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Ando et al. have proved that inequalityRe tr Ap1Bq1 · · ·ApkBqk ≤ tr Ap1+...+pkBq1+...+qk is

valid for all positive semidefinite matricesA,B and those nonnegative real numbers

p1, q1, . . . , pk, qk which satisfy certain additional conditions. We give an example to show that

this inequality is not valid for all collections ofp1, q1, . . . , pk, qk ≥ 0. We also study related trace

inequalities.
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1. INTRODUCTION

If A is a complex square matrix, then we writeA ≥ 0 if A is positive semidefinite. The famous

inequality due to Lieb and Thirring reads as

trAB . . . AB = tr (AB)n ≤ trAnBn

for all A, B ≥ 0 and natural numbersn. It has been of interest in the literature whether the trace of

some other word inA andB in which each of the letters occursn times can be bounded withtrAnBn

from above andtr (AB)n from below, see e. g., [11]. But in these estimates we need to consider

either a real part or an absolute value of the trace of a word, as the latter needs not be neither positive

[15] nor real [11, Remark 2.7]. Generally, Andoet al. considered in [2] the inequalities of the form

Re trAp1Bq1 · · ·ApkBqk ≤ trAp1+...+pkBq1+...+qk , (1.1)
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wherek ≥ 2 is a natural number andp1, q1, . . . , pk, qk are real numbers. Moreover, here and through-

out the paper,|||·||| will denote an arbitrary unitarily invariant norm. In [1], Ando and Hiai were

studying related inequalities of the form

|||Ap1Bq1 · · ·ApkBqk ||| ≤ ∣∣∣∣∣∣Ap1+...+pkBq1+...+qk
∣∣∣∣∣∣. (1.2)

They showed that inequalities (1.1) and (1.2) are valid wheneverp1, q1, . . . , pk, qk are nonnegative

and satisfy some additional restrictions. They pointed out that the problems were subtle for general

p1, q1, . . ., pk, qk ≥ 0 and that they did not have any counterexamples. It is natural to ask what is

the complete range of validity of these inequalities. In this paper we find an example which shows

that neither (1.1) nor (1.2) holds for all nonnegativep1, q1, . . . , pk, qk. Moreover, we will provide an

example which disproves an estimate in the other direction

tr
(
A

p1+...+pk
k B

q1+...+qk
k

)k
≤ |trAp1Bq1 · · ·ApkBqk | ,

as well.

Trace inequalities of type (1.1) have also been studied in another context. For nonnegative real

numbersa andb and0 ≤ t ≤ 1, their Heinz mean equalsHt(a, b) = a1−tbt+atb1−t

2 . Thesemeans have

been studied a lot in the literature and their fundamental property is that they interpolate geometric

and arithmetic mean in the following sense:

H 1
2
(a, b) =

√
ab ≤ Ht(a, b) ≤ a + b

2
= H0(a, b) = H1(a, b). (1.3)

In accordance with the definition for nonnegative real numbers, forA,B ≥ 0 and0 ≤ t ≤ 1, we

setHt(A,B) = 1
2

(
A1−tBt + AtB1−t

)
. Several matrix versions of (1.3) have been established, two

of the most general can be found in [5, Corollary IX.4.10] and [3, Theorem 2] which tell in particular

that ∣∣∣
∣∣∣
∣∣∣A 1

2 B
1
2

∣∣∣
∣∣∣
∣∣∣ ≤ |||Ht(A,B)||| ≤

∣∣∣∣
∣∣∣∣
∣∣∣∣
A + B

2

∣∣∣∣
∣∣∣∣
∣∣∣∣, 0 ≤ t ≤ 1.

