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In this paper we analyze two single server queueing-inventory systems in which items in the in-
ventory have a random common life time. On realization of common life time, all customers in
the system are flushed out. Subsequently the inventory reaches its maximurfi teveligh a
(positive lead time) replenishment for the next cycle which follows an exponential distribution.
Through cancellation of purchases, inventory gets added until their expiry time; where cancella-
tion time follows exponential distribution. Customers arrive according to a Poisson process and
service time is exponentially distributed. On arrival if a customer finds the server busy, then he
joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in

a finite waiting room of capacityk. Finding that at full, he joins a pool of infinite capacity with
probabilityy (0 < v < 1); else itis lost to the system forever. We discuss two models based on
‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service
completion epoch the waiting room size drops to preassigned nuibet (1 < L < K) or

below, a customer is transferred from pool to waiting room with probahilig < p < 1) and
positioned as the last among the waiting customers. If at a departure epoch the waiting room
turns out to be empty and there is at least one customer in the pool, then the one ahead of all
waiting in the pool gets transferred to the waiting room with probability one. We introduce a
totally different transfer mechanism in Model 2: when at a service completion epoch, the server
turns idle with at least one item in the inventory, the pooled customer is immediately taken for
service. At the time of a cancellation if the server is idle with none, one or more customers in
the waiting room, then the head of the pooled customer go to the buffer directly for service. Also
we assume that no customer joins the system when there is no item in the inventory. Several sys-
tem performance measures are obtained. A cost function is discussed for each model and some
numerical illustrations are presented. Finally a comparison of the two models are made.
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1. INTRODUCTION

In this paper we consider a queueing-inventory problem with reservation of inventoried items, cancel-
lation of the reservation and common life time (CLT) of items in the inventory. The common life time
plays a crucial role unlike the perishable inventory problems investigated in literature. Perishability
or decay of items need not affect simultaneously all stored and sold items in a cycle (for definition of
cycle see the end of this section). However, this is not the case with the problem that we investigate in
this paper. We consider the case of common life time for all items in the inventory along with those
sold in the same cycle. In other words these perish simultaneously — they are no more usable. This
is the case with air plane/train/bus tickets for journey by a specified flight/train/bus. Here the seats
are considered as inventory. Whether they are sold or otherwise, once the flight/train/bus departs, the
vacant seats and those which are sold but the passenger does not show up at the time of departure, all
fall in the “no use category”. Recently this type of problem is investigated in a very special case in
Krishnamoorthyet al. [7]. Assuming all underlying distributions to be exponential, the authors ana-
lyze the problem as a quasi-birth-and-death (QBD) process where only the ‘phases’ and not ‘levels’
disappear from the system on realization of CLT. We elaborate on ‘phases’ and ‘levels’ a bit later.
With the assumption of flush out of all customers from the system on realization of CLT, what we get
isaGI/M/1 type Markov chain.

The flush out/reneging of all customers on realizatiorCdfT" could be seen in several day to
day phenomena. For example, people waiting for tickets for travel by a specific train, for watching
a specific show of a movie and so on, tend to leave the system when they do not get tickets for the

intended purpose. Those who do not get tickets until realizati@gi/df leave the service area.

Also replenishment of items within a cycle (that is, starting from a fresh batch of inventory un-
til realization of C'LT) is meaningless since if we go for a replenishment when inventory goes to
zero, theC' LT of these fresh replenishments do not match with that of the earlier ones (of course,
here we assume@ LT to be exponential and hence does not create serious problem). Further can-
cellation process may now lead to inventory level going alfvét may also be observed that in a
bus/train/airplane the number of seats are fixed and so a replenishment of inventory in that context is

meaningless.

For the model discussed in Krishnamoorttyal. [7], the stability condition was to be investi-

gated. Itis obvious that the present system is stable because of the immediate departure of all waiting
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customers from the system on realizationCatl'T. A look at the infinitesimal generator of the pro-
cess shows that the left most column (starting from the second row) has all elements positive. This
is a special case of th€1/M/1 type situation. A generakI/M/1 type situation needs checking

of stability. In our case the system is always stable since’th& of inventory has a finite mean

and the number of customers joining during this time is finite with probability 1. Further unsatisfied

customers leave the system forever.

The main difference between the model(s) discussed in this paper and the one considered in

Krishnamoorthyet al. [7], despite having several common features, are:

() In Krishnamoorthyet al. [7] orbital customers are not flushed out of the system on realization
of CLT whereas customers in the pool are also flushed out in the model described in this paper. As
a consequence, whereas the infinitesimal generator of the continuous time Markov chain (CTMC) in
Krishnamoorthyet al. [7] has a quasi-Toeplitz structure with the repeating part starting in row 2, the

Markov chain in the present case does not have this nice structure.

(i) Model described by Krishnamoorthst al. [7] could be stable only under prescribed condi-
tions. In contrast the model described here is stable for any traffic intensity, however, large. The latter
is the consequence of the flush out of customers from the pool as well, thereby the system become to-
tally empty — that is to say the system is devoid of inventory and customers on realization of common

life time. The new cycle then starts.

(iii) Whereas lead time for inventory replenishment in Krishnamooghgl. [7] is zero, in the
present case it has exponential distribution. All these lead to a totally different structure for the
function to be optimized in the case of the present model. The flush out of all customers from the
system on realization of CLT is necessitated by the fact that they all want to have inventory in the

present cycle.

Thus a much more complex system is studied in this paper. Going back to Krishnametathy
[7], we note that whereas the authors assume retrial of customers from an orbit when they are not able
to get into the buffer or waiting room, we assume a more visible entity called pool for such customers
in the present work. This has the advantage of customers in the pool knowing the status of the buffer
as also waiting room as well as the server getting complete information on the pool. This aspect will

enable the service system to design a transfer mechanism of customers from the pool.
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Note that there were some errors in the expressiongfat, Exp, Py and Pygcant (SE€ pages
8, 9 for definition) in the model described in Krishnamoorgtwl. [7]. The authors have subsequently

corrected those.

Before proceeding further, we provide a brief survey on queueing-inventory models. Its origin
dates back to 1992 with Sigman and Levi [17] introducing the M/G/1 queueing-inventory model
with exponentially distributed lead time under light traffic. This was followed by contributions from
Bermanet al. [2], Berman and Kim [3], Berman and Sapna [4], Arivarigegal. [1], Krishnamoor-
thy et al. [8] and by several other researchers. In Krishnamoaettal. [8] the authors provide
a stochastic decomposition of the system under study; neverthless, it is not a big surprise since the
inventory replenishment lead time is assumed to be zero though the N-policy is brought in. Thus
Schwarzet al. [14] stand out as the first significant contribution providing stochastic decomposition
of the system state of a queueing-inventory problem. Krishnamoorthy and Viswanath [9] brings in
production of items for inventory thereby subsuming Schvedied. [14]. The latter is also subsumed
by Saffariet al. [13] in that the lead time is arbitrarily distributed. Further contribution with stochastic
decomposition results could be found in Schwetral. [16], Schwarz and Daduna [15], Krenzler and
Daduna [6], Otteret al. [12].

Though our concern in this paper is not stochastic decomposition of system state, we wanted to
bring to the notice of the readers some of the finest contributions in the queueing-inventory concerning

stochastic decomposition.

This paper is organized as follows. The section to follow provides the model description. In fact
two models are analyzed. Mathematical formulation of Model 1 is taken up in Section 2. That section
also contains key performance characteristics of the system. This is followed by the Mathematical
formulation of Model 2 in Section 3. Evaluation of its performance is also indicated in that section.
Section 4 analyzes numerically an objective function — the objective being cost minimization / profit

maximization.

Some notations, abbreviations and definitions used in the sequel:
e Ni(t) = Number of customers with in the pool at timhe
e N(t) = Number of customers in the waiting room at time

e N3(t) = Number of customers in the buffer (including in service) at time
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e I(t) = Number of items in the inventory at tinte

0; if serverisidle at time,
e U(t) =¢1; pooled customer in service at time

;  customer in service not from the pool at time

e e= Column vector ofi’s with appropriate order.

e € = Row vector with 1 is in thé!” position and remaining elements are zero.
e U =(S+1)(S+2)/2+ K(S+1).

e Uy =K(S+1).

e U3 =(S+1)2+ K(2S+1).

e Uy=S(S+1)+K(25+1)+1.

e CTMC : continuous time Markov chain.

e (QBD : quasi-birth and death process.

e C'LT : common life time.

e GI/M/1 type queue: see Neuts [10], [11] for detalils.

e Cycle: The time duration from the epoch at which we start with maximum inventory feaél

a replenishment epoch, to the moment when the common life time is realized.

e Lead time: On expiry of common life time, the inventory level reaches its maxinsurough
a replenishment for the next cycle. The time elapsed between realization of CLT of a batch to

the epoch at which the replenishment takes place for the next cycle, is called lead time.

