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This paper is concerned with the following Schrödinger-Poisson system
{
−∆u + V (x)u−K(x)φ(x)u = q(x)|u|p−2u, in R3,

−∆φ = K(x)u2, in R3,

wherep ∈ (2, 6), V (x) ∈ C(R3,R) is a general periodic function,K(x) and q(x) are non-

periodic functions. Under suitable assumptions, we prove the existence of ground state solutions

via variational methods for strongly indefinite problems.
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1. INTRODUCTION AND MAIN RESULT

In this paper, we study the following nonlinear system

{
−∆u + V (x)u−K(x)φ(x)u = q(x)|u|p−2u, in R3,

−∆φ = K(x)u2, in R3,
(1.1)

wherep ∈ (2, 6), V (x) ∈ C(R3,R) is a general periodic function,K(x) andq(x) are non-periodic

functions. Such a system, also called Schrödinger-Poisson equations, arises in an interesting physical

1Thiswork is partially supported by the NNSF (Nos. 11571370, 11471137, 11471278, 61472136).
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context. In fact, according to a classical model, the interaction of a charge particle with an electro-

magnetic field can be described by coupling the nonlinear Schrödinger and Maxwell equations. For

more details on the physical background, we refer to [9, 10, 39] and the references therein. In partic-

ular, if we are looking for electrostatic-type solutions, we just have to solve (1.1).

In recent years, the following system
{
−∆u + V (x)u + K(x)φ(x)u = f(x, u), in R3,

−∆φ = K(x)u2, in R3,
(1.2)

has been extensively investigated in the literature based on variant assumptions onV , K andf(x, u).

See for example [3-7, 11, 14, 15, 22, 29, 31, 34, 41, 43, 46] and the references therein. Since

problem (1.2) is set on whole spaceR3, it is well known that the main difficulty of this problem is

the lack of compactness for Sobolev’s embedding theorem, and then it is usually difficult to prove

that a minimizing sequence or a (PS) sequence is strongly convergent if we seek solutions of (1.2) by

variational methods. A usual way to overcome this difficulty is working on the radically symmetric

function space which possesses compact embedding, see, for example [3-5, 14, 15, 29, 31]. When

V is not a constant and not radially symmetric, Wang and Zhou [41] considered the asymptotically

linear case. Based on the main ideas of del Pino and Felmer [13], they proved that the corresponding

functional satisfies the (PS) condition and obtained the existence of positive solutions. In [6], Azzollni

and Pomponio proved the existence of a ground state solution by using concentration compactness

argument for problem (1.2) withf(x, u) = |u|p−1u and3 < p < 5, in [46] for 2 < p ≤ 3.

Recently, Cerami and Vaira [11] studied system (1.2) withf(x, u) = a(x)|u|p−1u (3 < p < 5),

V = 1 andK ∈ L2(R3) satisfyingK(x) → 0 as|x| → ∞. They proved the existence of positive

ground state by minimization on Nehari manifold and concentration compactness method. Similar

method was also used in Vaira [39] for system (1.1) and (1.2). Later, Sunet al. [34] generalized the

results of [11] to the asymptotically linear case. ForV > 0 is periodic or asymptotically periodic,

Alveset al. [7] established the existence of positive ground state solutions by using the mountain pass

theorem. In addition, whenV > 0 andf(x, u) are1-periodic inx, Zhao [46] obtained the existence

of infinitely many geometrically distinct solutions. Very recently, Zhaoet al. [43] considered the

following system with sign-changing potential
{
−∆u + λV (x)u + K(x)φ(x)u = |u|p−2u, in R3,

−∆φ = K(x)u2, in R3,
(1.3)

whereλ > 0 is a parameter. With the aid of parameterλ (λ > 0 large enough), they proved that

the variational functional satisfies (PS) condition and obtained the existence of solutions for the case

p ∈ (4, 6).
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Moreover, the semiclassical limit of the system (1.2) was also discussed recently. More precisely,

replacing−∆ by−ε2∆, namely

{
−ε2∆u + V (x)u + K(x)φ(x)u = |u|p−2u, in R3,

−∆φ = K(x)u2, in R3.
(1.4)

In [3], Ambrosetti proved that the existence of spike-like solutions via perturbation methods. Ruiz

[32] and D’Aprile and Wei [16] showed that system (1.4) withV ≡ K ≡ 1 possesses a family of

solutions concentrating around a sphere whenε → 0 for p ∈ (2, 18/7). Their results were generalized

in [26, 27] for the radialV andK. In [33], Ruiz and Vaira proved the existence of multi-bump

solutions whose bumps concentrated around local minimums of the potentialV . The proofs explored

in [26, 27, 33] are based on a singular perturbation, essentially a Lyapunov-Schmitt reduction method.

In [25], assume thatV has a local minimum or maximum pointx0, Ianni and Vaira proved that (1.4)

possesses a nontrivial solutionuε for ε > 0 small. For other result of singularly perturbation problem

and concentration phenomena of semiclassical states, we refer the readers to [20, 21, 23, 24] and the

references therein.

