 ≤ n2 ≤ K − 1, 0 ≤ i ≤ S, n3 = i;

m2 = n2 + 1, j = i, m3 = n3,

µ, for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i;

m2 = n2, j = i− 1, m3 = n3 − 1,

µ, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i− 1, m3 = n3 − 1,

(S − i)β, for n2 = 0, 0 ≤ i ≤ S − 1, 0 ≤ n3 ≤ i;

m2 = n2, j = i + 1, m3 = n3,

(S − i)β, for 1 ≤ n2 ≤ K, 0 ≤ i ≤ S − 1, n3 = i;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1,

−(λ + (S − i)β + α), for n2 = 0, 0 ≤ i ≤ S, n3 = 0;

m2 = 0, j = i, m3 = n3,

−(λ + µ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i;

m2 = 0, j = i, m3 = n3,

−(λ + Sβ + α), for 1 ≤ n2 ≤ K − 1, i = 0, n3 = 0;

m2 = n2, j = i, m3 = n3,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i, m3 = n3,

−(γλ + Sβ + α), for n2 = K, i = 0, n3 = 0;

m2 = n2, j = i, m3 = n3,

−(γλ + µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i;

m2 = n2, j = i, m3 = n3,

0, otherwise.

2.1 Steady-state analysis

In this section, we perform the steady-state analysis of the queueing-inventory model described above.
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Let x be the steady-state probability vector of generatorQ. Then we have

xQ = 0, xe = 1. (1)

Partitioningx asx = (x∆, x0, x1, x2, ...) and then each of the sub-vectors as

x0 = (x0(0, i, n3), x0(n2, i, i); 0 ≤ i ≤ S, 0 ≤ n3 ≤ i, 1 ≤ n2 ≤ K),

xn1 = (xn1(n2, i, i); 0 ≤ i ≤ S, 1 ≤ n2 ≤ K), for n1 ≥ 1,

we see thatx is obtained as (see Neuts [10])

xn1 = x1R
n1−1, n1 ≥ 2

whereR is the minimal nonnegative solution to the matrix equation:

2∑

k=0

RkAk = 0

and the boundary equations are given by

x∆A∆0 + x0A00 + x1A10 = 0,

x0A01 + x1[A1 + RA2] = 0,

x∆ =
α

η

∞∑

n1=0

xn1e.

Thenormalizing condition (1) gives

x∆ + x0e+ x1[I −R]−1e = 1.

The system state probabilities computed above provide the following useful information about

the system.

• Expected number of customers in the pool before realization of common life time

EP (N) =
∞∑

n1=1

n1xn1e.

• Expected number of customers in the waiting room before realization of common life time

EW (N) =
∞∑

n1=0

K∑

n2=1

S∑

i=0

n2xn1(n2, i, i).
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• Expected number of customers in the buffer before realization of common life time

EB(N) =
∞∑

n1=0

K∑

n2=1

S∑

i=1

ixn1(n2, i, i) +
S∑

i=1

i∑

n3=1

n3x0(0, i, n3).

• Expected number of items in the inventory before realization of common life time

EI(N) =
∞∑

n1=0

K∑

n2=1

S∑

i=1

ixn1(n2, i, i) +
S∑

i=1

i∑

n3=0

ix0(0, i, n3).

• Expected number of items in the inventory immediately on realization of common life time

E′
I(N) =

∞∑

n1=0

K∑

n2=1

S∑

i=1

i
α

α + λ + µ + (S − i)β
xn1(n2, i, i)+

S∑

i=1

i
α

α + λ + (S − i)β
x0(0, i, 0) +

S∑

i=1

i∑

n3=1

i
α

α + λ + µ + (S − i)β
x0(0, i, n3).

• Rate of addition to the pool is

γλ

∞∑

n1=0

S∑

i=0

xn1(K, i, i).

• The probability that a customer enters service immediately on arrival

S∑

i=1

x0(0, i, 0).

• The rate at which pooled customers are transferred to the waiting room

EPW (R) =
∞∑

n1=1

S−1∑

i=0

(S − i)β

[
L∑

n2=2

pxn1(n2, i, i) + xn1(1, i, i)

]
.

• The rate at which customers abandon the system on arrival

EWL(R) = (1− γ)λ
∞∑

n1=0

S∑

i=0

xn1(K, i, i).

• Expected cancellation rate

EC(R) =
∞∑

n1=0

K∑

n2=1

S−1∑

i=0

(S − i)βxn1(n2, i, i) +
S−1∑

i=0

i∑

n3=0

(S − i)βx0(0, i, n3).
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• Expected inventory depletion rate

EP (R) = µ

{ ∞∑

n1=0

K∑

n2=1

S∑

i=1

xn1(n2, i, i) +
S∑

i=1

i∑

n3=1

x0(0, i, n3)

}
.

• Expected number of cancellations in a cycle

ENC =
1
α

{ ∞∑

n1=0

K∑

n2=1

S−1∑

i=0

(S − i)βxn1(n2, i, i) +
S−1∑

i=0

i∑

n3=0

(S − i)βx0(0, i, n3)

}
.

• Expected number of purchases in a cycle

ENP =
1
α

µ

{ ∞∑

n1=0

K∑

n2=1

S∑

i=1

xn1(n2, i, i) +
S∑

i=1

i∑

n3=1

x0(0, i, n3)

}
.

• Expected number of transfers from the pool to the waiting room

EPW (N) =
1
α

∞∑

n1=1

S−1∑

i=0

(S − i)β

[
L∑

n2=2

pxn1(n2, i, i) + xn1(1, i, i)

]
.