2. MATHEMATICAL FORMULATION: MODEL 1

We have a single commaodity inventory system wtlitems at the beginning of a cycle. Customers
arrive according to a Poisson process of ratdemanding exactly one unit of item (extension to
demand for more than one item by a customer is straight forward). To deliver the item to the customer

in service, it requires an exponentially distributed time with paramet&he inventoried items have
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a common life time which means that they all perish together on realization of this time. Examples are
indicated in the introduction (another example is drugs that are manufactured in a batch). We assume
that this common life time is exponentially distributed with paramete®n realization of common

life time the process of ordering for inventory replenishment starts. The physical arrival of items
takes an exponentially distributed amount of time having parametine quantity of replenishment

is S. A buffer of varying size, depending on the number of items in the inventory is available near the
service counter. We call it varying size because at most as many customers as the number of items in
the inventory are allowed to be in this buffer. In addition the possibility of cancellation of purchase
(return of the item with a penalty) is introduced here. Inter cancellation time follows exponential
distribution with parameteis, when there are items in the purchased list in the current cycle (that

is, there aré S — 7) items are in the inventory). Next in order is a finite waiting space of capacity

When the buffer is full further arrivals wait in this room; as and when inventory level in the buffer
goes above (due to cancellation), the head in the waiting room moves to the buffer and positions
himself as the last there. When the waiting room is also full, further arrivals are directed to a pool (of
customers) having infinite capacity. Whereas customers join with probability one in the buffer and
waiting room whenever there is a vacancy, it is not the case with the pool. An arrival finding waiting

room also full joins the pool with probability(0 < « < 1) or balks with complementary probability.

We introduce a transfer mechanism of customers from pool to waiting room as follows: when,
at a departure epoch the number of customers in the waiting room drops to a preassigned number
L—-1,(1 < L < K) or below, a customer is transferred from the pool to the waiting room with
probabilityp (0 < p < 1) and positioned as last among the waiting customers. If at a service
completion epoch the waiting room turns out to be empty and there is at least one customer in the
pool, the one ahead of all waiting in the pool gets transferred (with probability one) to the waiting

room. Transfer of customers from a pool is introduced and analyzed in De¢paK5].
Itis in the transfer mechanism that the two models discussed in this paper differ. This mechanism

for Model 2 is discussed at the appropriate place in Section 3.

Further all customers are flushed out from the system (finite buffer, waiting room and pool) when
the common life time is realized.

By the above assumptiois= {(N1(t), Na(t), I(t), N3(t)),t > 0} isaCTMC. Its state space
is given by

{A}U{(070,i7n3);0§i§S,O§n3gi}
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U{(n17n27i7n3);n1 Z 071 SnQ S KaOSZS San3:i}

where{A} denotes the temporary absorbing state. The so called ‘temporary absorbingd'/state

indicates that there is no inventory in the system consequent to realizatibiifoAnd so no customer

in the system due to flush out / reneging. The system stays there for an exponentially distributed

amount of time (namely the lead time). It may happen that within a cycle (before realizatiiiio)f

there is no inventory in the system as also no customer. However, this state of the system is different

form {A}. Thus we need to distinguish between the two, for which purpose the syimolas
brought in. The infinitesimal generat@ris of the form

An Ano
A()A AU() AOI
0 A, A A
Al Ay
Aj

A
Al Ag
Ay A A

The matricesdy, A;, A2 are square matrices of the same ordgwith Ay representing transition

from leveln, to n; + 1,n1 > 1, A; represents the transitions within the leval,n; > 1 and

A, contains transition rates from leve| to n; — 1,n; > 2. Dimension of matricesiyg, A1, 419

areU; x Uy, Uy x U, Uy x Uy respectively. Matricesioa, A are column vectors of ordér;, Us

respectively.Axg is a row vector of ordet/;.

DefineA,ﬁm’i’”"s:m?’j’mi”), k = 00,01, 10,0, 1, 2 as the transition rates frofny, i, n3) — (ms, 7, m3)

whereno, mo represent the number of customers in the waiting rogmyrepresent the number of

items in the inventory ands, ms represent the number of customers in the buffer. These transition

rates are
v, for
(7’L 77:771 m 7j7m ) J—
A012 3 2 3 —
0,
(S — Z)ﬁ> for

A(nz ,i,m3:ma2,j,m3)
10

= p(S —1i)p, for

0,

no=K,0<i¢<S,ng=1;

Mg = ng,j =i, M3 = ng,
otherwise.
no=10<i<S—1,n3 =1;

Mo =ng,j=1t+1,m3=n3+1,
2<n, <L,0<i<S—1,n3=1;
mo =no,j =1+ 1,m3 =n3+1,

otherwise
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. . 2 for no =K,0<1i<8,n3=4;
A(n2727n3:m27.]7m3) _ ’ ’ . . ’ ’
0 - m2 =mn2,j] =1, M3 = N3,

0, otherwise

(S —1)B, for ne=1,0<:¢<S—1,n3 =4
ma =ng,j =i+ 1,mg=n3+1,

p(S—1)pB, for 2<ny <L,0<i<S—1,n3=¢;
mo =mng,j =1+ 1, m3 =n3 +1,

A(nz,i7n3=m2,j7m3) _
5 =

0, otherwise
A, for 1<ny <K-1,0<7<8,n3 =4
mg =nz +1,j =i, m3 = ng,
", for 1<ne <K, 1<:<8,n3 =r1;
mg =ng,j =%—1,m3 =n3z — 1,
(1 —p)(S—14)B, for 2<ny <L,0<i<S—1,n3=x;
mog =ng —1,j=1+1,m3 =n3 + 1,
(S —1)B, forr L+1<ny <K, 0<:<S—1,n3=r1;
. ) . mg =ng — 1,5 =141, m3 =n3 + 1,
A§n2’z’n3'm2’]’m3) = —(A+ S8+ a), for ' 1<no <K-—1,i=0,n3=0;

mg =ngz,j =i, M3 = ng,
A tp+(S—-9)B+a), for ' 1<ny <K-1,1<i<S,ng =4
mg =ng,j =i, m3g = ns,
—(Y A+ SB + a), for no =K,i=0,n3 =0;
mgy = nz,j =i, m3 = ng,
—(N+p+(S—9i)B+a), for no=K,1<i< 8, n3=z

my = ngz,j =i, m3 = ng,

\ O, otherwise

A, for ng =0,0<1¢<S,n3 =1;
mg =nz + 1,j =i, m3g = ng,

A, for np=0,1<i<S5,0<ng<i-—1;
mg =mn3,j =1i,m3 =n3+1,

A, for 1<nya < K-1,0<7< 8S,n3 =4
m2 =nz +1,j =i, m3 =n3,

1, for ng =0,1<:¢<5,1<n3 <4
mo =mng,j =1—1,m3 =n3 —1,

1y for 1< ny <K,1<i<8,n3 =z
mo =mng,j =1—1,m3 =n3 — 1,

(S —14)8, for mg =0,0<i<S—-1,0<n3<¢q
mg =n3z,j =i+ 1, m3 =n3,

. . (S —1)8, for 1<ne <K, 0<i<S—1,n3=1;
A(()gw,ns:mzd,m:%) _ g = g 1.3 — i+ 1ims = ns 41,
— A+ (S =B+ a), for ng =0,0<i< S,n3=0;

mg = 0,j =i, m3 = nz,

A+ p+(S—19)B+a), for ny=0,1<i<5,1<ng <4
mg = 0,j =1i,m3 = ngz,

— AN+ S8+ ), for 1<no <K-—-1,i=0,n3 =0;
mg = ng,j =i, m3 = nz,

A +tp+(S—9)B+a), for 1<n2<K-1,1<i<S,ng=4
mg = ngz,j =i, M3 = nz,

—(Y A+ S8+ a), for ng =K,i=0,n3 =0;
mg = ng,j =i, m3 = ns,

(M +p+(S—i)Bta), for ng=K,1<i<S, ng=ri

mg = ng,j =i, m3 = nz,

0, otherwise

2.1 Steady-state analysis

In this section, we perform the steady-state analysis of the queueing-inventory model described above.
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Let x be the steady-state probability vector of generéioirhen we have
XQ =0, xe=1. 1)
Partitioningx asx = (za, Xo, X1, X2, ...) and then each of the sub-vectors as
Xo = (20(0,4,n3), xo(ne,4,1); 0 <i < 5,0 <nz <i,1 <ng < K),
Xny = (T, (n2,7,1);0 <i < S/1 <ny <K), for n; >1,
we see thax is obtained as (see Neuts [10])
Xn, =X RM7L ny>2

whereR is the minimal nonnegative solution to the matrix equation:

2
> RFA =0
k=0
and the boundary equations are given by

TAAA0 + X0 Ao + X1 A19 =0,

XoAp1 + X1[A1 + RA3] = 0,

o0
(6

n1=0

Thenormalizing condition (1) gives
TA + Xp€+ Xl[l - R]_le: 1.