Inspired by papers [11] and [39], we will consider system (1.1) with more general periodic poten-

tial V and the range ofp and prove the existence of ground state solutions. More precisely, we make

the following assumptions:

(V ) V ∈ C(R3,R) is 1-periodic inxj for j = 1, 2, 3, and0 lies in a gap of the spectrum of−∆+V ;

(K) K ∈ L2(R3), lim
|x|→∞

K(x) = 0, K(x) ≥ 0 for all x ∈ R3 andK 6= 0;

(F ) q ∈ C(R3,R), there exists a constanta > 0 such thatq(x) > a for all x ∈ R3 and

lim
|x|→∞

q(x) = a.

The main result of this paper is the following theorem.

Theorem1.1 — Suppose that(V ), (K), (F ) are satisfied. Then problem(1.1) has at least one

ground state solutions.

Remark1.2 : Compared with the caseV = 1 in [39], our assumption(V ) is more general. To the

best of our knowledge, there is no work focused on this case. Therefore, our result is new, and extend

the corresponding one in [39].

Our argument is variational, which can be outlined as follows. The solutions of (1.1) are obtained

as critical points of the energy functionalΦ. Φ possesses the linking structure, however it does not
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satisfy the Palais-Smale condition in general. Thus we consider certain auxiliary problem related to

the “limit equation” of (1.1) which is periodic problem and whose least energy solutions with least

energyC̃ are known (see [30, 35, 36, 38, 42]). Based on the result of “limit equation”, we establish

the concentration compactness lemma and prove thatΦ satisfies the Cerami condition(C)c at all

levelsc < C̃. Furthermore, by using a recent critical point theorem in [8] and [19], we obtain the

existence of ground state solutions.

On the other hand, to obtain our results, we have to overcome several difficulties in using varia-

tional method. First, there is a lack of the compactness of the Sobolev embedding since the domain

is the wholeR3. Second, the energy functionalΦ is strongly indefinite and it has more complex

geometry structure than functionals which have mountain pass structure. Third, the appearance of a

non-local term in our problem also brings us some difficulties under the strongly indefiniteness.

As a motivation we recall that there are a large number of literatures devoted to the study of

the existence of ground state solutions. Ding and Wei [18] treated the nonperiodic Dirac equation

with super-quadratic subcritical nonlinearities, Ding and Lee [17] also studied the nonperiodic su-

perquadratic first-order Hamiltonian. By using the variational methods for strongly indefinite prob-

lems developed recently by Bartsch and Ding [8], they proved the existence of least energy solution,

respectively. Very recently, based on the main ideas of [18], Chen and Zheng [12] considered the

Maxwell-Dirac systems. Additionally, some authors have studied several different problems by dif-

ferent methods. Among these problems are the periodic Schrödinger equation in [30, 35-38, 42], and

the Hamiltonian system in [28, 44, 45].

This paper is organized as follows. In Section2, we formulate the variational setting. In Section3,

we introduce the least energy solutions of the associated limit problem, and recall some critical point

theorems required. In Section4, we will use the linking and concentration compactness arguments to

prove our main theorems.

2. VARIATIONAL SETTING

Hereafter we use the following notation:

• D1,2(R3) is the completion ofC∞
0 (R3) with respect to the norm

‖u‖2
D1,2 =

∫

R3

|∇u|2dx.

• | · |s denotes the usualLs- norm,1 ≤ s ≤ ∞.

• (·, ·)2 denotes the usualL2 inner product.
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• C, Ci, ci are different positive constants.

• E∗ denotes the dual space ofE.

• S is the best Sobolev constant for the embedding ofD1,2(R3) in L6(R3), that is

S = inf
u∈D1,2\{0}

‖u‖D1,2

|u|6 .

In what follows, we give the variational setting for problem (1.1). LetA := −∆ + V , thenA

is formally self-adjoint operator acting onL2 := L2(R3,R) with domainD(A) = H2(R3,R). In

virtue of assumption(V ), we have the orthogonal decomposition

L2 = L− ⊕ L+, u = u− + u+,

such thatA is negative definite onL− and positive definite onL+. Let |A| denote the absolute ofA

and|A| 12 bethe square root of|A|. LetE := D(|A| 12 ) bethe domain of the self-adjoint operator|A| 12
which is a Hilbert space equipped with the inner product

(u, v) = (|A| 12 u, |A| 12 v)2

andnorm‖u‖ = (u, u)
1
2 . By (V ), E = H1 := H1(R3,R) with equivalent norm (see [19]). There-

foreE embeds continuously intoLs for all s ∈ [2, 6], and compactly intoLs
loc for all s ∈ [2, 6). Thus

for all s ∈ [2, 6], there existscs > 0 such that

|u|s ≤ cs‖u‖, for u ∈ E.

In addition, we have the following decomposition

E = E− ⊕E+, where E± = E ∩ L±,

orthogonal with respect to both(·, ·)2 and(·, ·). This decomposition also induces a natural decompo-

sition ofLs, s ∈ (2, 6), hence there existsβs such that

βs|u+|ss ≤ |u|ss for all u ∈ E. (2.1)

It is well known that problem (1.1) can be reduced to a single equation with nonlocal term. Actu-

ally, for eachu ∈ E, the linear functionalTu in D1,2(R3) defined by

Tu(v) =
∫

R3

K(x)u2vdx, v ∈ D1,2(R3)
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is continuous. In fact, Ḧolder inequality and Sobolev inequality imply that

|Tu(v)| =
∣∣∣∣
∫

R3

K(x)u2vdx

∣∣∣∣ ≤ |K|2|u2|3|v|6
≤ S−1|K|2|u|26‖v‖D1,2 . (2.2)

It follows from the Lax-Milgram theorem that there exists a uniqueφu ∈ D1,2(R3) such that
∫

R3

∇φu∇vdx =
∫

R3

K(x)u2vdx ∀v ∈ D1,2(R3), (2.3)

that isφu is a weak solution of−∆φ = K(x)u2, andφu can be represented by

φu(x) =
∫

R3

K(y)u2(y)
|x− y| dy.