• The probability that the system hasS items in the inventory at the time of realization of common

life time

Pvacant =
S∑

n3=1

x0(0, S, n3) +
∞∑

n1=0

K∑

n2=1

xn1(n2, S, S) + x0(0, S, 0).

This is equal to the probability, for example,, that a bus withS seats depart without any pas-

senger on board.

• The probability that the system is left with no item in the inventory at the time of realization of

common life time

Pfull = x0(0, 0, 0) +
∞∑

n1=0

K∑

n2=1

xn1(n2, 0, 0).

This is equivalent to the probability that bus referred to in the previous item leaves with full

capacity.
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3. MATHEMATICAL FORMULATION : MODEL 2

In this section we describe an inventory problem in which further restrictions are imposed on model

1 described in Section 2. The following are the additional restrictions:

(a) No customer joins the system when inventory level is zero.

(b) When a cancellation of purchased inventory occurs with none, one or more customers waiting

in the waiting room and server idle due to no item in the inventory the head of the pool is transferred

to the buffer for immediate service.

(c) If at a service completion epoch, there is no customer in the buffer as well as the waiting room,

then again the head of the pool is transferred to the buffer for immediate service.

(d) No transfer takes place from the pool/waiting room to the buffer when no item in the inventory.

All other assumptions in model 1 hold for the present model. Assumptions (b), (c) are to reduce

the waiting time of customers in the pool to same extent. Thus we get aCTMC {(N1(t), N2(t), I(t),

N3(t), u(t)), t ≥ 0} with state space

Ω′ = {∆}
⋃
{(0, 0, i, 0, 0) ; 0 ≤ i ≤ S}

⋃
{(n1, n2, 0, 0, 0) ; n1 ≥ 0, 1 ≤ n2 ≤ K}

⋃
{(n1, 0, i, n3, k) ; n1 ≥ 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2}

⋃
{(n1, n2, i, i, k) ;n1 ≥ 0, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, k = 1, 2}

where{∆} denotes the temporary absorbing state. In this modelu(t) is brought in to identify whether

the current service, if any, is of a pooled customer. This is introduced to explicitly compute certain

system performance index that would help to control the number of customers in the pool. Thus the

infinitesimal generatorQ′ is of form

Q′ =




B∆ B∆0
B0∆ B00 B01
B′2 B10 B1 B0
B′2 B2 B1 B0
B′2 B2 B1 B0

.

.

.
. . .

. . .
. . .


 .

The matricesB0, B1, B2 are square matrices of the same orderU4 with B0 representing transition

from leveln1 to n1 + 1, n1 ≥ 1, B1 represents the transitions within the leveln1, n1 ≥ 1 andB2

contains transition rates from leveln1 to n1 − 1, n1 ≥ 2. Dimension of matricesB00, B01, B10 are

U3 × U3, U3 × U4, U4 × U3 respectively. MatricesB0∆, B′
2 are column vectors of orderU3, U4

respectively.B∆0 is a row vector of orderU3.

B∆ = −η,B∆0 = ηe′S2+1, B0∆ = αe, B′2 = αe.
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DefineB
(n2,i,n3,k1:m2,j,m3,k2)
l , l = 00, 01, 10, 0, 1, 2 as the transition rates from(n2, i, n3, k1) →

(m2, j,m3, k2) wheren2,m2 represent the number of customers in the waiting room,i, j represent

the number of items in the inventory,n3, m3 represent the number of customers in the buffer and

k1, k2 represent the status of server. These transition rates are

B
(n2,i,n3,k1:m2,j,m3,k2)
01 =





γλ, for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0, otherwise.

B
(n2,i,n3,k1:m2,j,m3,k2)
10 =





Sβ, for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i + 1,m3 = n3 + 1, k2 = 1,

µ, for n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1, 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0, otherwise.

B
(n2,i,n3,k1:m2,j,m3,k2)
0 =





γλ, for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i,m3 = n3, k2 = k1,

0, otherwise.

B
(n2,i,n3,k1:m2,j,m3,k2)
00 =





λ, for n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

λ, for n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1, 2;

m2 = n2, j = i, m3 = n3 + 1, k2 = k1,

λ, for n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = n2, j = i, m3 = n3 + 1, k2 = 2,

λ, for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

µ, for n2 = 0, 1 ≤ i ≤ S, n3 = 1, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

(S − i)β, for n2 = 0, 0 ≤ i ≤ S − 1, n3 = 0, k1 = 0;

m2 = n2, j = i + 1, m3 = n3, k2 = 0,

(S − i)β, for n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1, m3 = n3, k2 = k1,

Sβ, for 1 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = 2,

(S − i)β, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = k1,

−(Sβ + α), for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(λ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = 0, j = i, m3 = n3, k − 2 = k1,

−(λ + µ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

0, otherwise.
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B
(n2,i,n3,k1:m2,j,m3,k2)
1 =





λ, for n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

λ, for n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1, 2;

m2 = n2, j = i, m3 = n3 + 1, k2 = k1,

λ, for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

µ, for n2 = 0, i = 1, n3 = 1, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

(S − i)β, for n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1, m3 = n3, k2 = k1,

(S − i)β, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = k1,

−(Sβ + α), for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

0, otherwise.

B
(n2,i,n3,k1:m2,j,m3,k2)
2 =





Sβ, for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i + 1, m3 = n3 + 1, k2 = 1,

µ, for n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1, 2;

m2 = n2, j = i− 1, m3 = n3, k2 = 1,

0, otherwise.