The system state probabilities computed above provide the following useful information about

the system.

e Expected number of customers in the pool before realization of common life time

[e.e]
Ep(N) =) niXne.
ni=1
e Expected number of customers in the waiting room before realization of common life time

00 K S
Bw(N) =Y > nyxn,(na,i,i).

n1=0no=17=0
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e Expected number of customers in the buffer before realization of common life time

0 K S
=33 S i + 30 3 el
n1=0ng=1 i= i=1 n3z=1
e Expected number of items in the inventory before realization of common life time
00 K S S %
=)0 iwn, (ng,d,0) + > > iwo(0,4,n3).
n1=0n9=1 i=1 i=1 n3=0

e Expected number of items in the inventory immediately on realization of common life time

Z Z Z Oé+/\+u+(S— )/6-%711(”27172)"’_

n1=0n9=1 i=1

S

a .
Z 05+)\+(S ) 07170 +Z32_ZOZ—F)\'F,M—F(S—Z)ﬂxO(O’Z’n?)).

i=1

Rate of addition to the pool is

o S
YA Z me(K,i,i).

n1=0 =0

The probability that a customer enters service immediately on arrival

S
> " 20(0,4,0).
=1

The rate at which pooled customers are transferred to the waiting room

oo S—1 L
EPW(R) = Z Z(S - Z)ﬁ Z DTy (n2aivi) + l’nl(l,i,i)
ni1=1 1=0 no=2

The rate at which customers abandon the system on arrival

00 S
Bwi(R) = (1 =AY > an, (K,i,i).

n1=0 i=0

Expected cancellation rate

o K S-1 S—1 i

=53 S S5 - D)Bany(nai ) + > ST (S —i)Bao(0, 4, nz).

n1=0n2=1 i=0 =0 n3=0
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Expected inventory depletion rate

o K S S i
:’U’{Z Z anl(ng,i,i)-i—z Z xO(O,i,ng)} .

n1=0nqs=1 i=1

Expected number of cancellations in a cycle

00 K S-1 i
ENC—{Z ZZ — 1) B, (n2,1,1 +ZZ S —1i)Bxo O,Z,n3)}

n1=0mn2=1 i=0 i=0 n3=0

Expected number of purchases in a cycle

oo K S S i
Enp = iu{z Z me(ng,i,i) +Z Z xo(O,z’,ng)}.
i=1 n3=1

n1=0no=1 i=1

Expected number of transfers from the pool to the waiting room

Q\'—‘

oo S—-1 L
Epw (N Z Z(S— i) [Z P, (N2,,1) —l—atnl(l,i,z')] .
1=1i=0

no=2

The probability that the system h&stems in the inventory at the time of realization of common

life time
S 00 K
Pvacant = Z .1‘0(0, S, n3) + Z Z Tny (n27 Sa S) + .1‘0(0, Sa 0)
nz=1 n1=0n2=1

This is equal to the probability, for example,, that a bus wWitheats depart without any pas-

senger on board.

The probability that the system is left with no item in the inventory at the time of realization of
common life time
Pfuu_xoOOO Z Z:Enl ng,OO
n1=0n2=1
This is equivalent to the probability that bus referred to in the previous item leaves with full

capacity.
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3. MATHEMATICAL FORMULATION: MODEL 2

In this section we describe an inventory problem in which further restrictions are imposed on model

1 described in Section 2. The following are the additional restrictions:
(a) No customer joins the system when inventory level is zero.

(b) When a cancellation of purchased inventory occurs with none, one or more customers waiting
in the waiting room and server idle due to no item in the inventory the head of the pool is transferred

to the buffer for immediate service.

(c) If at a service completion epoch, there is no customer in the buffer as well as the waiting room,

then again the head of the pool is transferred to the buffer for immediate service.
(d) No transfer takes place from the pool/waiting room to the buffer when no item in the inventory.

All other assumptions in model 1 hold for the present model. Assumptions (b), (c) are to reduce
the waiting time of customers in the pool to same extent. Thus we@&td C {(N1(t), Na(t), 1(t),
Ns(t),u(t)),t > 0} with state space

Q/: {A}U{(0,0,Z,0,0),OSZS S}U{(Tll,nQ,0,0,0);nl 2071 SnQ SK}
J{(n1,0,4,n5,k);n1 > 0,1 <i < 8,1 <ng <i,k=1,2}
U{(n]_,?’LQ,Z,Z,k),nl 20>]— SNQ SKvl SZS S7k: 1;2}

where{A} denotes the temporary absorbing state. In this megglis brought in to identify whether

the current service, if any, is of a pooled customer. This is introduced to explicitly compute certain
system performance index that would help to control the number of customers in the pool. Thus the
infinitesimal generatof)’ is of form

Ba Bao
Boa  Boo  Boi
, B, Bio B By
Q = Bl Bs By By
B By By By

The matrices3y, By, By are square matrices of the same ordewith By representing transition
from leveln; to ny + 1,n7 > 1, By represents the transitions within the lewgln; > 1 and B;
contains transition rates from leve| to ny — 1,n; > 2. Dimension of matrice8Byo, Bo1, B1g are
Us x Us,Us x Uy, Uy x Us respectively. MatriceBoa, B} are column vectors of ordérs, Uy

respectively.Bag is a row vector of ordets.

BA = -, BAO = 776(52+17_80A = aev% = ae.
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DefineBl("z’i’”3’k1:m2’j’m3’k2), [ =00,01,10,0, 1,2 as the transition rates frotms, i, n3, k1) —
(ma, 7, ms, ko) Whereng, mo represent the number of customers in the waiting rogrhrepresent
the number of items in the inventoryg, ms represent the number of customers in the buffer and
k1, ko represent the status of server. These transition rates are

YA, for no=K,1<i< S n3=i,k =12
B(()?Q’ims’klzm%j’m?”k?) = mg = ng,j =1i,mg = nz, ko = ki,

0, otherwise

SB, for 0<ny <K,i=0,n3=1,k =0;
mg =ng,j =1+ 1,m3=ng+ 1,k =1,
B§82,z,n3,k1:m2137m3yk2) — 1, for ng = O, 2<1< S, ng = 1714;1 — 172;