By (2.2) and (2.3), it is easy to see that

‖φu‖2
D1,2 =

∫

R3

K(x)φuu2dx ≤ |K|2|u2|3|φu|6
≤ S−1c2

6|K|2‖u‖2‖φu‖D1,2 . (2.4)

It can be proved that(u, φ) ∈ E×D1,2(R3) is a solution of (1.1) if and only ifu ∈ E is a critical

point of the functionalΦ : E → R defined by

Φ(u) =
1
2

∫

R3

(|∇u|2 + V (x)u2)dx− 1
4

∫

R3

K(x)φuu2dx− 1
p

∫

R3

q(x)|u|pdx, (2.5)

andφ = φu. In virtue of (2.4), we know thatΦ is well defined. Furthermore, our hypotheses imply

thatΦ ∈ C1(E,R) (see [40]).

From the decomposition ofE, then (2.5) is equivalent to the following functional

Φ(u) =
1
2
(‖u+‖2 − ‖u−‖2)− Γ(u)−Ψ(u), u ∈ E, (2.6)

where

Γ(u) =
1
4

∫

R3

K(x)φuu2dx and Ψ(u) =
1
p

∫

R3

q(x)|u|pdx.

Thusassumption(V ) implies that (2.6) is strongly indefinite functional, such type of functionals

have appeared extensively in the study of differential equations via critical point theory, see for exam-

ple [17-19, 30, 35, 40, 42, 44, 45] and the references therein. Moreover, it is not difficult to compute

that, for allu, ϕ, η ∈ E,

Γ′(u)ϕ =
∫

R3

K(x)φuuϕdx,
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Γ′′(u)[ϕ, η] =
∫

R3

K(x)φuϕηdx + 2
∫

R3

K(x)(
∫

R3

K(y)
|x− y|u(y)η(y)dy)uϕdx,

Ψ′(u)ϕ =
∫

R3

q(x)up−2uϕdx,

and

Ψ′′(u)[ϕ, η] = (p− 1)
∫

R3

q(x)up−2ϕηdx.

Hence,Φ is C2 in E.

3. SOME PRELIMINARIES AND L IMIT PROBLEM

For the convenience of discussion, we define the operatorL : E → D1,2(R3) as

L[u] = φu.

In the following, we give some properties about the functionalL.

Lemma3.1 — (1)L is continuous andφu > 0 if u 6= 0;

(2) L maps bounded sets into bounded sets;

(3) LetK ∈ L2(R3). If un ⇀ u in E, then up to a subsequence,

φun → φu in D1,2(R3).

PROOF : The proofs were given in [11] and [43], here we omit the details. 2

Lemma3.2 — LetK ∈ L2(R3). If un ⇀ u in E, up to a subsequence, then asn →∞,
∫

R3

K(x)φunu2
ndx =

∫

R3

K(x)φuu2dx + o(1), (3.1)

∫

R3

K(x)φununϕdx =
∫

R3

K(x)φuuϕdx + o(1),∀ϕ ∈ E. (3.2)

And if ϕn ⇀ ϕ in E, the
∫

R3

K(x)φununϕndx =
∫

R3

K(x)φuuϕdx + o(1). (3.3)

PROOF : First, we prove the conclusion (3.1). By Sobolev embedding,φun ⇀ φu in D1,2(R3)

implies that

φun ⇀ φu in L6(R3),
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and then
∫

R3

K(x)u2(φun − φu)dx → 0, (3.4)

sinceK(x)u2 ∈ L
6
5 (R3) by Hölder inequality and assumption(K). Moreover, fromun ⇀ u in E,

we can assume that, up to a subsequence,

un ⇀ u in Ls(R3), un → u in Ls
loc(R3), for 2 ≤ s < 6.

Thus, by Ḧolder inequality, we have
∫

R3

(K(x)φunu2
n −K(x)φunu2)dx =

∫

R3

K(x)φun(u2
n − u2)dx

≤ |φun |6|un + u|6
(∫

R3

|K(x)(un − u)| 32 dx

) 2
3

≤ C1

(∫

R3

|K(x)(un − u)| 32 dx

) 2
3

→ 0 (3.5)

asn → ∞, since the sequencevn := (un − u)
3
2 ⇀ 0 in L4(R3) andK(x)

3
2 ∈ L

4
3 (R3). Thus, by

(3.4) and (3.5), we have
∫

R3

(K(x)φunu2
n −K(x)φuu2)dx

=
∫

R3

K(x)u2(φun − φu)dx +
∫

R3

K(x)φun(u2
n − u2)dx → 0

asn →∞.