In [10], Bourin asked whether a related inequality holds:

|||ApBq + BpAq||| ≤ ∣∣∣∣∣∣Ap+q + Bp+q
∣∣∣∣∣∣, A,B ≥ 0, p, q ≥ 0. (1.4)

In an attempt to answer this question positively, Hayajneh and Kittaneh [12] have conjectured that

|||ApBq + BpAq||| ≤ |||ApBq + AqBp|||, A, B ≥ 0, p, q ≥ 0. (1.5)

They also proved a very special case: when|||·||| is the Frobenius norm‖ · ‖2, p = 1, 2, or 3, and

q = 1, then (1.5) holds. In order to prove (1.5), one may assume thatp + q = 1 after considering
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A
1

p+q andB
1

p+q insteadof A andB, respectively. Then a straightforward computation shows that in

the case of the Frobenius norm, (1.5) is equivalent to

Re trAtB1−tA1−tBt ≤ trAB, 0 ≤ t ≤ 1, (1.6)

which is a special case of inequality (1.1). Bhatia [6] has shown that (1.6) holds when1
4 ≤ t

≤ 3
4 . Recently, Bottazziet al. [7] have proved that the inequality actually holds whenevert be-

longs to a vertical strip in a complex plane containing the interval[14 , 3
4 ]. Moreover, they have found

a counterexample which shows that (1.5) does not hold for all0 ≤ t ≤ 1 if |||·||| is the operator norm.

As mentioned before, in the papers [11] and [12] some inequalities of the type (1.1) were studied.

For example, for allA, B ≥ 0 andp, q ≥ 0 we have

tr
(
AB

p+q
2

)2
≤ trABpABq ≤ trA2Bp+q. (1.7)

In fact, [9, Theorem 1.2] and [8, Theorem 1] give even stronger version of the second inequality:

trAf (B)Ag (B) ≤ trA2f (B) g (B)

for nonnegative nondecreasing functionsf and g. In Section 3, we will generalize (1.7) in two

different directions.

There is another interesting question posed by Bourin in [10]. Motivated by results on subaddi-

tivity, he asked whether we have

∣∣∣∣∣∣Ap+q + Bp+q
∣∣∣∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(Ap + Bp)

1
2 (Aq + Bq)(Ap + Bp)

1
2

∣∣∣
∣∣∣
∣∣∣ (1.8)

for all A, B ≥ 0 andp, q ≥ 0. Again, it suffices to check if

|||A + B||| ≤
∣∣∣
∣∣∣
∣∣∣(At + Bt)

1
2 (A1−t + B1−t)(At + Bt)

1
2

∣∣∣
∣∣∣
∣∣∣, 0 ≤ t ≤ 1, (1.9)

holds. Hayajnehand Kittaneh showed in [13] that the answer is affirmative in the case when|||·||| is

either the trace norm‖ · ‖1 or the Frobenius norm‖ · ‖2. However, after examining the proof, one sees

that at least for these two norms it is natural to seek a stroger inequality. Indeed, for the trace norm, the

left-hand side in (1.9) equalstr (A + B), while the right-hand side equalstr (A + B) plus additional

termstrAtB1−t +trA1−tBt. In the case of the Frobenius norm, we get quite a few additional terms,

see [13]. In the last section we propose what we find a natural candidate for the strengthening of (1.9)

and give positive results in the cases of the trace and Frobenius norms. The general problem remains

open, but a recent result of Audenaert [4, Theorem 3.1] yields as a corollary a weaker version of (1.8)

which reads like ∣∣∣∣∣∣Ap+q + Bp+q
∣∣∣∣∣∣ ≤ |||(Ap + Bp)(Aq + Bq)|||.
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For anyn × n matrix A denote its eigenvalues byλj (A), arranged such that|λ1 (A) | ≥ . . . ≥
|λn (A) |. The vector of eigenvalues(λ1 (A) , . . . , λn (A)) will be denoted byλ (A). We use the

standard notation for majorization, see e. g., [5, Chapter II]. For vectorsx = (x1, . . . , xn) and

y = (y1, . . . , yn) with x1 ≥ . . . ≥ xn ≥ 0 andy1 ≥ . . . ≥ yn ≥ 0 we write

x ≺w log y

if
k∏

j=1

xj ≤
k∏

j=1

yj , k = 1, . . . , n.

Such a majorization implies a weak majorizationx ≺w y, that is

k∑

j=1

xj ≤
k∑

j=1

yj , k = 1, . . . , n.