mg =mng,j=1—1,m3=mn3,ky =1,

L 0, otherwise
A, for no =K, 1<i<Sng=1ik =1,2;
B(nz,i7n3,k1:m2,j,m3,k2) _ _ . _ ko — k
0 - ma =MN2,j] =1,M3 = N3, K2 = K1,
0, otherwise
PN for ne =0,1<i<S,ng=1,k; =1,2;
mg =ng +1,j =1, m3 =ng, k2 = ki,
A, for mp=02<i<S1<ng<i-—1k =1,2;
mg =mn2,j =i, mg=n3+ 1,k =ki,
A, for no=0,1<:¢<S,n3=0,k; =0;
mg =mng,j =14,mg=n3+1,ky =2,
A, for 1<ng <K-1,1<i<Sn3=ik =1,2;
mg =nz +1,j =1i,m3 =ng, ka = k1,
78 for no =0,1<i<S,ng=1,k; =1,2
mg =n2,j =%—1,m3g=n3 —1,ky =0,
Hy for ng=0,2<i<8,2<nzg<ik;=1,2
mg =nz,j =t—1,mg=n3 —1,ky =2,
Iy for 1<ny <K,i=1,n3=1,k; =1,2
mg =mngz,j =14—1,m3g=mng —1,ka =0,
H for 1<ny<K,2<i<S,n3=1,k =1,2
mg =n2,j =4%—1,mg=nzg —1,ky =2,
- . S —1 for ng =0,0<:<S—1,n3 =0,k1 =0
B(ng,z,ng,klzmg,],m;;,kg) . ( )8, 2=00<:x5 yn3 =0,k1 =0;
00 = mg =mn2,j =i+ 1,m3 =nzg, ka =0,
(S — )3, for mp=01<i<S—-1,1<ng<ik =1,2;
mg =ngz,j =i+ 1,m3 =ng, ks = k1,
Sa, for 1<nyg <K,i=0,n3 =1i,k; =0
mg=ng —1,j=1i+4+1,m3g =ng +1,ky =2,
(S -8, for 1<ny <K, 1<i<S—1ng=ik =12
mg =ng —1,j =i+ 1,m3 =n3g+1,ks =k,
— (S8 + «), for 0<no <K,i=0,n3 =1,k =0;
mg =ng2,j =i, mg =n3, ky =k,
—A+ (S —9)B+ a), for ng =0,1<i<8,n3=0,k; =0;
mg =0,j =1i,m3 =ng, k—2=kq,
A tp+(S—98+a), for m2=0,1<i<8S,1<ng<i,k=1,2
mg =0,j =1i,m3 =ng, ka = ki,
—A+p+(S—9)B+a), for 1<my <K-—1,1<i<S n3g=ik =1,2;
mg =n2,j =i, mg =n3, ky = ki,
(2 +p+(S—i)B+a), for ny=K1<i<Sng=ik =1,2
mg = ngz,j =i, mg =n3, ky = ki,

\ O, otherwise
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A, for np=0,1<i< S ng=1ky =1,2;
mg =ng +1,j =i, m3 =ng, ka = k1,
A, for mp=02<i<S1<ng<i—1k =1,2;
mg =ngz,j =1i,m3 =ng+ 1,k =k,
A, for 1<no<K-1,1<i<8,ng=71k =1,2;
mg =ng +1,j =i,m3 =ng, k2 = k1,
Iy for no=0,i=1,n3 =1,k =1,2;
mg =nz,j =1—1,m3g=n3 —1,ky=0,
I, for no =0,2<:1<5,2<n3 <1k =1,2;
m2 =nz,j =i—1,mg=ng -1,k =2,
", for 1<nyg <K,i=1,n3 =1,k; =1,2;
mo =mng,j=1t—1,m3 =ng —1,ks =0,
. . L for 1<ng <K,2<i< S ng=1,k;y =1,2
(n2,i,n3,k1:m2,j,m3,ka) __ " e S
_B1 = mo =mng,j=1—1,m3 =n3 —1,ks =2,
(S — )3, for mp=01<i<S—-1,1<ng<ik; =1,2;
mg =ng2,j =i+ 1, m3 =ng, ka =k,
(S — )3, for 1<nys <K, 1<i<S—1,n3=74k =1,2;
mg =ng —1,j =i+ 1, m3 =mn3g+ 1,k = k1,
—(SB + «), for 0<n2 <K,i=0,n3 =1i,k; =0;
mo =mngz,j =14, mg = ng, ka = ki,
A tp+(S—-9)B+a), for ng=0,1<7<85,1<ng<idk=1,2
mg =0,j =1i,m3 = ng, k2 = ki1,
A+ p+(S—9)B+a), for ' 1<ny < K-1,1<i< S n3g=1i,k =1,2;
mg = ng2,j =i, mg = n3, kg = ki,
—(AN+p+(S—9)B+a), for no=K,1<i<S,n3=1,k =1,2;
mg = ng,j =14, mg = ng, ka = ki,
\ O, otherwise

S0, for 0<ny < K,1=0,n3 =14,k =0;
mgzng,j:i+1,m3:n3+1,k2:1,
Bgm’l’ng’kl:mw’mg’kz) = w, for no=0,2<i<Sng=1k =12

me =mn2,j =1—1,m3=mn3,ky =1,

0, otherwise

\

3.1 Steady-state analysis

Note that the system described is always stable since realization of common life time results in all
customers in the system being flushed out. In this section, we perform the steady-state analysis of the

gqueueing-inventory model.
Lety be the steady-state probability vector of genergtorThen we have
yQ' =0, ye=1. 2)
Partitioningy asy = (ya, Yo, Y1, Ys, ---) @and then each of the sub-vectors as
Yo = ((10(0,4,0,0),0 < i < S); (40(0,4,n3,k),1 <i < S,1<n3<ik=1,2);
(yo(n2,0,0,0),1 < ng < K); (yo(ne,i,i,k),1 <nas < K,1<i< S k=1,2))
Yo, = ((Uny(n2,4,4,k),1 <i <81 <ng < K, k=1,2);

(yn1(07i7n37k)71 S 7 S 871 Sn?) S Z)k: 172);(3/71,1(”2’0’070)71 SnZ S K) for ni Z ]—7
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we see thay is obtained as (see Neuts [10])
yn1 = lenl_l’ ny > 2

whereR is the minimal nonnegative solution to the matrix equation:

2
> R'BL=0
k=0
and the boundary equations are given by
yaBao + YoBoo + Y1 Bio = 0,

YoBo1 +Y,[B1 + RBs] =0,

o0
(0%

n1=0

Thenormalizing condition (2) gives

yA + yoe+ yl[[ — R]ile = 1

3.2 Arandom walk

We consider the model with negligible service time; reservation, cancellation and realization of com-
mon life time on the sef0, 1,2, ..., S}, the set of possible states of the inventory level process. No
customer joins when the inventory level is zero and so there will be none in the waiting room and
pool. The arrival process, cancellation and CLT are as described in Section At} be the inven-

tory level at timet. Then{I(¢),t > 0} is a Markov chain on state spaf®& 1,2, ..., S} {A} where

{A} is an absorbing state which denotes the realization of common life time. Thus the infinitesimal

generator is

B T T°
W:
0 0
where
0 1 S—-2 §-1 S
0 hs SO
1 A hs—1 (S—=1)p
7= | | | ,T0 = e
S —2 A ho 203
S—1 A h1 08
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with h; = —(A+ i+ «), 0 <i < (S —1)andhg = — (S5 + «). The expected timé until
absorption follows a Phase type distribution with representdtioh) where¢ = (0, ...,0,1) is the
initial probability vector of orde(S + 1). HenceFr = —¢Te.

3.3 Expected number of pooled customers getting service in a cycle

In order to compute the number of pooled customers getting service in a cycle, we consider the case of
a finite pool. For numerical procedure the truncation I&e(size of the pool) is taken such that the
probability of the number of customers in the pool going above the truncation size is of the order less
thane (heree is taken as0~%). Consider the Markov chaif{ N (t), Ni(t), Na(t), I(t), N3(t),u(t)),

t > 0} whereN(t) = number of pooled customers who received service upto time in the present

cycle andNj (t) = number of customers in the finite pool at tirhdts state space is
{A'}U{(n,nl,O,i,ng,k);n20,0Snl <Pz, 1 SiSS,lgnggi,k:LQ}U
{(n,O,O,i,O,O);nZO,OSz’§S}U{(n,nl,ng,O,O,O);n20,0§n1 <Pr,1<ny <K}
A n1,ma,d,4,k) 50 > 0,0 <ny SPp,1<mp <K, 1<i<Sk=1,2}

where{A’} is an absorbing state which denotes the realization of common life time. The infinitesimal

generator of the Markov chain is

H Hi Ho
No, = | H My Ho
H H1i Ho

whereHy, H1 are square matrices of ord€g + P U, with H = ae.