Next, we prove the conclusion (3.2). It suffices to show that
∫

R3

(K(x)φununϕ−K(x)φuuϕ)dx → 0

uniformly for anyϕ ∈ E with ‖ϕ‖ ≤ 1 asn →∞. In fact, similar to (3.5), we have

∫

R3

K(x)φun(un − u)ϕdx ≤ c6‖ϕ‖|φun |6
(∫

R3

|K(x)(un − u)| 32 dx

) 2
3

≤ C2‖ϕ‖
(∫

R3

|K(x)(un − u)| 32 dx

) 2
3

→ 0 (3.6)

asn →∞. On the other hand, by Lemma3.1 and Ḧolder inequality, it is easy to check that
∫

R3

K(x)(φun − φu)uϕdx → 0, (3.7)
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asn →∞. Thus, by (3.6) and (3.7), we have
∫

R3

(K(x)φununϕ−K(x)φuuϕ)dx

=
∫

R3

K(x)(φun − φu)uϕdx +
∫

R3

K(x)φun(un − u)ϕdx → 0

asn →∞.

Finally, we prove the conclusion (3.3). By the similar argument, we have
∫

R3

K(x)φununϕndx →
∫

R3

K(x)φununϕdx, (3.8)

∫

R3

K(x)φununϕdx →
∫

R3

K(x)φunuϕdx, (3.9)

and
∫

R3

K(x)φunuϕdx →
∫

R3

K(x)φuuϕdx, (3.10)

asn →∞. Thus, by (3.8)-(3.10), we have
∫

R3

K(x)φununϕndx →
∫

R3

K(x)φuuϕdx

asn →∞. The proof is complete. 2

In order to find critical points ofΦ, we will use the following abstract theorem which is taken

from [19] and [8].

LetE be a Banach space with direct sum decompositionE = X⊕Y , u = x+y and corresponding

projectionsPX , PY ontoX, Y , respectively. For a functionalΦ ∈ C1(E,R) we writeΦb = {u ∈
E : Φ(u) ≥ b}. Recall that a sequence{un} ⊂ E is said to be a(C)c-sequence (respectively,(PS)c-

sequence) ifΦ(un) → c and(1+‖un‖)Φ′(un) ⇀ 0 (respectively,Φ′(un → 0). Φ is said to satisfy the

(C)c-condition (respectively,(PS)c-condition) if any(C)c-sequence (respectively,(PS)c-sequence)

has a convergent subsequence.

Now we assume thatX is separable and reflexive, and we fix a countable dense subsetS ⊂ X ∗.

For eachs ∈ S there is a semi-norm onE defined by

ps : E → R, ps(u) : |s(x)|+ ‖y‖ for u = x + y ∈ E.

We denote byTS the topology induced by semi-norm family{ps}, w∗ denote the weak∗-topology on

E∗. Suppose
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(Φ0) for anyc ∈ R, superlevelΦc is TS-closed, andΦ′ : (Φc, TS) → (E∗, w∗) is continuous;

(Φ1) for anyc > 0, there existsξ > 0 such that‖u‖ < ξ‖PY u‖ for all u ∈ Φc;

(Φ2) there existsρ > 0 such thatκ := inf Φ(Sρ ∩ Y ) > 0, whereSρ := {u ∈ E : ‖u‖ = ρ};

The following theorem is a special case of Theorem3.4 in [8], see also Theorem4.3 in [19].

Theorem3.3— Let (Φ0) − (Φ2) be satisfied and suppose there areR > ρ > 0 ande ∈ Y with

‖e‖ = 1 such thatsup Φ(∂Q) ≤ κ whereQ := {u = x + te : x ∈ X, t ≥ 0, ‖u‖ < R}. ThenΦ has

a (C)c-sequence withκ ≤ c ≤ supΦ(Q).

The following lemma is useful to verify(Φ0) (see [19] or [8]).

Lemma3.4 — SupposeΦ ∈ C1(E,R) is of the form

Φ(u) =
1
2
(‖y‖2 − ‖x‖2)−Ψ(u) for u = x + y ∈ E = X ⊕ Y

such that

(i) Ψ ∈ C1(E,R) is bounded from blow;

(ii) Ψ : (E, Tw) → R is sequentially lower semicontinuous, that is,un ⇀ u in E impliesΨ(u)

≤ lim inf Ψ(un);

(iii) Ψ′ : (E, Tw) → (E∗, Tw∗) is sequentially continuous;

(iv) ν : E → R, ν(u) = ‖u‖2, is C1 andν ′ : (E, Tw) → (E∗, Tw∗) is sequentially continuous.

ThenΦ satisfies(Φ0).

To prove our main result, we will make use of the associated limit problem. Precisely, we will

consider the following periodic problem
{
−∆u + V (x)u = a|u|p−2u,

u ∈ H1(R3)
(3.11)

whereV (x) satisfies assumption(V ), anda is given in assumption(F ). Similar to the previous

variational setting, we know that the solutions of (3.11) are critical points of the following functional

defined by

Φ∞(u) =
1
2
(‖u+‖2 − ‖u−‖2)− 1

p
a

∫

R3

|u|p

=
1
2
(‖u+‖2 − ‖u−‖2)−Ψ∞(u), u ∈ E,
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whereΨ∞(u) = 1
pa|u|pp.