2. INEQUALITIES OF TYPE (1.1) AND (1.2)

We start the section with the example which shows that (1.1) is not valid for all collectionsp1, q1, . . . ,

pk, qk ≥ 0.

Example2.1 : Let

A =




76 0 0

0 0 0

0 0 1


 and B =




20 −14 13

−14 2880 3100

13 3100 3380


 .

Then we haveA,B ≥ 0 and

trA4BAB4 = 7608677695167720100 > 7566365725138281700 = trA5B5. (2.1)

Remark2.2 : Example 2.1 shows that (1.6) does not hold for matricesA5, B5 ≥ 0 andt = 4
5 .

However, we haven’t been able to answer the following natural question.

Question2.3 : Is the interval
[

1
4 , 3

4

]
themaximalone on which the inequality (1.6) holds?

Corollary 2.4 — If A andB are as in Example 2.1, then

∥∥∥A
3
2 BAB

3
2

∥∥∥
2

>
∥∥∥A

5
2 B

5
2

∥∥∥
2
.

In particular, (1.2) does not hold for all collectionsp1, q1, . . . , pk, qk ≥ 0.
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PROOF : It is well-known that for any two matricesX andY of appropriate sizes we have

|trX∗Y | ≤ trX∗X + tr Y ∗Y
2

.

By applyingthis equality forX = A
5
2 B

5
2 andY = A

3
2 BAB

3
2 weget

|trA4BAB4| = |trX∗Y | ≤

∥∥∥A
5
2 B

5
2

∥∥∥
2

2
+

∥∥∥A
3
2 BAB

3
2

∥∥∥
2

2

2
.

SincetrA5B5 =
∥∥∥A

5
2 B

5
2

∥∥∥
2

2
, Example2.1 now yields

∥∥∥A
5
2 B

5
2

∥∥∥
2

2
<

∥∥∥A
5
2 B

5
2

∥∥∥
2

2
+

∥∥∥A
3
2 BAB

3
2

∥∥∥
2

2

2
,

which impliesthe required result. 2

Example2.5 : Let

C =




4 0 0

0 1 0

0 0 0


 and D =




3 2 −2

2 6 6

−2 6 15


 .

Then we haveC, D ≥ 0 and

tr
(
C3D3

)2 = 52607744 > 25527680 = trC5DCD5.

We finish the section with two propositions which both generalize (1.7).

Proposition2.6 — LetA,B ≥ 0 andp, q ≥ 0. Then we have

λ
(
AB

p+q
2

)2
≺w log λ (ABpABq) ≺w log λ

(
A2Bp+q

)
.

In particular,

tr
(
AB

p+q
2

)2r
≤ tr (ABpABq)r ≤ tr

(
A2Bp+q

)r

for all r ≥ 0.

PROOF : It is enough to show that

λ1

(
AB

p+q
2

)2
≤ λ1 (ABpABq) ≤ λ1

(
A2Bp+q

)
(2.2)

andthenwe can apply a standard argument using antisymmetric tensors, see e.g. proof of [5, Theorem

IX.2.9]. There is nothing to prove ifp = q = 0, so assume thatp+q > 0. Let us first prove the second
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inequality in (2.2). After multiplyingA andB with the same positive scalar, if necessary, we may

assume thatλ1

(
A2Bp+q

)
= 1, that isBp+q ≤ A−2. Then we haveBp ≤ A

− 2p
p+q andA

2q
p+q ≤ B−q,

so

λ1 (ABpABq) = λ1

(
B

q
2 ABpAB

q
2

)
≤ λ1

(
B

q
2 A

2q
p+q B

q
2

)
≤ 1,

asdesired.We proceed with the proof of the first inequality in (2.2). If‖ · ‖ is the operator norm, then

we have

λ1

(
AB

p+q
2

)2
= λ1

(
B

p+q
4 AB

p+q
4

)2
=

∥∥∥B
p+q
4 AB

p+q
4

∥∥∥
2
.