The entries iy andH; are as under:

[ B/ By _ -
B(’)O B, B Mi
0
10 1 Mé M1
B, B, By

Hy = L s Ho = My My

B, B! B
By BY )

My My |
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where

B

B

"(n2,i,n3,k1:ma,j,ms,ka) _

00

, ) o
(n2,i,n3,k1:ma,j,m3,k2) _

1

(8 =14)B,

— (88 + o),

- A+ (S -B+a),
~Atpt+(S—9)B+a),
“Atpt+(S—9)B+a),
—(A+p+(S—9)B+a),

0,

(8 —14)8,

(S =18,

—(S8 + o),
—A+p+ (S =98+ ),
—A+p+(S—i)B+ ),
—(A+p+(S—i)B8+a),

0,

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

for

ng =0,1<:¢<S,n3 =14,k; =1,2;

mg =nz +1,j =1, m3 =ng, k2 = ki,
ne=02<i<81<ng<i—1k =1,2;
mg =mng,j =1i,m3 =ng + 1,k =k,

nog =0,1<i< S,n3 =0,k =0;

mg =mnz,j =i,m3 =n3+1,ky =2,
1<nyg <K-1,1<¢<8S,n3 =1,k; =1,2;
mg =nz +1,j =i, m3 =ng, k2 = ki,

ng =0,1<¢<S,n3 =1,k1 =2;

mo =ng,j =1%—1,m3 =ng — 1,k =0,
ng =0,2<1< 5,2<n3 <ik; =2

mo =mng,j=1t—1,m3 =ng —1,ky =2,
1<ny <K,i=1,ng =1,k =2;

mo =mng,j =1t—1,m3 =n3 —1,ks =0,
1<ny <K,2<i< S5, n3 =1,k =2;

mo =ng,j =1—1,m3 =n3g —1,ko = 2,
ne=0,0<i<S—1,n3=0k =0;

mg =mngz,j =i+ 1,m3 =n3, ka =0,
ne=01<i<S—1,1<ng<ik =1,2;
mo =ngz,j =i+ 1, m3 =ng, ks = k1,
1<ng <K,i=0,n3 =1t,k; =0;

mo =ng —1,j=1i+1,m3 =n3 +1,ko =2,
1<na <K, 1<i1<S5—-1,n3 =1,k; =1,2;
mg =ng —1,j =i+ 1, m3 =mn3+1,ks = k1,
0<ne <K,i=0,n3 =4,k; =0;

mg =ng,j =i, m3 =ng, ks = ki,

ng =0,1<i< S,n3 =0,k =0;

mo =0,j =i,m3g =ng, k— 2=k,
ne=0,1<i<8,1<n3<ik1,2;

mg = 0,j =i, m3g = ng, ka2 = ki1,

1<ny <K—-1,1<4i< S ng=ik =1,2;
mg = ng,j =i, m3 = n3, kg = ki,
no=K,1<i<S,n3=4k =1,2;

mg =mng,j =i, m3 =ng, k2 = ki,

otherwise

no =0,1<i¢< S,n3 =1i,k1 =1,2;

mg =nz +1,j =i, m3 =ng, k2 = ki1,
ng=0,2<i<S1<ng<i—1,k =1,2;
my =ngz,j =14, m3 =n3 +1,ky =k,
1<ny <K-1,1<i<S,ng=14,k1 =1,2;
mo =ng +1,j =i, m3 =ng, ks = k1,

nog =0,i=1,n3 =1,k1 =2;

mg =ng,j =4i—1,m3g=ng —1,ka =0,
no =0,2<1<85,2<n3 <i,k; =2

mg =ngz,j =1—1,m3=n3 —1,ky =2,
1<ny <K,i=1n3 =1k =2

mgy =ngz,j =i—1,mg=ng —1,kz =0,
1<ny <K, 2<i<S,ng=1,k1 =2

mg =ng,j =1—1,mg=ng —1,ky =2,
ng=0,1<i<S—1,1<ng<ik =1,2;
mg =ngz,j =i+ 1,m3 =ng, k2 = k1,
1<na <K, 1<i<S5—-1,n3=14,k; =1,2;
mg =ng —1,j=14i+1,m3=mn3g+1 ke =k,
0<ny <K,i=0,n3 =1,k1 =0;

mg =ng,j =i, m3 =ng, ka = kq,

ng =0,1<i<5,1<ng <i,k=1,2;

mg =0,j =i, mg =ng, ky = ki1,

1<ny <K-1,1<i<S,n3 =4,k1 =1,2;
mg = ng2,j =i, mg = n3, kg = ki,

no =K, 1<i¢<S,n3 =1,k; =1,2;

mg = ng,j =i, m3 = n3, ky = ki,

otherwise



374

B
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SB, for 0<nys <K,i=0,n3=1,k =0;
m2:nQ,j:i+1vm3:n3+17k2:1a
Hs for ng=0,2<i<Sn3=1k =2

m2:n2,j=i—1,m3:n3,k‘2:1,

L 0, otherwise
A, for ng =0,1<:¢<S,n3 =1,k; =1,2;
my =nz +1,j =4, m3 =ngz, ka2 =k,
A, for mp=02<i<S1<ng<i—1k =1,2;
mg =ngz,j =14, mg =n3+ 1,k = k1,
A, for 1<ne <K-1,1<i< S,ng =1,k =1,2;
mg =ng +1,j =i,m3 =ng, k2 = k1,
s for mo =0,i=1,n3 =1,k =2;
mg =ngz,j =4i—1,m3g=n3z —1,ky=0,
e for ng=0,2<i<8,2<ng <k =2
mg =nz,j =%i—1,m3g=mn3 —1,ky =2,
1, for 1< ne <K,i=1,n3 =14,k =2;
mg2 =nz,j =i—1,mg=ng —1,kz =0,
. - for 1<ne <K,2<i< S,ng=1i,ky =2;
0(n2,i,n3,k1:m2,j5,m3,k2) __ H SneSK25isSng =ik
1 = mo =ng,j =4i—1,mg=ng —1,ky =2,
(S —4)8B, for mp=01<i<S—1,1<n3<iks =1,2;
mg =ng2,j =i+ 1,m3 =nz, k2 = ki1,
(S —4)B, for 1<ny <K,1<i<S—1,ng=ik =1,2;
mg =ng —1,j=1i+1,m3g=mn3g+1, ke = ki,
—(SB+ ), for 0<ne <K,i=0,n3 =1i,k1 =0;
mo = ng,j =14, mg = ng, kg = ki,
—Atp+(S—9)B+a), for ny=0,1<i<85,1<ng<ik=1,2;
mg =0,j =1i,mg = ng, ka = ki1,
“-At+p+(S—i)B+a), for 1<ny <K-1,1<i<8Sn3g=ik =1,2;
mg = ng2,j =i, m3 = n3, kg = ki,
—(p+ (S —9)B+ a), for ng=K,1<i<S,ng=1,k =1,2
mg =ng,j =i, m3 =ng, ka = kq,
0, otherwise

B/ (n2 si,ng,k1:ma,j,ms 7k2) —
2

M'(nz,i,ns,k1:m2,j,m37k2) _
) —

SB, for 0<no<K,i=0,n3=1,k; =0;

me =n9,j=1t+1,msg=ns+ 1, ke =1,
w, for no=0,2<i<Sng=1k =2;

me =ng,j =1 — 1,mg =ns, ke =1,

0, otherwise

p, for ng=0,2<i<Sn3=1k =1;
mg =ng,j =1—1,m3=n3,ky =1,

0, otherwise
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M’(n27i7n37k15m27j7m37k2) _
1 =

M(n27i7n3,k1:m27j7m3,k2) _
1

M(n27i7n3,/€1:m27j7m3,k2) _
2

u, for

u, for

u, for

u, for

0,

w, for

w, for

wu, for

wu, for
\ 0’

w, for
= .

ne=0,1<i<Sng=1k =1;
mg=mno,j=1—1,m3=ns— 1,k =0,
ne=0,2<:i<852<n3<14,k =1;
mo=mno,j=1—1,m3=ns— 1, ko =2,
1<ny < K,i=1lns=1tk =1;

mo =mng,j=t—1,m3=mn3—1,ks =0,
1<ny < K,2<i<S,ng=1i,k =1;
mg=ng9,j =1—1,mg=n3g—1,ke =2,

otherwise

neo=0,1=1,n3 =1,k = 1;

me =ng,j =19—1,mg=ng—1,ke =0,
ne=0,2<i<952<n3<i k=1
me =ng,j =1—1,mg=mng—1,ke =2,
1<n<K,i=1lng=1k =1,

me =ng,j =1—1,mg=mns—1,ke =0,
1<no <K, 2<i<Sn3=1tk =1;
mg=mno,j=1t—1,m3g=ng—1,ky =2,

otherwise

n2:0,2§i§5,n3:1,k¢1:1;
m2:n27j:i_17m3:n37k2:1a

otherwise

375

If pr is the probability that absorption occurs with exadtlypooled customers getting service,

then

pr = 0p, (—H Y H)* (~H'H), k>0

with dp, = (Xo, X1, X2, ..., Xp, ) iS @ row vector of ordet/s + P1Us. Therefore the expected number

of pooled customers getting service before realization of common life time is

(see Krishnamoorthgt al. [7]).