LetK∞ := {u ∈ E : Φ′∞(u) = 0} be critical set,C̃ := inf{Φ∞(u), u ∈ K∞\{0}} be the least

energy,S̃ := {u ∈ K∞ : Φ∞(u) = C̃} be least energy solution set. It is well known that there exist

some works for problem (3.11) about the study of existence of ground state solutions, see [30, 35, 36,

38, 42]. The following lemma can be found in [35] (see also [30]).

Lemma3.5 —K∞ 6= ∅, C̃ > 0. Moreover,C̃ is achieved, that is,̃S 6= ∅.

Following Ackermann [1] and Ding and Lee [17] (see also [18, 19]), for fixedu ∈ E+, we

introduce the functionalFu : E− → R by

Fu(v) = Φ∞(u + v) =
1
2
(‖u‖2 − ‖v‖2)−Ψ∞(u + v).

For anyv, η ∈ E−, we have

F ′′
u (v)[η, η] = −‖η‖2 −Ψ′′

∞(u + v)[η, η] ≤ −‖η‖2,

which impliesFu(·) is strictly concave. Moreover,

Fu(v) ≤ 1
2
(‖u‖2 − ‖v‖2) → −∞, as‖v‖ → ∞.

Plainly, Fu is weakly sequentially upper semicontinuous. Therefore, there is a uniqueh∞(u) ∈
E− such that

Fu(h∞(u)) = max
v∈E−

Fu(v).

As Lemma5.6 in [1] or Lemma3.5 in [17], the maph∞ : E+ → E− has following properties:

(1) h∞ isR3-invariant, i.e.,h∞(k ∗ u) = h∞(u) where(k ∗ u)(x) = u(x + k) for all k ∈ R3;

(2) h∞ is bounded map inC1(E+, E−), andh∞(0) = 0;

(3) If un ⇀ u in E+, theh∞(un)− h∞(un − u) → h∞(u) andh∞(un) ⇀ h∞(u).

4. PROOF OF THEMAIN RESULT

We are going to prove the main result. Let

K := {u ∈ E : Φ′(u) = 0}

be the critical set ofΦ. Set

Ĉ := inf{Φ(u) : u ∈ K\{0}} and Ŝ := {u ∈ K : Φ(u) = Ĉ}.
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To apply Theorem3.3. Now, we will show the properties ofΓ,Ψ.

Lemma4.1 — Γ, Ψ are non-negative and weakly sequentially lower semicontinuous.Γ′, Ψ′ are

weakly sequentially continuous.

PROOF : It is clear thatΓ andΨ are non-negative by the assumption(F ) and Lemma3.1. Ψ′ is

weakly sequentially continuous from the fact thatE embeds continuously inLs for all s ∈ [2, 6], and

compactly inLs
loc for all s ∈ [2, 6). Similar to the conclusion (3.2) of Lemma3.2, we know thatΓ′ is

weakly sequentially continuous. 2

Now we discuss the linking structure ofΦ.

Lemma4.2 — There existsr > 0 andρ > 0 such thatΦ|Br(u) ≥ 0 andΦ|Sr(u) ≥ ρ, where

Br = {u ∈ E+ : ‖u‖ ≤ r} andSr = {u ∈ E+ : ‖u‖ = r}.

PROOF : For anyu ∈ E+, by (2.4) and Sobolev inequality, we have

Φ(u) =
1
2
‖u‖2 − Γ(u)−Ψ(u)

≥ 1
2
‖u‖2 − C2‖u‖4 − C3‖u‖p.

Sincep ∈ (2, 6), choosing suitabler > 0 we see that the desired conclusion holds. 2

Lemma4.3 — There existsR > 0 such that, for anye ∈ E+ with ‖e‖ = 1 andEe = E− ⊕ Re,

Φ(u) < 0 for all u ∈ Ee\BR.

PROOF : For anyu ∈ Ee, that isu = te + v for somet ∈ R andv ∈ E−. By (2.1), we have

Φ(u) =
1
2
(|t|2‖e‖2 − ‖v‖2)− Γ(u)−Ψ(u)

≤ 1
2
|t|2 − 1

2
‖v‖2 − a

p
|te + v|pp

≤ 1
2
|t|2 − 1

2
‖v‖2 − βpa

p
|t|p.

Sincep ∈ (2, 6), choosing largeR > 0 we see that the desired conclusion holds. 2

Let h∞ be the induced map fromE+ → E− as in Section3. From now on, we assume that

e0 ∈ E+ such thate0 + h∞(e0) ∈ S̃. SetEe0 = E− + Re0.

Lemma4.4 — We have

d := sup{Φ(u) : u ∈ Ee0} < C̃.
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PROOF : Observe that by Lemma4.2 and the linking property we haved ≥ ρ. SinceΦ(u)

≤ Φ∞(u) for all u = te0 + v, v ∈ E−, t ∈ R, and by Lemma3.11 in Ding and Lee [17],

Φ∞(u) = Φ∞(te0 + v) ≤ Φ∞(te0 + h∞(te0)) ≤ C̃.

Henced ≤ C̃. Next we prove thatd < C̃. Assume by contradiction thatd = C̃. Let un =

vn + tne0 ∈ Ee0 be such thatd− 1
n ≤ Φ(un) → d. It follows from Lemma4.3 that{un} is bounded.