3.1 Steady-state analysis

Note that the system described is always stable since realization of common life time results in all

customers in the system being flushed out. In this section, we perform the steady-state analysis of the

queueing-inventory model.

Let y be the steady-state probability vector of generatorQ′. Then we have

yQ′ = 0, ye = 1. (2)

Partitioningy asy = (y∆, y0, y1, y2, ...) and then each of the sub-vectors as

y0 = ((y0(0, i, 0, 0), 0 ≤ i ≤ S); (y0(0, i, n3, k), 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2);

(y0(n2, 0, 0, 0), 1 ≤ n2 ≤ K); (y0(n2, i, i, k), 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, k = 1, 2))

yn1
= ((yn1(n2, i, i, k), 1 ≤ i ≤ S, 1 ≤ n2 ≤ K, k = 1, 2);

(yn1(0, i, n3, k), 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2); (yn1(n2, 0, 0, 0), 1 ≤ n2 ≤ K) for n1 ≥ 1,
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we see thaty is obtained as (see Neuts [10])

yn1
= y1R

n1−1, n1 ≥ 2

whereR is the minimal nonnegative solution to the matrix equation:
2∑

k=0

RkBk = 0

and the boundary equations are given by

y∆B∆0 + y0B00 + y1B10 = 0,

y0B01 + y1[B1 + RB2] = 0,

y∆ =
α

η

∞∑

n1=0

yn1
e.

Thenormalizing condition (2) gives

y∆ + y0e+ y1[I −R]−1e = 1.

3.2 A random walk

We consider the model with negligible service time; reservation, cancellation and realization of com-

mon life time on the set{0, 1, 2, ..., S}, the set of possible states of the inventory level process. No

customer joins when the inventory level is zero and so there will be none in the waiting room and

pool. The arrival process, cancellation and CLT are as described in Section 2. LetI(t) be the inven-

tory level at timet. Then{I(t), t ≥ 0} is a Markov chain on state space{0, 1, 2, ..., S}⋃ {
∆̃

}
where{

∆̃
}

is an absorbing state which denotes the realization of common life time. Thus the infinitesimal

generator is

W̃ =


 T̃ T̃ 0

0 0




where

T̃ =




0 1 . . . S − 2 S − 1 S

0 hS Sβ

1 λ hS−1 (S − 1)β
...

... ... ...

S − 2 λ h2 2β

S − 1 λ h1 β

S λ h0




, T̃ 0 = αe



372 A. KRISHNAMOORTHY et al.

with hi = −(λ + iβ + α), 0 ≤ i ≤ (S − 1) andhS = −(Sβ + α). The expected timeET until

absorption follows a Phase type distribution with representation(ξ, T̃ ) whereξ = (0, ..., 0, 1) is the

initial probability vector of order(S + 1). HenceET = −ξT̃−1e.

3.3 Expected number of pooled customers getting service in a cycle

In order to compute the number of pooled customers getting service in a cycle, we consider the case of

a finite pool. For numerical procedure the truncation levelPL (size of the pool) is taken such that the

probability of the number of customers in the pool going above the truncation size is of the order less

thanε (hereε is taken as10−6). Consider the Markov chain{(N(t), N ′
1(t), N2(t), I(t), N3(t), u(t)),

t ≥ 0} whereN(t) = number of pooled customers who received service upto time in the present

cycle andN ′
1(t) = number of customers in the finite pool at timet. Its state space is

{
∆′}⋃

{(n, n1, 0, i, n3, k) ; n ≥ 0, 0 ≤ n1 ≤ PL, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k = 1, 2}
⋃

{(n, 0, 0, i, 0, 0) ; n ≥ 0, 0 ≤ i ≤ S}
⋃
{(n, n1, n2, 0, 0, 0) ; n ≥ 0, 0 ≤ n1 ≤ PL, 1 ≤ n2 ≤ K}

⋃
{(n, n1, n2, i, i, k) ;n ≥ 0, 0 ≤ n1 ≤ PL, 1 ≤ n2 ≤ K, 1 ≤ i ≤ S, k = 1, 2}

where{∆′} is an absorbing state which denotes the realization of common life time. The infinitesimal

generator of the Markov chain is

NPL =




0 0 0 0 0 . . .

H H1 H0

H H1 H0

H H1 H0

...
... ...




whereH0,H1 are square matrices of orderU3 + PLU4 with H = αe.

The entries inH0 andH1 are as under:

H1 =




B′
00 B01

B′
10 B′

1 B0

B′
2 B′

1 B0

... ... ...

B′
2 B′

1 B0

B′
2 B0

1




,H0 =




M ′
1

M ′
2 M1

M2 M1

... ...

M2 M1



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where

B
′(n2,i,n3,k1:m2,j,m3,k2)
00 =





λ, for n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

λ, for n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1, 2;

m2 = n2, j = i, m3 = n3 + 1, k2 = k1,

λ, for n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = n2, j = i, m3 = n3 + 1, k2 = 2,

λ, for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

µ, for n2 = 0, 1 ≤ i ≤ S, n3 = 1, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

(S − i)β, for n2 = 0, 0 ≤ i ≤ S − 1, n3 = 0, k1 = 0;

m2 = n2, j = i + 1, m3 = n3, k2 = 0,

(S − i)β, for n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1, m3 = n3, k2 = k1,

Sβ, for 1 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = 2,

(S − i)β, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = k1,

−(Sβ + α), for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(λ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, n3 = 0, k1 = 0;

m2 = 0, j = i, m3 = n3, k − 2 = k1,

−(λ + µ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

0, otherwise.