BecauseB
p+q
4 AB

p+q
4 is Hermitian,the latter is not larger than

∥∥∥B
q
2 AB

p
2

∥∥∥
2

=
∥∥∥
(
B

q
2 AB

p
2

)(
B

p
2 AB

q
2

)∥∥∥ = λ1

(
B

q
2 ABpAB

q
2

)
= λ1 (ABpABq) .

Recallthatpositive functionf is log-convex iflog ◦f is convex and that this condition is stronger

than convexity.

Proposition2.7 — LetA,B ≥ 0. Then the functionf : [0,∞)× [0,∞) → [0,∞), defined by

f (p, q) = |||BqABpABq|||, p, q ∈ [0,∞),

is log-convex.

PROOF : Let p1, p2, q1, q2 ∈ [0,∞). Then

f

(
p1 + p2

2
,
q1 + q2

2

)
=

∣∣∣
∣∣∣
∣∣∣B

q1+q2
2 AB

p1+p2
2 AB

q1+q2
2

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣
(
Bq1AB

p1
2

)(
B

p2
2 ABq2

)∣∣∣
∣∣∣
∣∣∣,

becauseB
q1+q2

2 AB
p1+p2

2 AB
q1+q2

2 is Hermitian. By settingX = B
p1
2 ABq1 andY = B

p2
2 ABq2 in

Cauchy-Schwarz inequality

|||X∗Y ||| ≤
√
|||XX∗||||||Y Y ∗||| =

√
|||X∗X||||||Y ∗Y ||| (2.3)

[5, Theorem IX.5.1], we consequently get

f

(
p1 + p2

2
,
q1 + q2

2

)
≤

√
f (p1, q1) f (p2, q2),

as desired. 2

Remark2.8 : Proposition 2.7 is a generalization of (1.7), because it tells in particular that for

p, q ≥ 0, the function

f (r, s) =
∥∥∥
(
B

1
2

)s
ABrA

(
B

1
2

)s∥∥∥
1

= trABrABs
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is log-convex on the line segment{((1− t) (p + q) , t (p + q)) : 0 ≤ t ≤ 1}. Since it is symmetric

with respect to the middle of the segment
(p+q

2 , p+q
2

)
, it attains minimum there, while it attains

maximums in the edges(p + q, 0), (0, p + q).

3. ANOTHER BOURIN QUESTION

In this section we will propose our candidate for the strengthening of (1.9). In order to justify our

choice, we will first prove a reverse inequality. Fix arbitraryA,B ≥ 0 and denote

F (t) = (At + Bt)
1
2 (A1−t + B1−t)(At + Bt)

1
2 , 0 ≤ t ≤ 1.

NotethatF (t) andF (1− t) are unitarily equivalent for everyt ∈ [0, 1].

The following proposition was proven in [3], but we present a different proof here.

Proposition3.1 — For anyj ≥ 1 andt ∈ [0, 1], we have

λj(F (t)) ≤ 2λj(A + B) = λj(F (0)) = λj(F (1)).

PROOF : The mapx 7→ xs, x ≥ 0, is matrix concave for0 ≤ s ≤ 1, see [5, Chapter V]. Hence,
(

A + B

2

)s

≥ As + Bs

2
,

whichyields

As + Bs ≤ 21−s (A + B)s .

We apply this equation twice and get

λj (F (t)) ≤ 2tλj

(
(At + Bt)

1
2 (A + B)1−t (At + Bt)

1
2

)

= 2tλj

(
(A + B)

1−t
2 (At + Bt) (A + B)

1−t
2

)

≤ 2t21−tλj

(
(A + B)

1−t
2 (A + B)t (A + B)

1−t
2

)
= 2λj (A + B) . 2

The last proposition tells that the functionλj(F (t)) has maximums att = 0 and t = 1. In

particular, for every unitarily invariant norm, the function|||F (t)||| has maximums att = 0 andt = 1.

This brings us to a natural question.

Question3.2 : Do functionsλj(F (t)), j ≥ 1, or |||F (t)||| have a minimum att = 1
2? Moreover,

are they convex or log-convex?