Hence we can assume that, up to a subsequence,un ⇀ u in Ee0 with vn ⇀ v ∈ E− andtn → t. It

is clear thatt 6= 0. In fact, if t = 0, then

d− 1
n
≤ Φ(vn + tne0) ≤ Φ∞(vn + tne0) ≤ Φ∞(tne0 + h∞(tne0)) ≤ C̃,

which implies thatC̃ = 0. Hence

d− 1
n
≤ Φ(un) ≤ Φ∞(un)− 1

p

∫

R3

(q(x)− a)|un|pdx

≤ C̃ − 1
p

∫

R3

(q(x)− a)|u|pdx.

Taking the limit yields

C̃ ≤ C̃ − 1
p

∫

R3

(q(x)− a)|u|pdx

which implies thatu = 0 sinceq(x) > a as in condition(F ), a contradiction. 2

Set

Q := {u = v + te0 : v ∈ E−, t ≥ 0, ‖u‖ ≤ R}.

As a consequence of Lemma4.4, we have the following

Lemma4.5 —supΦ(Q) < C̃.

We now turn to the analysis on(C)c-sequences including the boundness and the compactness.

Firstly, we have

Lemma4.6 — Under the assumptions of Theorem1.1. Then any(C)c-sequences ofΦ is bounded.

PROOF : Let {un} ⊂ E be such that

Φ(un) → c and(1 + ‖un‖)Φ′(un) → 0, (4.1)

and

1
2
Φ′(un)un =

1
2
(‖u+

n ‖2 − ‖u−n ‖2)− 2Γ(un)− p

2
Ψ(un). (4.2)
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By (4.1) and (4.2), there is constantC4 > 0 such that we have

C4 ≥ Φ(un)− 1
2
Φ′(un)un = Γ(un) + (

p

2
− 1)Ψ(un) ≥ 0. (4.3)

Arguing indirectly, assume that up to a subsequence‖un‖ → ∞. Setvn = un
‖un‖ . Then‖vn‖ = 1

and|vn|s ≤ cs‖vn‖ = cs for s ∈ [2, 6). Hence, we can assume that up to a subsequencevn ⇀ v.

Moreover, by (4.3),

Ψ(un)
‖un‖ → 0. (4.4)

Then,by (4.4)

‖un‖p−1|vn|pp → 0. (4.5)

Similarly, we have

Γ(un)
‖un‖ → 0. (4.6)

On the other hand,

Φ′(un)(u+
n − u−n ) = ‖un‖2

(
1− Γ′(un)(u+

n − u−n ) + Ψ′(un)(u+
n − u−n )

‖un‖2

)
. (4.7)

By Hölder inequality, we have

∣∣Ψ′(un)(u+
n − u−n )

∣∣ =
∣∣∣∣
∫

R3

q(x)|un|p−2un(u+
n − u−n )dx

∣∣∣∣

≤ C5

∫

R3

|un|p−1|u+
n − u−n |dx (4.8)

≤ C6|un|p−1
p |u+

n − u−n |p.

Then by (4.5) and (4.8), we have

Ψ′(un)(u+
n − u−n )

‖un‖2
→ 0. (4.9)

Observe that the functionalΓ, which is the unique non-local term inΦ, satisfies the conditions in

Ackermann [2]. Hence, by Lemma3.6 in [2] and (4.6), we have
∣∣∣∣
Γ′(un)(u+

n − u−n )
‖un‖2

∣∣∣∣ ≤ ‖Γ′(un)‖E∗‖u+
n − u−n ‖

‖un‖2

≤ C7

∣∣∣∣∣
(
√

Γ′(un)un + Γ′(un)un)‖u+
n − u−n ‖

‖un‖2

∣∣∣∣∣

≤ C8

∣∣∣∣∣

√
Γ′(un)un + Γ′(un)un

‖un‖

∣∣∣∣∣ (4.10)

= C8

(
1√
‖un‖

√
4Γ(un)
‖un‖ +

4Γ(un)
‖un‖

)
→ 0.
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Therefore, from (4.7), (4.9) and (4.10), we haveΦ′(un)(u+
n − u−n ) → ∞. It is a contradiction.

Hence{un} is bounded inE. 2

In what follows, let{un} be a(C)c-sequence ofΦ. By Lemma4.6, it is bounded, hence, up

to a subsequence,un ⇀ u in E. It is obvious thatu is a critical point ofΦ. In order to establish

compactness condition, we need to prove some results.

Lemma4.7 — Suppose that{un} does not converge tou strongly inE, thenu1
n := un − u is a

(PS)c0-sequence forΦ∞ with c0 = c− Φ(u) ≥ 0 andu1
n ⇀ 0.