B
′(n2,i,n3,k1:m2,j,m3,k2)
1 =





λ, for n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

λ, for n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1, 2;

m2 = n2, j = i, m3 = n3 + 1, k2 = k1,

λ, for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

µ, for n2 = 0, i = 1, n3 = 1, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

(S − i)β, for n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1, m3 = n3, k2 = k1,

(S − i)β, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = k1,

−(Sβ + α), for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(γλ + µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

0, otherwise.
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B
′(n2,i,n3,k1:m2,j,m3,k2)
10 =





Sβ, for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i + 1,m3 = n3 + 1, k2 = 1,

µ, for n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0, otherwise.

B
0(n2,i,n3,k1:m2,j,m3,k2)
1 =





λ, for n2 = 0, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

λ, for n2 = 0, 2 ≤ i ≤ S, 1 ≤ n3 ≤ i− 1, k1 = 1, 2;

m2 = n2, j = i, m3 = n3 + 1, k2 = k1,

λ, for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2 + 1, j = i, m3 = n3, k2 = k1,

µ, for n2 = 0, i = 1, n3 = 1, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 2;

m2 = n2, j = i− 1, m3 = n3 − 1, k2 = 2,

(S − i)β, for n2 = 0, 1 ≤ i ≤ S − 1, 1 ≤ n3 ≤ i, k1 = 1, 2;

m2 = n2, j = i + 1, m3 = n3, k2 = k1,

(S − i)β, for 1 ≤ n2 ≤ K, 1 ≤ i ≤ S − 1, n3 = i, k1 = 1, 2;

m2 = n2 − 1, j = i + 1, m3 = n3 + 1, k2 = k1,

−(Sβ + α), for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for n2 = 0, 1 ≤ i ≤ S, 1 ≤ n3 ≤ i, k=1, 2;

m2 = 0, j = i, m3 = n3, k2 = k1,

−(λ + µ + (S − i)β + α), for 1 ≤ n2 ≤ K − 1, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

−(µ + (S − i)β + α), for n2 = K, 1 ≤ i ≤ S, n3 = i, k1 = 1, 2;

m2 = n2, j = i, m3 = n3, k2 = k1,

0, otherwise.

B
′(n2,i,n3,k1:m2,j,m3,k2)
2 =





Sβ, for 0 ≤ n2 ≤ K, i = 0, n3 = i, k1 = 0;

m2 = n2, j = i + 1,m3 = n3 + 1, k2 = 1,

µ, for n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 2;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0, otherwise.

M
′(n2,i,n3,k1:m2,j,m3,k2)
2 =





µ, for n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0, otherwise.
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M
′(n2,i,n3,k1:m2,j,m3,k2)
1 =





µ, for n2 = 0, 1 ≤ i ≤ S, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

0, otherwise.

M
(n2,i,n3,k1:m2,j,m3,k2)
1 =





µ, for n2 = 0, i = 1, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ, for n2 = 0, 2 ≤ i ≤ S, 2 ≤ n3 ≤ i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

µ, for 1 ≤ n2 ≤ K, i = 1, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 0,

µ, for 1 ≤ n2 ≤ K, 2 ≤ i ≤ S, n3 = i, k1 = 1;

m2 = n2, j = i− 1,m3 = n3 − 1, k2 = 2,

0, otherwise.

M
(n2,i,n3,k1:m2,j,m3,k2)
2 =





µ, for n2 = 0, 2 ≤ i ≤ S, n3 = 1, k1 = 1;

m2 = n2, j = i− 1,m3 = n3, k2 = 1,

0, otherwise.

If pk is the probability that absorption occurs with exactlyk pooled customers getting service,

then

pk = δPL(−H−1H0)k(−H−1
1 H), k ≥ 0

with δPL = (x0, x1, x2, ..., xPL) is a row vector of orderU3 + PLU4. Therefore the expected number

of pooled customers getting service before realization of common life time is

EPL(N) =
∞∑

k=0

kpk

(see Krishnamoorthyet al. [7]).
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3.4 Additional performance measures

1. Expected number of customers in the pool before realization of common life time

EP (N) =
∞∑

n1=1

n1yn1
e.

2. Expected number of customers in the waiting room before realization of common life time

EW (N) =
∞∑

n1=0

K∑

n2=1

n2

{
yn1(n2, 0, 0, 0) +

S∑

i=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

}
.

3. Expected number of customers in the buffer before realization of common life time

EB(N) =
∞∑

n1=0

{
K∑

n2=1

S∑

i=1

i[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
S∑

i=1

i∑

n3=1

n3[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

}
.

4. Expected number of items in the inventory before realization of common life time

EI(N) =
∞∑

n1=0

S∑

i=1

i

{
K∑

n2=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
i∑

n3=0

[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

}
+

S∑

i=1

iy0(0, i, 0, 0).

5. Expected number of items in the inventory immediately on realization of common life time

E′
I(N) =

∞∑

n1=0

S∑

i=1

i
α

α + λ + µ + (S − i)β

{
K∑

n2=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
i∑

n3=0

[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

}
+

S∑

i=1

i
α

α + λ + (S − i)β
y0(0, i, 0, 0).