Sinceλj(F (1 − t)) = λj(F (t)) for anyj ≥ 1 andt ∈ [0, 1], the convexity condition is indeed

stronger than the condition about having minimum att = 1
2 . But the latter condition is stronger than
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(1.9). Indeed, if we setg(t) =
∣∣∣
∣∣∣
∣∣∣(At + Bt)

1
t

∣∣∣
∣∣∣
∣∣∣, then|||A + B||| = g(1) and

∣∣∣∣∣∣F (
1
2

)∣∣∣∣∣∣ = g
(

1
2

)
. But

wehaveg (1) ≤ g
(

1
2

)
, becauset 7→ g (t) is a decreasing function on(0, 1], as was shown in [14].

We will consider the question about log-convexity for the trace norm and the Frobenius norm.

When doing that, we will need the following proposition.

Proposition3.3 — LetA,B ≥ 0 anda, b, c, d ∈ R. Then the function

f (t) =
∣∣∣
∣∣∣
∣∣∣Aat+cBbt+dAat+c

∣∣∣
∣∣∣
∣∣∣

is log-convex on the region of its definitenessDf .

PROOF : Note that ifA andB are invertible, thenDf = R. If A (resp.B) is not invertible, then

f is defined only whereat + c ≥ 0 (resp.bt + d ≥ 0). In these cases,Df is either an interval or a

point or an empty set.

For everyt ∈ Df setXt = B
bt+d

2 Aat+c andsupposethatDf contains at least two points, sayt

ands. We also havet+s
2 ∈ Df , soone can computeAa t+s

2
+cBb t+s

2
+dAa t+s

2
+c which is a hermitian

matrix. Thus,

f

(
t + s

2

)
=

∣∣∣
∣∣∣
∣∣∣Aa t+s

2
+cBb t+s

2
+dAa t+s

2
+c

∣∣∣
∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
∣∣∣Aat+cBb t+s

2
+dAas+c

∣∣∣
∣∣∣
∣∣∣ = |||X∗

t Xs|||,

which is by (2.3) bounded from above by
√|||X∗

t Xt||||||X∗
s Xs||| =

√
f (t) f (s), asdesired. 2

In the sequel we will need an obvious fact that a positive power of a log-convex function is log-

convex and a well-known fact that the sum of two log-convex functions is log-convex.

Corollary 3.4 — LetA, B ≥ 0, p ≥ 1, anda, b, c, d ∈ R. Then the function

t 7→ tr
(
Aat+cBbt+d

)p
, 0 ≤ t ≤ 1, (3.1)

is log-convex on the region of its definiteness.

PROOF : By Proposition 3.3, the function from (3.1) is ap-th power of log-convex function

t 7→
∥∥∥A

at+c
2 Bbt+dA

at+c
2

∥∥∥
p
.

Theorem3.5— Function

t 7→ ‖F (t)‖p , t ∈ [0, 1],

is log-convex forp ∈ {1, 2}.
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PROOF : We have

‖F (t)‖1 = tr (A + B) + tr
(
AtB1−t

)
+ tr

(
A1−tBt

)

and

||F (t) ||22 = tr
(
A + B + AtB1−t + BtA1−t

)2

= tr (A + B)2 + 2tr (A + B)
(
AtB1−t + BtA1−t

)
+ tr

(
AtB1−t + BtA1−t

)2

= tr (A + B)2 + 2tr A1+tB1−t + 2trA2−tBt + 2trB1+tA1−t

+2trB2−tAt + tr
(
AtB1−t

)2 + tr
(
A1−tBt

)2 + 2trAB,

so the claim follows from Corollary 3.4. 2

Corollary 3.6 — Functions

t 7→ tr
(
A1−tBt + AtB1−t

)
, t ∈ [0, 1],

and

t 7→ tr
(
A + B + AtB1−t + BtA1−t

)2
, t ∈ [0, 1],

are decreasing on
[
0, 1

2

]
andincreasingon

[
1
2 , 1

]
.
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