PROOF : Sinceun ⇀ u, we haveu1
n ⇀ 0. We can assume thatu+

n ⇀ u+ (resp.u−n ⇀ u−) and

u1+
n := u+

n − u+ ⇀ 0 (resp.u1−
n := u+

n − u+ ⇀ 0). Then by direct computation we have

‖u+
n ‖2 = ‖u1+

n + u+‖2 = ‖u1+
n ‖2 + ‖u+‖2 + o(1) (4.11)

and

‖u−n ‖2 = ‖u1−
n + u−‖2 = ‖u1−

n ‖2 + ‖u−‖2 + o(1). (4.12)

According to Brezis-Lieb lemma in [40], we have

|un|pp = |u|pp + |u1
n|pp + o(1). (4.13)

Now, let us show that

(q(x)− a)|u1
n|p−2u1

n → 0 in E∗. (4.14)

Indeed, for anyϕ ∈ E,
∫

R3

(q(x)− a)|u1
n|p−2u1

nϕdx

=
∫

|x|≤R
(q(x)− a)|u1

n|p−2u1
nϕdx +

∫

|x|≥R
(q(x)− a)|u1

n|p−2u1
nϕdx.

SinceE ↪→ Lp
loc compactly,u1

n → 0 in Lp
loc for p ∈ [2, 6). Hence, for anyε > 0, we have

∣∣∣∣∣
∫

|x|≤R
(q(x)− a)|u1

n|p−2u1
nϕdx

∣∣∣∣∣ ≤ C9|u1
n|p−1

p |ϕ|p ≤ ε‖ϕ‖.

In virtue of assumption(F ) we know whenR > 0 is large enough,|q(x) − a| ≤ ε for |x| ≥ R.

By the boundness ofu1
n in E, there holds

∣∣∣∣∣
∫

|x|≥R
(q(x)− a)|u1

n|p−2u1
nϕdx

∣∣∣∣∣ ≤ ε|u1
n|p−1

p |ϕ|p ≤ εC10‖ϕ‖.
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Thus
∫

R3

(q(x)− a)|u1
n|p−2u1

nϕdx → 0.

Hence (4.14) holds.

Similarly, we also have
∫

R3

(q(x)− a)|u1
n|pdx → 0. (4.15)

Moreover, by using Lemma8.1 in [40], we have

|un|p−2un = |u|p−2u + |u1
n|p−2u1

n + o(1) in E∗. (4.16)

Therefore, by (3.1)-(3.3) and (4.11)-(4.15), we obtain

Φ(un) =
1
2
(‖u+

n ‖2 − ‖u−n ‖2)− 1
4

∫

R3

K(x)φunu2
n −

1
p

∫

R3

q(x)|un|p

=
1
2
(‖u+‖2 − ‖u−‖2)− 1

4

∫

R3

K(x)φuu2 − 1
p

∫

R3

q(x)|u|p

+
1
2
(‖u1+

n ‖2 − ‖u1−
n ‖2)− 1

p

∫

R3

a|u1
n|p + o(1)

= Φ(u) + Φ∞(u1
n) + o(1),

and for allϕ ∈ E,

o(1) = (Φ′(un), ϕ)

= (u+
n , ϕ)− (u−n , ϕ)−

∫

R3

K(x)φununϕdx−
∫

R3

q(x)|un|p−2unϕdx

= (u+, ϕ)− (u−, ϕ)−
∫

R3

K(x)φuuϕdx−
∫

R3

q(x)|u|p−2uϕdx

+(u1+
n , ϕ)− (u1−

n , ϕ)−
∫

R3

a|u1
n|p−2u1

nϕdx + o(1)

= (Φ′(u), ϕ) + (Φ′∞(u1
n), ϕ) + o(1)

= (Φ′∞(u1
n), ϕ) + o(1).

Hence

Φ∞(u1
n) = c− Φ(u) + o(1)

and

Φ′∞(u1
n) = o(1) in E∗. (4.17)
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Furthermore, it holds that

Φ∞(u1
n) =

1
2
Φ′∞(u1

n)u1
n = (

p

2
− 1)Ψ∞(u1

n) ≥ 0. (4.18)

Thuswe have proved the conclusion. 2

Lemma4.8 — Under the assumptions of Lemma4.7. There exist a sequencek1
n ∈ R3 with

|k1
n| → ∞ and a critical pointu1 6= 0 of Φ∞ satisfyingk1

n ∗ u1
n ⇀ u1 and

Φ∞(k1
n ∗ u1

n − u1) → c− Φ(u)− Φ∞(u1) ≥ 0. (4.19)

PROOF : Observe that

(Φ′∞(u1
n), u1+

n − u1−
n ) = ‖u1

n‖2 − a

∫

R3

|u1
n|p−2u1

n(u1+
n − u1−

n )dx. (4.20)

By a direct computation, we obtain

o(1) = (Φ′(un), u+
n − u−n )

= (Φ′(u), u+ − u−) + (Φ′∞(u1
n), u1+

n − u1−
n ) + o(1) (4.21)

= (Φ′∞(u1
n), u1+

n − u1−
n ) + o(1).

Setting

δ := lim sup
n→∞

(
sup
y∈R3

∫

B1(y)
|u1

n|pdx

)
,

we haveδ > 0. Actually, if δ = 0 would be true, then by Lemma2.1 in [40], u1
n → 0 in Lp for

p ∈ (2, 6). Thus by (4.20) and (4.21) and Hölder inequality,u1
n → 0 in E. It is a contradiction. Then

we may assume the existence of{k1
n} ⊂ R3 such that

∫

B1(k1
n)
|u1

n|pdx >
δ

2
.