Ep, (N) = Z kpy,
k=0
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3.4 Additional performance measures

1. Expected number of customers in the pool before realization of common life time

o)

Ep(N)= > niy,,e.

ni=1
2. Expected number of customers in the waiting room before realization of common life time
S
Z Z n2 {ynl n2,0,0 O) + Z [yn1 (712, Uy, 1) + Yn, (nZaiviv 2)}} .
n1=0ngo=1 =1
3. Expected number of customers in the buffer before realization of common life time

00 K S
Eg(N) = Z {Z Z i[Yny (12,9, 1, 1) + Yn, (n2,1,4,2)]

n1=0 \no=1 i=
S i
D nalyn, (0,4,73, 1) + yn, (0,4, m3, 2)]} :
i=1 n3=1
4. Expected number of items in the inventory before realization of common life time

oo S K
EI(N) = Z ZZ { Z [ynl(n%i’i’ 1) + yn1(n27iai’2)]

na=1

7 S
+ 37 Yo (0,413, 1) + gy (0,4, s, 2)]} +3 io(0,4,0,0).

n3=0 i=1

5. Expected number of items in the inventory immediately on realization of common life time

K
Z Z a+)\+,u+(S—z)ﬁ { Z[yn1(n27i;i71)+yn1(n2,i,i,2)]

n1=0 i=1 no=1

+ ) [yni (0,4, 73, 1) + yn, (0,4, 73, 2) } +Z - A+ )ﬁyO(O,i,O,O).

n3=0
6. Rate of addition to the pool is

S

AN [y (K0 1) + yny (K30, 2)].

n1=0 =1
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7. The probability that a customer enters service immediately on arrival

S
Z y0(07 ia Oa 0)
=1

8. The rate at which pooled customers are transferred to the buffer

o) S K
Epp(R)= Y |> plyn, (0,4,1,1) + 4, (0,3, 1,2)] + > SByn, (n2,0,0,0)
ni=1 Li=2 no=0

9. The rate at which customers abandon the system on arrival
© S
EWL(R) - (1 - '7))‘ Z Z[yn1 (K, 1,1, 1) + Yny (K, i1, 2)]
n1=0 i=1
10. Expected cancellation rate

o S-1 K
=D 2 (5-0)8 [Z [y (12,3, 3, 1) + Y, (N2, 4,4, 2)]

n1=0 =1 na=1

00 K
+ Z Z Sﬁynl(n27o7070)

n1=0mn2=0

+ ) [yn, (0,4,13, 1)+, (0,4, 13, 2)]

nz=1

S—1

+> (S —1i)Byo(0,4,0,0).

i=1

11. Expected inventory depletion rate

=l Z Z { Z ynl no, 1,1, 1) + Yny (n2,1,272)}

n1=0 =1 \(n2=1

i
+ ) [yn, (0,4, 73, 1) +ym<o,z‘,n3,2>]} :
nzy=1

12. Expected number of cancellations in a cycle

oo S—1 K
Enc = — { Z Z [Z [ynl(n%i?i? 1) + ynl(n%ivin)]

n1=0 i=1 na=1

00 K
+ 3> 5Byn, (n2,0,0,0)

n1=0mn2=0

+Z —1)By0(0,1,0, O)}

+ Z [y’fll (07 1,13, 1) + Yn, (07 i, M3, 2)]

n3z=1
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13. Expected number of purchases in a cycle

1 oo S K o ..
ENP = a'u Z Z { Z [ynl (nQalvla 1) +yn1 (TLQ,’L,’L,Z)}

n1=0i=1 (n2=1

)
+ Z [y’m (07i7n37 1) + Yn,y (O,i, ns, 2)]} .

nz=1

14. Expected number of transfers from the pool to the buffer

o0 S K
EPB(N) = é Z [ :u[ynl(O’Z’ 1’ 1) +yn1 (Ovi, 1’2)] + Z Sﬁynl (n2707070)] .

n1=1 Li=2 no=0

15. The probability that the system h@&gtems in the inventory at the time of realization of common

life time

[e's) S
Pvacant = Z [Z [ynl (07 Sa ns, 1) + Yn,q (07 Sa ns, 2)]

n1=0 Lnz=1

K
+ ) [y (n2,5,5,1) + yn, (n2, 5, S, 2)] | +0(0, 5, 0,0).
no=1
16. The probability that the system is left with no item in the inventory at the time of realization of

common life time

o K
Pruy = Z Z Yny (12,0,0,0).

n1=0n2=0

4. NUMERICAL ILLUSTRATIONS

In this section we provide numerical illustration of the system performance with variation in values
of underlying parameters.

Modell

Effect ofy on Epy (R) and Eyy 1. (R)

We consider the following values for the parametgrs: 12, K = 10, L = 6, A = 20,4 = 25,p =
0.75,a« = 0.25,8 = 5,n = 5. For this set of parameter values, Figure 1 shows that the impact of
the probabilityy on measure&'py (R) andEyy 1, (R). From the Figure 1, it is clear thé#ipy (R) is
increasing and the loss raigy 1. (R) is monotonically decreasing in This is due to the fact that as

~ increases inflow rate to the pool increases, thus the loss rate decreases. Alsaraases transfer

rate from pool to waiting room increases. However, this increase is marginal.
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Figure 1: Effect ofy on Epy (R) andEy 1, (R)

Effect of the arrival rate\

From Table 1, we observe that an increase in the arrival rate makes a decrease in measures like ex-
pected number of items in the inventory before realization of common life time and expected number
of items in the inventory immediately on realization of common life time. However, the expected
number of customers in the pool, waiting room and buffer, expected number of cancellations, ex-
pected number of purchases and rate of transfer from the pool to waiting room increase. These are on

expected lines.

A | Ep(N) | Ew(N) | Eg(N) | Ex(N) | E{(N) | Epw(R) | Exp | Enc
15| 60.1708 | 5.0662 | 0.6412 | 0.9744| 0.0069| 1.3788 | 7.3557| 2.6579
20 | 74.3319 | 5.1698 | 0.6746 | 0.9534| 0.0059| 1.4108 | 7.5985| 2.6662
25| 88.5280 | 5.2447 | 0.7000 | 0.9397| 0.0052| 1.4321 | 7.8095| 2.6717
30 | 102.7461| 5.3015 | 0.7198 | 0.9301| 0.0046| 1.4470 | 7.9834| 2.6756
35| 116.9786| 5.3460 | 0.7357 | 0.9230| 0.0042| 1.4578 | 8.1304| 2.6784
40 | 131.2199| 5.3819 | 0.7488 | 0.9176| 0.0038| 1.4660 | 8.2517| 2.6806

Table 1: Effect of the arrival rateS = 8, K = 6,L = 4,5 = 10,7 = 5, = 0.25,3 = 0.1,
p=0.75,7v=0.75
Effect of the service time parameter

Table 2 indicates that increase immakes expected number of customers in the pool, waiting room

and buffer, expected number of items in the inventory before realization of common life time and
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expected number of items immediately on realization of common life time, all decrease. However, as
1 increases, rate of transfer from pool to waiting room, expected number of purchases and expected

number of cancellations increase: higher realization time more the number of customers served out.

p | Ep(N) | Ew(N) | Ep(N) | Er(N) | EY(N) | Epw(N) | Enp | Enc

15| 74.2543| 5.1679 | 0.4101 | 0.6893| 0.0038| 1.4461 | 7.4800| 2.7719
20| 74.2166| 5.1666 | 0.2804 | 0.5599| 0.0028| 1.4576 | 7.5623| 2.8237
25| 74.1952| 5.1658 | 0.2061 | 0.4858| 0.0022| 1.4619 | 7.8061| 2.8533
30| 74.1818| 5.1651 | 0.1595| 0.4398| 0.0018| 1.4636 | 8.1040| 2.8719
35| 74.1729| 5.1647 | 0.1281| 0.4081| 0.0016| 1.4644 | 8.3909| 2.8844
40 | 74.1667| 5.1644 | 0.1061 | 0.3862| 0.0014| 1.4649 | 8.6412| 2.8931