6. Rate of addition to the pool is

γλ

∞∑

n1=0

S∑

i=1

[yn1(K, i, i, 1) + yn1(K, i, i, 2)].
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7. The probability that a customer enters service immediately on arrival

S∑

i=1

y0(0, i, 0, 0).

8. The rate at which pooled customers are transferred to the buffer

EPB(R) =
∞∑

n1=1

[
S∑

i=2

µ[yn1(0, i, 1, 1) + yn1(0, i, 1, 2)] +
K∑

n2=0

Sβyn1(n2, 0, 0, 0)

]
.

9. The rate at which customers abandon the system on arrival

EWL(R) = (1− γ)λ
∞∑

n1=0

S∑

i=1

[yn1(K, i, i, 1) + yn1(K, i, i, 2)].

10. Expected cancellation rate

EC(R) =
∞∑

n1=0

S−1∑

i=1

(S − i)β

[
K∑

n2=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
i∑

n3=1

[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

]
+

∞∑

n1=0

K∑

n2=0

Sβyn1(n2, 0, 0, 0)

+
S−1∑

i=1

(S − i)βy0(0, i, 0, 0).

11. Expected inventory depletion rate

EP (R) = µ

∞∑

n1=0

S∑

i=1

{
K∑

n2=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
i∑

n3=1

[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

}
.

12. Expected number of cancellations in a cycle

ENC =
1
α

{ ∞∑

n1=0

S−1∑

i=1

(S − i)β

[
K∑

n2=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
i∑

n3=1

[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

]
+

∞∑

n1=0

K∑

n2=0

Sβyn1(n2, 0, 0, 0)

+
S−1∑

i=1

(S − i)βy0(0, i, 0, 0)

}
.



378 A. KRISHNAMOORTHY et al.

13. Expected number of purchases in a cycle

ENP =
1
α

µ
∞∑

n1=0

S∑

i=1

{
K∑

n2=1

[yn1(n2, i, i, 1) + yn1(n2, i, i, 2)]

+
i∑

n3=1

[yn1(0, i, n3, 1) + yn1(0, i, n3, 2)]

}
.

14. Expected number of transfers from the pool to the buffer

EPB(N) =
1
α

∞∑

n1=1

[
S∑

i=2

µ[yn1(0, i, 1, 1) + yn1(0, i, 1, 2)] +
K∑

n2=0

Sβyn1(n2, 0, 0, 0)

]
.

15. The probability that the system hasS items in the inventory at the time of realization of common

life time

Pvacant =
∞∑

n1=0

[
S∑

n3=1

[yn1(0, S, n3, 1) + yn1(0, S, n3, 2)]

+
K∑

n2=1

[yn1(n2, S, S, 1) + yn1(n2, S, S, 2)]

]
+ y0(0, S, 0, 0).

16. The probability that the system is left with no item in the inventory at the time of realization of

common life time

Pfull =
∞∑

n1=0

K∑

n2=0

yn1(n2, 0, 0, 0).

4. NUMERICAL ILLUSTRATIONS

In this section we provide numerical illustration of the system performance with variation in values

of underlying parameters.

Model1

Effect ofγ onEPW (R) andEWL(R)

We consider the following values for the parametersS = 12,K = 10, L = 6, λ = 20, µ = 25, p =

0.75, α = 0.25, β = 5, η = 5. For this set of parameter values, Figure 1 shows that the impact of

the probabilityγ on measuresEPW (R) andEWL(R). From the Figure 1, it is clear thatEPW (R) is

increasing and the loss rateEWL(R) is monotonically decreasing inγ. This is due to the fact that as

γ increases inflow rate to the pool increases, thus the loss rate decreases. Also, asγ increases transfer

rate from pool to waiting room increases. However, this increase is marginal.
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(a) Effect ofγ onEPW WL

Figure 1: Effect ofγ onEPW (R) andEWL(R)

Effect of the arrival rateλ

From Table 1, we observe that an increase in the arrival rate makes a decrease in measures like ex-

pected number of items in the inventory before realization of common life time and expected number

of items in the inventory immediately on realization of common life time. However, the expected

number of customers in the pool, waiting room and buffer, expected number of cancellations, ex-

pected number of purchases and rate of transfer from the pool to waiting room increase. These are on

expected lines.

λ EP (N) EW (N) EB(N) EI(N) E′
I(N) EPW (R) ENP ENC

15 60.1708 5.0662 0.6412 0.9744 0.0069 1.3788 7.3557 2.6579

20 74.3319 5.1698 0.6746 0.9534 0.0059 1.4108 7.5985 2.6662

25 88.5280 5.2447 0.7000 0.9397 0.0052 1.4321 7.8095 2.6717

30 102.7461 5.3015 0.7198 0.9301 0.0046 1.4470 7.9834 2.6756

35 116.9786 5.3460 0.7357 0.9230 0.0042 1.4578 8.1304 2.6784

40 131.2199 5.3819 0.7488 0.9176 0.0038 1.4660 8.2517 2.6806

Table 1: Effect of the arrival rate:S = 8,K = 6, L = 4, µ = 10, η = 5, α = 0.25, β = 0.1,

p = 0.75, γ = 0.75

Effect of the service time parameterµ

Table 2 indicates that increase inµ makes expected number of customers in the pool, waiting room

and buffer, expected number of items in the inventory before realization of common life time and

(R)(R) (b) Effect ofγ onE
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expected number of items immediately on realization of common life time, all decrease. However, as

µ increases, rate of transfer from pool to waiting room, expected number of purchases and expected

number of cancellations increase: higher realization time more the number of customers served out.