Let us now considerk1
n ∗ u1

n. We may assume thatk1
n ∗ u1

n ⇀ u1 in E. Therefore,k1
n ∗ u1

n → u1

a.e. inR3. Since
∫

B1(0)
|k1

n ∗ u1
n|pdx >

δ

2
,

from the Rellich theorem it follows that
∫

B1(0)
|u1|pdx >

δ

2
,
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thusu1 6= 0. Sinceu1
n ⇀ 0 in E, {k1

n} must be unbounded, and up to a subsequence, we can assume

|k1
n| → +∞. Furthermore, (4.17) impliesΦ′∞(u1) = 0, and similar argument as Lemma4.7 shows

Φ∞(u1) + Φ∞(k1
n ∗ u1

n − u1) + o(1) = Φ∞(k1
n ∗ u1

n) = Φ∞(u1
n)

= Φ(un)− Φ(u) + o(1) (4.22)

= c− Φ(u) + o(1)

and

Φ′∞(k1
n ∗ u1

n − u1) = o(1) in E∗. (4.23)

By (4.22), (4.23) and similar computation as in (4.18) yield (4.19). The proof is complete.2

With these preparations, we have the following compactness lemma.

Lemma4.9 — Either

(i) un → u, or

(ii) c ≥ C̃ and there a positive integerm, pointsu1, · · · , um ∈ K∞, a subsequence denoted again

by {un}, and sequence{ki
n} ⊂ R3, such that, asn →∞,

∥∥∥∥∥un − u−
m∑

i=1

(ki
n ∗ ui)

∥∥∥∥∥ → 0,

|ki
n| → ∞, |ki

n − kj
n| → ∞, if i 6= j

and

Φ(u) +
m∑

i=1

Φ∞(ui) = c.

PROOF : Suppose that conclusion(i) is false, then{un} does not converge tou strongly in

E. Therefore, we have the results in Lemma4.7 and Lemma4.8. Note thatc ≥ C̃ sinceΦ(u)

≥ 0 andΦ∞(u1) ≥ C̃. If k1
n ∗ u1

n → u1, then we are done. Otherwise, repeating the argument

as in Lemma4.7 and Lemma4.8, after at most finitely many steps we can finish the proof since

Φ∞(ui) ≥ C̃ > 0. 2

Lemma4.10 — If c < C̃, thenΦ satisfies the(C)c-condition.

PROOF : It is a straight consequence of Lemma4.9. 2
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PROOF OFTHEOREM 1.1 : Observe that, the combination of Lemma3.4 and Lemma4.1 implies

thatΦ verifies(Φ0). It is clear thatΦ checks(Φ1) because of the form (2.6). Lemma4.2 is nothing

but (Φ2). Lemma4.3 shows that the linking condition of Theorem3.4 is satisfied. These, together

with Lemma4.5 yield a (C)c sequence{un} with c < C̃ for Φ. Hence, by virtue of Lemma4.10,

un → u such thatΦ′(u) = 0 andΦ(u) ≥ ρ. Therefore,K\{0} 6= ∅.

In what following, we proveĈ > 0. Indeed, assume by contradiction thatĈ = 0. Then there

exists{un} ⊂ K\{0} such thatΦ(un) → 0. Then, by Lemma4.6, {un} is bounded. We can assume

that, up to a subsequence,un ⇀ u ∈ K. Then

Φ(un) = Γ(un) + (
p

2
− 1)Ψ(un) → 0.

SinceΓ(un) ≥ 0 andΨ(un) ≥ 0, we have

Γ(un) → 0 and Ψ(un) → 0. (4.24)

Note thatq(x) ≥ a. HenceΨ(un) → 0 implies|un|p → 0. SinceΦ′(un)(u+
n − u−n ) = 0 and

Φ′(un)(u+
n − u−n ) = ‖un‖2 − Γ′(un)(u+

n − u−n )−Ψ′(un)(u+
n − u−n ),

we have

‖un‖2 = Γ′(un)(u+
n − u−n ) + Ψ′(un)(u+

n − u−n ). (4.25)

By assumption(K) and Ḧolder inequality,

|Ψ′(un)(u+
n − u−n )| =

∣∣∣∣
∫

R3

q(x)|un|p−2un(u+
n − u−n )

∣∣∣∣
≤ C11|un|p−1

p |u+
n − u−n |p → 0. (4.26)

By (4.24) and Lemma3.6 in [2], we have

∣∣Γ′(un)(u+
n − u−n )

∣∣ = ‖Γ′(un)‖E∗‖u+
n − u−n ‖

≤ C12

(√
Γ′(un)un + Γ′(un)un

)
‖un‖

= C12

(√
4Γ(un) + 4Γ(un)

)
‖un‖ → 0. (4.27)

Here we used the fact that{un} is bounded. Hence (4.25)-(4.27) imply‖un‖ → 0. Furthermore,

by Sobolev embedding inequality, we have

‖un‖2 ≤ C14‖un‖p + C15‖un‖4 = C16(‖un‖p−2 + ‖un‖2)‖un‖2.
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Hence,1 ≤ o(1), a contradiction.

Now, we show that̂C is achieved. The above argument impliesĈ > 0, then there exists{un}
such thatΦ(un) → Ĉ, Φ′(un) → 0. SinceĈ < C̃, we haveun → u in E with Φ(u) = Ĉ, Φ′(u) = 0,

henceŜ 6= ∅. The proof is complete. 2
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