Table 2: Effect of the service time paramet8r=8, K =6,L =4,A =30, =5,a =0.25,8 =
0.1,p=0.75,v = 0.75

Effect of the common life time parameter

From Table 3, we observe that an increase mesults in a decrease in measures like expected num-
ber of customers in the pool and also in the waiting room, expected number of purchase, expected
number of cancellations and rate of transfer from pool to waiting room. This is so since the mean
value of common life time decreases with increase in value.oHowever, the expected number

of customers in the buffer, expected number of items in the inventory immediately on realization of
common life time and expected number of items in the inventory before realization of common life

time, all increase. These are also on expected lines.

a | Ep(N) | Ew(N) | Eg(N) | E{(N) | E{(N) | Epw(N) | Exp | Enc
0.1 | 204.8010| 5.6348 | 0.3449 | 0.4618| 0.0011| 1.5978 | 12.8634| 7.3807
0.2| 95.9983 | 5.3198 | 0.5721 | 0.7985| 0.0039| 1.4703 | 8.5541 | 3.4469
0.3| 59.9611 | 5.0246 | 0.7703 | 1.1000| 0.0081| 1.3541 | 6.9144 | 2.1491
0.4 | 42.1545 | 4.7481 | 0.9430 | 1.3697| 0.0135| 1.2481 | 5.9629 | 1.5094
0.5| 31.6269 | 4.4891 | 1.0931 | 1.6112| 0.0198| 1.1513 | 5.3009 | 1.3231
0.6 | 24.7288 | 4.2463 | 1.2233 | 1.8273| 0.0269| 1.0629 | 4.7939 | 0.8859

Table 3: Effectofe: S =8 K =6,L=4,A=30,u=10,7=5,8=0.1,p=0.75,7 = 0.75
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Effect of the cancellation ratg

Table 4 shows that the expected number of customers in the pool, that in the waiting room and rate
of transfer from pool to waiting room decrease with increasgé ualue. Here expected number cus-
tomers in the buffer, expected number of purchase, expected number of cancellation, expected number
of items in the inventory before realization of common life time and immediately on realization of

common life time show a sharp upward trend. This is expected for higher cancellation rate.

B | Ep(N) | Ew(N) | Ep(N) | E/(N) | E{(N) | Epw(R) | Enxp | Enc
0.15| 73.3620| 5.1572 | 0.7203 | 0.9996| 0.0062| 0.5527 | 8.8455 | 3.9717
0.20 | 72.4069| 5.1446 | 0.7682 | 1.0479| 0.0064| 0.7368 | 10.0703| 5.2596
0.25| 71.4672| 5.1320 | 0.8182 | 1.0984| 0.0067 | 0.9208 | 11.2715| 6.5207
0.30 | 70.5440| 5.1195 | 0.8705 | 1.1510| 0.0070| 1.1048 | 12.4478| 7.7616
0.35| 69.6382| 5.1070 | 0.9250 | 1.2060| 0.0073| 1.2888 | 13.5977| 8.9783
0.40 | 68.7507| 5.0946 | 0.9817 | 1.2632| 0.0076| 1.4727 | 14.7199| 10.1694

Table 4: Effectof3: S =8, K =6,L =4,A=30,n=5,a =0.25, 4 =10,p = 0.75,7 = 0.75

Effect ofa, 3 on Pr,y and Pyacant

For 3 = 0, varying overa, we notice from Table 5 tha#;,;; decreases with increasing valuecof
— shorter the life time, lesser the chance for inventory being completely sold. Ajhus: increases

with increasing value of.

! 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Pryy; | 0.9398] 0.9283| 0.9169| 0.9057| 0.8947| 0.8838| 0.8730| 0.8624 | 0.8520
Pyacant | 0.0081| 0.0097| 0.0112| 0.0128| 0.0143| 0.0158| 0.0173| 0.0188| 0.0203

Table 5: Effect ofc on Pryii, Poacant: (8 = 0,5 =7, K = 5,L = 3,A = 30, = 5, = 20,p =
0.75,~v = 0.75)

Table 6 shows the effect gf for fixed o value. It tells that higher cancellation rate results in
reduction in probability of system being full (in the context of the bus / train / air plane leaving with
all seats occupied). However, the extreme cask,gf,,: does not increase with increase in value of
3. RatherP,,.q.n: Stays constant. This could be attributed to high arrival fate 30) and moderately

high service rat¢u = 20); cancelled items are resold before common life time realization.
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I} 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Pr,; | 0.9066| 0.9000| 0.8935| 0.8869| 0.8804| 0.8739| 0.8674| 0.8609| 0.8545
Pyacant | 0.0082| 0.0082| 0.0082| 0.0082| 0.0082| 0.0082| 0.0082| 0.0082| 0.0082

Table 6: Effect of3 on Py, Poacant: (@« = 0.1, =7, K =5,L =3, =30, =5, = 20,p =
0.75,~v = 0.75)

Model 2

Effect of the arrival rate\

Table 7 indicates that the increaselinmakes a decrease in measures like expected number of pur-
chases, expected number of items in the inventory before realization of common life time and imme-
diately on realization of common life time. Asincreases there is a moderate increase in the expected
number of cancellations, expected number of customers in the pool and waiting room. The column on
Epp(R) shows increase in value withincreasing which could be attributed to increase in number

of customers in the pool. There are some surprises in the column correspondigg tdt shows

an increasing trend with increase in value\afipto a certain level and then it starts decreasing with
further increase in value of. Still surprising is that the expected number of cancellatidig)
monotonically increase with. We do not have an explanation for these strange behaviolif@f

andEy¢. However, in Model 1 this trend is not seen.

A | Ep(N) | Ew(N) | Eg(N) | Ef(N) | EX(N) | Epg(R) | Exp | Enc
0.0001 | 0.1987 | 0.3052 | 1.3901| 0.0522| 0.0001 | 7.3867| 2.1106
10 | 0.0109 | 0.7014 | 0.3044 | 0.8075| 0.0140| 0.0045 | 8.1730| 2.3437
15| 0.1044 | 1.4440 | 0.2974 | 0.6139| 0.0068| 0.0333 | 8.2475| 2.4211
20 | 0.4091 | 2.2433 | 0.2928 | 0.5250| 0.0043| 0.1002 | 7.8961| 2.4567
25| 1.0033 | 2.9272 | 0.2910 | 0.4772| 0.0032| 0.1908 | 7.2815| 2.4758
30| 1.8779 | 3.4396 | 0.2911 | 0.4486| 0.0025| 0.2819 | 6.5808| 2.4872
35| 2.9776 | 3.7991 | 0.2924 | 0.4301| 0.0021| 0.3597 | 5.9085| 2.4946
40| 4.2413| 4.0449 | 0.2943 | 0.4174| 0.0019| 0.4205 | 5.3123| 2.4997

Table 7: Effect of the arrivalraté: S =7, K =5, 4 =20,n=5,a=0.25,6=0.1,7y = 0.75

Effect of the service time parameter

From Table 8 we observe that asincreases there is a moderate decrease in expected number of
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customers in the pool, waiting room and buffer, expected number of items in the inventory before
realization of common life time and immediately on realization of common life time. Butias

creases there is a sharp increase in expected number of purchases and expected number of cancella-
tions. Epp(R) decreases with increase in valuerofsee columnEpp(R) of Table 8). The reason

for this is the increase in probability of the server becoming idle with positive inventory in the system.

p | Ep(N) | Ew(N) | Eg(N) | Ef(N) | E;(N) | Epp(R) | Enp | Enc

22| 1.3822 | 3.2058 | 0.2655| 0.4219| 0.0024 | 0.2367 | 7.0040| 2.4979
241 1.0221 | 2.9720 | 0.2443 | 0.4002| 0.0022| 0.1962 | 7.3616| 2.5066
26| 0.7597 | 2.7450 | 0.2266 | 0.3823| 0.0021| 0.1610 | 7.6591| 2.5137
28| 0.5678 | 2.5292 | 0.2115| 0.3674| 0.0020| 0.1312 | 7.9034| 2.5197
30| 0.4268 | 2.3277 | 0.1985| 0.3549| 0.0020| 0.1065 | 8.1022| 2.5247
32| 0.3229| 2.1417 | 0.1871| 0.3443| 0.0019| 0.0862 | 8.2690| 2.5290