µ EP (N) EW (N) EB(N) EI(N) E′
I(N) EPW (N) ENP ENC

15 74.2543 5.1679 0.4101 0.6893 0.0038 1.4461 7.4800 2.7719

20 74.2166 5.1666 0.2804 0.5599 0.0028 1.4576 7.5623 2.8237

25 74.1952 5.1658 0.2061 0.4858 0.0022 1.4619 7.8061 2.8533

30 74.1818 5.1651 0.1595 0.4398 0.0018 1.4636 8.1040 2.8719

35 74.1729 5.1647 0.1281 0.4081 0.0016 1.4644 8.3909 2.8844

40 74.1667 5.1644 0.1061 0.3862 0.0014 1.4649 8.6412 2.8931

Table 2: Effect of the service time parameter:S = 8, K = 6, L = 4, λ = 30, η = 5, α = 0.25, β =
0.1, p = 0.75, γ = 0.75

Effect of the common life time parameterα

From Table 3, we observe that an increase inα results in a decrease in measures like expected num-

ber of customers in the pool and also in the waiting room, expected number of purchase, expected

number of cancellations and rate of transfer from pool to waiting room. This is so since the mean

value of common life time decreases with increase in value ofα. However, the expected number

of customers in the buffer, expected number of items in the inventory immediately on realization of

common life time and expected number of items in the inventory before realization of common life

time, all increase. These are also on expected lines.

α EP (N) EW (N) EB(N) EI(N) E′
I(N) EPW (N) ENP ENC

0.1 204.8010 5.6348 0.3449 0.4618 0.0011 1.5978 12.8634 7.3807

0.2 95.9983 5.3198 0.5721 0.7985 0.0039 1.4703 8.5541 3.4469

0.3 59.9611 5.0246 0.7703 1.1000 0.0081 1.3541 6.9144 2.1491

0.4 42.1545 4.7481 0.9430 1.3697 0.0135 1.2481 5.9629 1.5094

0.5 31.6269 4.4891 1.0931 1.6112 0.0198 1.1513 5.3009 1.3231

0.6 24.7288 4.2463 1.2233 1.8273 0.0269 1.0629 4.7939 0.8859

Table 3: Effect ofα: S = 8,K = 6, L = 4, λ = 30, µ = 10, η = 5, β = 0.1, p = 0.75, γ = 0.75
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Effect of the cancellation rateβ

Table 4 shows that the expected number of customers in the pool, that in the waiting room and rate

of transfer from pool to waiting room decrease with increase inβ value. Here expected number cus-

tomers in the buffer, expected number of purchase, expected number of cancellation, expected number

of items in the inventory before realization of common life time and immediately on realization of

common life time show a sharp upward trend. This is expected for higher cancellation rate.

β EP (N) EW (N) EB(N) EI(N) E′
I(N) EPW (R) ENP ENC

0.15 73.3620 5.1572 0.7203 0.9996 0.0062 0.5527 8.8455 3.9717

0.20 72.4069 5.1446 0.7682 1.0479 0.0064 0.7368 10.0703 5.2596

0.25 71.4672 5.1320 0.8182 1.0984 0.0067 0.9208 11.2715 6.5207

0.30 70.5440 5.1195 0.8705 1.1510 0.0070 1.1048 12.4478 7.7616

0.35 69.6382 5.1070 0.9250 1.2060 0.0073 1.2888 13.5977 8.9783

0.40 68.7507 5.0946 0.9817 1.2632 0.0076 1.4727 14.7199 10.1694

Table 4: Effect ofβ: S = 8, K = 6, L = 4, λ = 30, η = 5, α = 0.25, µ = 10, p = 0.75, γ = 0.75

Effect ofα, β onPfull andPvacant

For β = 0, varying overα, we notice from Table 5 that,Pfull decreases with increasing value ofα

– shorter the life time, lesser the chance for inventory being completely sold. ThusPvacant increases

with increasing value ofα.

α 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9398 0.9283 0.9169 0.9057 0.8947 0.8838 0.8730 0.8624 0.8520

Pvacant 0.0081 0.0097 0.0112 0.0128 0.0143 0.0158 0.0173 0.0188 0.0203

Table 5: Effect ofα on Pfull, Pvacant: (β = 0, S = 7,K = 5, L = 3, λ = 30, η = 5, µ = 20, p =
0.75, γ = 0.75)

Table 6 shows the effect ofβ for fixed α value. It tells that higher cancellation rate results in

reduction in probability of system being full (in the context of the bus / train / air plane leaving with

all seats occupied). However, the extreme case ofPvacant does not increase with increase in value of

β. RatherPvacant stays constant. This could be attributed to high arrival rate(λ = 30) and moderately

high service rate(µ = 20); cancelled items are resold before common life time realization.



382 A. KRISHNAMOORTHY et al.

β 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9066 0.9000 0.8935 0.8869 0.8804 0.8739 0.8674 0.8609 0.8545

Pvacant 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082

Table 6: Effect ofβ onPfull, Pvacant: (α = 0.1, S = 7,K = 5, L = 3, λ = 30, η = 5, µ = 20, p =
0.75, γ = 0.75)

Model 2

Effect of the arrival rateλ

Table 7 indicates that the increase inλ makes a decrease in measures like expected number of pur-

chases, expected number of items in the inventory before realization of common life time and imme-

diately on realization of common life time. Asλ increases there is a moderate increase in the expected

number of cancellations, expected number of customers in the pool and waiting room. The column on

EPB(R) shows increase in value withλ increasing which could be attributed to increase in number

of customers in the pool. There are some surprises in the column corresponding toENP . It shows

an increasing trend with increase in value ofλ upto a certain level and then it starts decreasing with

further increase in value ofλ. Still surprising is that the expected number of cancellations (ENC)

monotonically increase withλ. We do not have an explanation for these strange behaviour ofENP

andENC . However, in Model 1 this trend is not seen.

λ EP (N) EW (N) EB(N) EI(N) E′
I(N) EPB(R) ENP ENC

5 0.0001 0.1987 0.3052 1.3901 0.0522 0.0001 7.3867 2.1106

10 0.0109 0.7014 0.3044 0.8075 0.0140 0.0045 8.1730 2.3437

15 0.1044 1.4440 0.2974 0.6139 0.0068 0.0333 8.2475 2.4211

20 0.4091 2.2433 0.2928 0.5250 0.0043 0.1002 7.8961 2.4567

25 1.0033 2.9272 0.2910 0.4772 0.0032 0.1908 7.2815 2.4758

30 1.8779 3.4396 0.2911 0.4486 0.0025 0.2819 6.5808 2.4872

35 2.9776 3.7991 0.2924 0.4301 0.0021 0.3597 5.9085 2.4946

40 4.2413 4.0449 0.2943 0.4174 0.0019 0.4205 5.3123 2.4997

Table 7: Effect of the arrival rateλ: S = 7,K = 5, µ = 20, η = 5, α = 0.25, β = 0.1, γ = 0.75

Effect of the service time parameterµ

From Table 8 we observe that asµ increases there is a moderate decrease in expected number of
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customers in the pool, waiting room and buffer, expected number of items in the inventory before

realization of common life time and immediately on realization of common life time. But asµ in-

creases there is a sharp increase in expected number of purchases and expected number of cancella-

tions. EPB(R) decreases with increase in value ofµ (see columnEPB(R) of Table 8). The reason

for this is the increase in probability of the server becoming idle with positive inventory in the system.

µ EP (N) EW (N) EB(N) EI(N) E′
I(N) EPB(R) ENP ENC

22 1.3822 3.2058 0.2655 0.4219 0.0024 0.2367 7.0040 2.4979

24 1.0221 2.9720 0.2443 0.4002 0.0022 0.1962 7.3616 2.5066

26 0.7597 2.7450 0.2266 0.3823 0.0021 0.1610 7.6591 2.5137

28 0.5678 2.5292 0.2115 0.3674 0.0020 0.1312 7.9034 2.5197

30 0.4268 2.3277 0.1985 0.3549 0.0020 0.1065 8.1022 2.5247

32 0.3229 2.1417 0.1871 0.3443 0.0019 0.0862 8.2690 2.5290

Table 8: Effect ofµ: S = 7,K = 5, λ = 30, η = 5, α = 0.25, β = 0.1, γ = 0.75

Effect of common life time parameterα

From Table 9 we observe that asα increases there is high decrease in expected number of customers

in the pool and that in the waiting room, rate of transfer from pool to buffer, expected number of can-

cellations and expected number of purchases. However, expected number of customers in the buffer,

expected number of items in the inventory before realization of common life time and immediately

on realization of common life time show a sharper upward trend. This is a consequence of higher rate

of realization of CLT.

α EP (N) EW (N) EB(N) EI(N) E′
I(N) EPB(R) ENP ENC

0.1 2.8942 3.9126 0.1443 0.2108 0.0005 0.3610 8.4422 6.6519

0.2 2.0721 3.5680 0.2441 0.3723 0.0017 0.3009 6.9775 3.1792

0.3 1.7348 3.3261 0.3361 0.5221 0.0035 0.2662 6.2731 2.0272

0.4 1.5289 3.1281 0.4208 0.6610 0.0060 0.2409 5.8045 1.4551

0.5 1.3794 2.9555 0.4989 0.7900 0.0090 0.2204 5.4446 1.1147

0.6 1.2607 2.8005 0.5707 0.9097 0.0124 0.2029 5.1467 0.8901

Table 9: Effect ofα: S = 7,K = 5, λ = 30, µ = 20, η = 5, β = 0.1, γ = 0.75
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Effect of the cancellation rateβ

Table 10 indicates that an increase inβ makes expected number of customers in the pool, waiting room

and buffer, expected number of items in the inventory before realization of common life time, rate

of transfer from pool to buffer, expected number of cancellations and expected number of purchases,

all increase. The high rate of arrival of customers results in the waiting room always occupied.

Consequently pooled customers get very little absence to the buffer, as per the transfer policy.

β EP (N) EW (N) EB(N) EI(N) E′
I(N) EPB(R) ENP ENC

0.05 1.6070 3.3412 0.2738 0.4302 0.0025 0.1326 6.0277 1.2473

0.06 1.6617 3.3636 0.2772 0.4339 0.0025 0.1616 6.1444 1.4959

0.07 1.7158 3.3845 0.2807 0.4375 0.0025 0.1909 6.2579 1.7442

0.08 1.7700 3.4040 0.2841 0.4412 0.0025 0.2208 6.3684 1.9921

0.09 1.8240 3.4223 0.2876 0.4449 0.0025 0.2511 6.4759 2.2398

0.10 1.8779 3.4396 0.2911 0.4486 0.0025 0.2819 6.5808 2.4872

Table 10: Effect ofβ: S = 7,K = 5, λ = 30, η = 5, α = 0.25, µ = 20, γ = 0.75

Effect ofα, β onPfull andPvacant

The interpretation of results in Tables 11 and 12 are on the same lines as in Model 1 (see Tables 5, 6).