Table 8: Effectofu: S=7, K =5A=30,n=5,a=0.25,6=0.1,v=0.75

Effect of common life time parameter

From Table 9 we observe that asncreases there is high decrease in expected number of customers
in the pool and that in the waiting room, rate of transfer from pool to buffer, expected number of can-
cellations and expected number of purchases. However, expected number of customers in the buffer,
expected number of items in the inventory before realization of common life time and immediately
on realization of common life time show a sharper upward trend. This is a consequence of higher rate

of realization of CLT.

a | Ep(N) | Ew(N) | Eg(N) | E;(N) | E}(N) | Epp(R) | Exp | Enc
0.1| 2.8942 | 3.9126 | 0.1443 | 0.2108| 0.0005| 0.3610 | 8.4422| 6.6519
0.2 | 2.0721| 3.5680 | 0.2441| 0.3723| 0.0017| 0.3009 | 6.9775| 3.1792
0.3| 1.7348| 3.3261 | 0.3361 | 0.5221| 0.0035| 0.2662 | 6.2731| 2.0272
0.4| 1.5289 | 3.1281 | 0.4208 | 0.6610| 0.0060| 0.2409 | 5.8045| 1.4551
0.5| 1.3794 | 2.9555 | 0.4989 | 0.7900| 0.0090| 0.2204 | 5.4446| 1.1147
0.6 | 1.2607 | 2.8005 | 0.5707 | 0.9097 | 0.0124| 0.2029 | 5.1467| 0.8901

Table 9: Effectof: S =7, K =5 X=30,0=20,7=5,6=0.1,y=0.75
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Effect of the cancellation ratg

Table 10 indicates that an increas@imakes expected number of customers in the pool, waiting room
and buffer, expected number of items in the inventory before realization of common life time, rate
of transfer from pool to buffer, expected number of cancellations and expected nhumber of purchases,
all increase. The high rate of arrival of customers results in the waiting room always occupied.

Consequently pooled customers get very little absence to the buffer, as per the transfer policy.

B | Ep(N) | Ew(N) | Eg(N) | E(N) | EY(N) | Epp(R) | Enp | Enc
0.05| 1.6070| 3.3412 | 0.2738| 0.4302| 0.0025| 0.1326 | 6.0277| 1.2473
0.06| 1.6617| 3.3636 | 0.2772 | 0.4339| 0.0025| 0.1616 | 6.1444| 1.4959
0.07| 1.7158 | 3.3845 | 0.2807 | 0.4375| 0.0025| 0.1909 | 6.2579| 1.7442
0.08| 1.7700 | 3.4040 | 0.2841 | 0.4412| 0.0025| 0.2208 | 6.3684| 1.9921
0.09| 1.8240| 3.4223 | 0.2876 | 0.4449| 0.0025| 0.2511 | 6.4759| 2.2398
0.10| 1.8779| 3.4396 | 0.2911 | 0.4486| 0.0025| 0.2819 | 6.5808| 2.4872

Table 10: Effectof3: S =7, K =5X=30,7=5,a = 0.25, 4 = 20,7 = 0.75

Effect ofa, 3 on Pryy; and Pyacant

The interpretation of results in Tables 11 and 12 are on the same lines as in Model 1 (see Tables 5, 6).

o 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Pry; | 0.9398] 0.9283| 0.9169| 0.9057| 0.8947| 0.8838| 0.8730| 0.8624| 0.8520
Piacant | 0.0114| 0.0136| 0.0158| 0.0179| 0.0201| 0.0222| 0.0243| 0.0264| 0.0284

Table 11: Effect ofy on Pyyyi, Pogcant: (8 = 0,5 =7, K = 5,A = 30,1 = 5, s = 20,7 = 0.75)

8 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Pruu 0.9057 | 0.8990| 0.8923| 0.8857| 0.8790| 0.8724| 0.8658| 0.8592| 0.8526
Pyacant | 0.00114| 0.0114| 0.0114| 0.0115| 0.0115| 0.0115| 0.0115| 0.0115| 0.0116

Table 12: Effect of3 on Py, Poacant: (0 = 0.1, =7, K =5,A = 30,7 = 5, u = 20,y = 0.75)

4.1 Cost analysis

Based on the above performance measures we construct a cost function for checking the optimality
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of the waiting room capacityk. It may be noted that we cannot arrive at an analytical form for the

cost function since system state probabilities are not available in compact form.

We define a profit/revenue function &3, S) as
f(K, S) = ClEc(R) + CQEP(R) — CgEB(N) — C4Ew(N) — C5EP(N) — CGE](N)

where

C1 =Revenue to the system due to per unit cancellation of inventory purchased
C> =Revenue to the system due to per unit purchase of item in the inventory
C5 =Holding cost of customer per unit per unit time in the buffer

C, =Holding cost of customer per unit per unit time in the waiting room

Cs =Holding cost of customer per unit per unit time in the pool

Cs =Holding cost per unit time per item in the inventory

In order to study the variation in different parameters on profit function we first fix the costs
Ch = $50,Cy = $200,C5 = $4,Cy = $7,C5 = $2, Cs = $10.
4.1.1Effect of variation inS and K in Model 1
We assign the following values to the parameters= 30, = 20,8 = 0.1,n = 5,a = 0.25,p =
0.75,~v = 0.75, L = 3. For different values of andK, the expected profit is calculated and presented

in Table 13. This table shows that the profit function decreases ikhigrtreases and increases for
S.

KIS 6 7 8 9 10

121.2477| 179.2218| 237.3408| 295.4081| 353.2731
106.9024| 163.3576| 220.0913| 276.9073| 333.6499
94.3398 | 149.3635| 204.7516| 260.3190| 315.9145
83.2438 | 136.9571| 191.0771| 245.4376| 299.8984
73.3350 | 125.8753| 178.8292| 232.0525| 285.4205
10 | 64.3745 | 115.8827| 167.7849| 219.9586| 272.2969

[(eRNe-RENEN R NS

Table 13: Effect of5 and K on expected revenue

4.1.2 Effect of variation inp, v on expected revenue in Model 1

We assign the following values to the parametefs:= 8, K = 6,L = 3,A = 30,u = 20,
8=01,n=5a=0.25p=0.75~ = 0.75. In Fig. 2, each curve is drawn keeping the choice for
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other parameters fixed; these graphs show that there is decreasing though marginal in revenue with

increase in value gf. With ~ increasingF (K, .S) shows an increasing trend.
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Figure 2: Effect ofp and~ on expected revenue

4.1.3 Effect of variation inS and K in Model 2
We assign the following values to the parameters: 30, = 20,6 = 0.1,7 = 5, = 0.25,v =
0.75. For different values ob and K, the expected revenue is calculated (see Table 14). This table

shows that the profit function increases wittand K increases.

KIS 3 4 5 6 7

157.9565| 204.3360| 247.6024| 288.2351| 326.6477
163.5330| 212.5247| 258.3252| 301.3083| 341.8402
167.6997| 218.9368| 267.0368| 312.2501| 354.8707
170.7896| 223.9125| 274.0451| 321.3158| 365.9338
173.0665| 227.7434| 279.6345| 328.7579| 375.2396
10 | 174.7352] 230.6729| 284.0582| 334.8184| 383.0017

[(cRNe AR NI N RN

Table 14: Effect ofS and K on expected revenue

A comparison between Model 1 and 2 is in order. A look at the values in Tables 13 and 14
indicate that the expected revenue is lower for Model 1. This is due to the transfer policy. In Model
1 the expected number of customers in the pool is relatively larger than that in Model 2. This results

in higher holding cost of customers in the former and hence a reduced revenue from that results (see
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columns 2 and 3 of Table 13 and last two columns of Table 14). It is interesting to note that in Model

1 F(K, S) decreases with increase in valuefof however, this trend is reversed in Model 2. These

are consequences of the transfer policies adopted: in Model 1 (based on number of customers in the
waiting room) and Model 2, transfer from the pool only when server is idle with positive level of
inventory on hand. Wit = 0, Py, have the same values for differemtvalues for both models;

however,P, ...+ do not show any similarity in behaviour.
CONCLUSIONS

In this paper we analyzed and compared two queueing-inventory models. These models defer only
with respect to the transfer policy of customers from pool of postponed demands. Some unexpected
results were seen (see Table 7). However, these surprises may have bearing on input values. Revenue
wise Model 2 perform better. The problem discussed here finds application in advanced reservation

system.

In a follow up paper we extend the present note to the case of Markovian arrival process and phase

type service time with phase type CLT.
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