α 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9398 0.9283 0.9169 0.9057 0.8947 0.8838 0.8730 0.8624 0.8520

Pvacant 0.0114 0.0136 0.0158 0.0179 0.0201 0.0222 0.0243 0.0264 0.0284

Table 11: Effect ofα onPfull, Pvacant: (β = 0, S = 7,K = 5, λ = 30, η = 5, µ = 20, γ = 0.75)

β 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Pfull 0.9057 0.8990 0.8923 0.8857 0.8790 0.8724 0.8658 0.8592 0.8526

Pvacant 0.00114 0.0114 0.0114 0.0115 0.0115 0.0115 0.0115 0.0115 0.0116

Table 12: Effect ofβ onPfull, Pvacant: (α = 0.1, S = 7,K = 5, λ = 30, η = 5, µ = 20, γ = 0.75)

4.1 Cost analysis

Based on the above performance measures we construct a cost function for checking the optimality
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of the waiting room capacityK. It may be noted that we cannot arrive at an analytical form for the

cost function since system state probabilities are not available in compact form.

We define a profit/revenue function asF(K, S) as

F(K,S) = C1EC(R) + C2EP (R)− C3EB(N)− C4EW (N)− C5EP (N)− C6EI(N)

where

C1 =Revenue to the system due to per unit cancellation of inventory purchased

C2 =Revenue to the system due to per unit purchase of item in the inventory

C3 =Holding cost of customer per unit per unit time in the buffer

C4 =Holding cost of customer per unit per unit time in the waiting room

C5 =Holding cost of customer per unit per unit time in the pool

C6 =Holding cost per unit time per item in the inventory

In order to study the variation in different parameters on profit function we first fix the costs

C1 = $50, C2 = $200, C3 = $4, C4 = $7, C5 = $2, C6 = $10.

4.1.1Effect of variation inS andK in Model 1

We assign the following values to the parameters:λ = 30, µ = 20, β = 0.1, η = 5, α = 0.25, p =

0.75, γ = 0.75, L = 3. For different values ofS andK, the expected profit is calculated and presented

in Table 13. This table shows that the profit function decreases whenK increases and increases for

S.

K/S 6 7 8 9 10

5 121.2477 179.2218 237.3408 295.4081 353.2731

6 106.9024 163.3576 220.0913 276.9073 333.6499

7 94.3398 149.3635 204.7516 260.3190 315.9145

8 83.2438 136.9571 191.0771 245.4376 299.8984

9 73.3350 125.8753 178.8292 232.0525 285.4205

10 64.3745 115.8827 167.7849 219.9586 272.2969

Table 13: Effect ofS andK on expected revenue

4.1.2 Effect of variation inp, γ on expected revenue in Model 1

We assign the following values to the parameters:S = 8,K = 6, L = 3, λ = 30, µ = 20,

β = 0.1, η = 5, α = 0.25, p = 0.75, γ = 0.75. In Fig. 2, each curve is drawn keeping the choice for
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other parameters fixed; these graphs show that there is decreasing though marginal in revenue with

increase in value ofp. With γ increasingF(K, S) shows an increasing trend.

Figure 2: Effect ofp andγ on expected revenue

4.1.3 Effect of variation inS andK in Model 2

We assign the following values to the parameters:λ = 30, µ = 20, β = 0.1, η = 5, α = 0.25, γ =

0.75. For different values ofS andK, the expected revenue is calculated (see Table 14). This table

shows that the profit function increases whenS andK increases.

K/S 3 4 5 6 7

5 157.9565 204.3360 247.6024 288.2351 326.6477

6 163.5330 212.5247 258.3252 301.3083 341.8402

7 167.6997 218.9368 267.0368 312.2501 354.8707

8 170.7896 223.9125 274.0451 321.3158 365.9338

9 173.0665 227.7434 279.6345 328.7579 375.2396

10 174.7352 230.6729 284.0582 334.8184 383.0017

Table 14: Effect ofS andK on expected revenue

A comparison between Model 1 and 2 is in order. A look at the values in Tables 13 and 14

indicate that the expected revenue is lower for Model 1. This is due to the transfer policy. In Model

1 the expected number of customers in the pool is relatively larger than that in Model 2. This results

in higher holding cost of customers in the former and hence a reduced revenue from that results (see



GI/M/1 TYPE QUEUEING-INVENTORY SYSTEMS 387

columns 2 and 3 of Table 13 and last two columns of Table 14). It is interesting to note that in Model

1F(K, S) decreases with increase in value ofK; however, this trend is reversed in Model 2. These

are consequences of the transfer policies adopted: in Model 1 (based on number of customers in the

waiting room) and Model 2, transfer from the pool only when server is idle with positive level of

inventory on hand. Withβ = 0, Pfull have the same values for differentα values for both models;

however,Pvacant do not show any similarity in behaviour.

CONCLUSIONS

In this paper we analyzed and compared two queueing-inventory models. These models defer only

with respect to the transfer policy of customers from pool of postponed demands. Some unexpected

results were seen (see Table 7). However, these surprises may have bearing on input values. Revenue

wise Model 2 perform better. The problem discussed here finds application in advanced reservation

system.

In a follow up paper we extend the present note to the case of Markovian arrival process and phase

type service time with phase type CLT.
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